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Abstract: Drone swarms have gained a lot of popularity in recent times because, as a group, drones
can perform highly intelligent tasks. Drone swarms are strongly inspired by the flocking behavior of
birds, insects, and schools of fish, where all the members work in a coordinated manner to achieve
a common goal. Since each drone is an independent entity, automating the control of a swarm is
difficult. Previous works propose various swarming models with either centralized or distributed
control. With distributed control, each drone makes its own decisions based on a small set of rules to
accomplish swarm behavior, whereas in centralized control, one drone acts as the leader, who knows
the final destination and the path to follow; it specifies the trajectories and velocities for the rest of
the drones. Almost all the work in the area of swarming models follows Reynolds’ model, which has
three basic rules. For GPS-aided settings, state-of-the-art proposals are not mature enough to handle
complex environments with obstacles where primarily local decisions are taken. We propose a new
set of rules and a game-theoretic method to set the values of the hyperparameters to design robust
swarming algorithms for such scenarios. Similarly, the area of realistic swarming in GPS-denied
environments is very sparse, and no work simultaneously handles obstacles and ensures that the
drones stay in a confined zone and move along with the swarm. Our proposed solution SmrtSwarm
solves all of these problems. It is the first comprehensive model that enables swarming in all kinds
of decentralized environments regardless of GPS signal availability and obstacles. We achieve this
by using a stereo camera and a novel algorithm that quickly identifies drones in depth maps and
infers their velocities and identities with reference to itself. We implement our algorithms on the
Unity gaming engine and study them using exhaustive simulations. We simulate 15-node swarms
and observe cohesive swarming behavior without seeing any collisions or drones drifting apart. We
also implement our algorithms on a Beaglebone Black board and show that even in a GPS-denied
setting, we can sustain a frame rate of 75 FPS, much more than what is required in practical settings.

Keywords: swarming models; Reynolds forces; stereo vision; depth map; decentralized control

1. Introduction

In the last couple of years, unmanned aerial vehicles (UAVs) have gained massive atten-
tion and are being used in diverse fields ranging from wildlife monitoring to aerial photogra-
phy and agriculture [1–3]. The global commercial drone market alone was USD 19.89 billion
in 2022 and is expected to grow at a CAGR (compound annual growth rate) of 13.9% from
2023 to 2030 [4]. Usually, these UAVs or drones are used in groups or swarms because a
drone swarm tends to outperform single drones by leveraging their collective intelligence,
increased versatility, and higher operational efficiency [5]. The concept of drone swarms is
inspired by the flocking behavior of birds, animals, and insects, which exhibits a pattern
and a similar general direction of motion for all its members. Broadly speaking, drone
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swarming can be defined as the coordinated behavior of a group of autonomous drones
that work together to achieve a common goal [6–8].

One of the earliest and most well-known flocking models was proposed by Reynolds [9];
it is also known as the boids model. It proposes three principles that govern the behavior of
individual drones within a group. These rules are as follows: 1 each drone in the swarm
should maintain a minimum distance from its neighbors; 2 it should align its velocity with the
average velocity of its neighbors; 3 it should move towards the center of mass of its neighbors.
Reynolds demonstrated that these three rules controlling individual drone movement could
result in complex collective behaviors such as flocking. The main aim of this model is to
capture the self-organizing and coordinated motion observed in flocks of birds or schools of
fish, where collective behavior emerges from localized interactions. As of today, it serves as
the fundamental foundational algorithm that forms the basis for almost all drone swarming
algorithms [6,8,10].

The Reynolds model is based on a distributed control algorithm, also known as self-
organized flocking, where each UAV in the swarm decides its own movement. There
are also models based on centralized control. In these models, the movement of UAVs
is controlled either by an external agent or a specific drone within the swarm. The latter
model is known as a leader–follower swarming model. The self-organizing swarm has the
advantage of efficiency in terms of processing time since the work is divided among all
the members, whereas the leader–follower structure is simpler and easier to implement
and verify [11,12]. The leader drone guides the followers and offers additional control
and coordination mechanisms. The follower drones can maintain a fixed distance and
relative position with respect to the leader, ensuring that the swarm moves in a coordinated
and synchronized manner. However, the problem with centralized control is the single
point of failure. Hence, this paper proposes a hybrid model, SmrtSwarm, that combines
the leader–follower and self-organized flocking models.

Braga et al. [6] suggest that for a leader–follower-based model, all the follower drones
need to follow one more rule along with Reynolds’ flocking rules, i.e., Migration, which
forces the follower drones to migrate towards the leader drone. We integrate this behavior
into SmrtSwarm. The drone swarms are designed for working in a real-world environment
where the conditions may be adverse. For example, there may be obstacles, such as
buildings, towers, etc., which may block a drone’s path. The Reynolds model does not
consider the presence of such obstacles. Hence, we propose including an additional obstacle
avoidance rule that suggests alternative paths. However, this obstacle avoidance rule may
lead to problems: the entire flock may disintegrate into smaller flocks with no interflock
coordination, owing to obstacles. Olfati-Saber [13] identified this problem of fragmentation
in flocking [9]. To avoid such a situation, the Olfati-Saber model proposes to define a
boundary around the drones. Inspired by this method, we add a confinement rule in our
model that forces all the drones to be confined to a predefined boundary.

To realize our model, each drone must be aware of its position and the position and
movement of its neighbors. Therefore, the proposed model works only in a GPS-enabled
environment where each flock member knows the position and velocity of others. But
when operating in a real-world environment, such as in areas like mountain ranges, caves,
congested urban areas, etc., access to a reliable GPS signal becomes a major hurdle [14–16].
In such scenarios, the swarm cannot rely on GPS for navigation. Much work has been
carried out in building the swarming algorithms, but not a single framework has been
provided that works on both the GPS-aided and GPS-denied environments; our proposed
model has this capability.

This paper proposes a computer-vision-based strategy for achieving the flocking
behavior in GPS-denied environments. We use a vision-based sensor to take pictures of
the surrounding area and then analyze them to extract the required information. Previous
works used ML-based models for segmenting and processing those images [17]. However,
these methods require a significant amount of time and computing resources. Furthermore,
many drones cannot afford to implement these algorithms for processing in every time
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frame; as a result, we must use or create conventional algorithms instead. Therefore, we
propose an image processing algorithm based on depth maps. No work has been presented
that processes depth maps for computation of the movement of drones in the swarm.
SmrtSwarm proposes a method to compute the depth maps of the images captured by
drones and to find the neighboring drones and obstacles along with their distance from a
reference drone. We also propose a novel algorithm to track the detected objects (drones and
obstacles) over time. The swarming rules can be applied once all the necessary information
is obtained. The code uses limited parallel processing to enhance its efficiency.

Our primary contributions in this paper are as follows:

1. We develop an enhanced Reynolds model that incorporates leader–follower behavior.
The control is still distributed; however, the leader is a distinguished drone that knows
the final destination.

2. We propose new Reynolds-like flocking rules that enable a swarm to navigate through
GPS-aided environments containing physical obstacles while maintaining swarm
behavior. The total processing time of our model is less than 1 ms on a popular
embedded board.

3. We propose new flocking rules for GPS-denied environments as well. We develop a
method to process depth maps quickly and process frames in around 13 ms (≈75 fps)
on a popular embedded board.

The paper is organized as follows. We discuss the background and related work
in Section 2. Section 3 discusses the proposed swarming model. Section 4 shows the
experimental results, and we finally conclude the paper in Section 5.

2. Background and Related Work

In this paper, we consider two kinds of scenarios. The first set of scenarios has an
available GPS signal, which is arguably the most important input in a drone swarming
system. The second set of scenarios does not rely on a GPS signal—they are more suitable
for settings where GPS signals are weak, or places where jamming the GPS signal is a
real possibility.

2.1. Swarming Models in an Environment with GPS Signals

Drone swarming is primarily inspired by the flocking behavior of birds. In general,
flocking is a group behavior observed in birds, fish, and many other animals. It involves the
coordinated movement of individuals within a group. To achieve this behavior, previous
works propose various swarming models that enable drones in a swarm to communicate
with one another and coordinate their movements [6,8–10]. These models specify certain
rules for all the drones that guide them on how to react to the movement of other drones
nearby. This way, each drone contributes to the overall group behavior. In general, the
flocking process has five stages (see Figure 1). Each swarm member observes its surround-
ings and locates all other drones during the initial stage. Following that, it employs a
neighbor selection strategy to select a set of neighbors who influence its movement. Every
flocking model has a unique neighbor selection technique, such as choosing the k closest
drones as neighbors. The drone then detects other obstacles in its vicinity and tracks the
obstacles as well as its chosen neighbors. Subsequently, the drone calculates the net force
exerted on it by the selected neighbors and obstacles and adjusts its position accordingly.
There exist various varieties of flocking behavior and resultant swarming models. The two
broad categories of flocking behavior are self-organized and leader–follower.
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Figure 1. General workflow of a flocking model [6,18].

2.1.1. Self-Organized Swarming

Self-organized swarming, or decentralized flocking, is distinguished by the lack of
explicit leaders within the group [19]. Instead, each group member follows simple principles
to adjust its velocity based on its local interactions with other drones in the vicinity. Typi-
cally, these principles include maintaining a certain separation distance, aligning with the
average direction of nearby drones, and moving toward the group’s center of mass. Global
flocking patterns arise from these local interactions. Fish schools and insect swarms exhibit
this form of flocking behavior. Various papers have used different approaches to develop
self-organized drone swarms [6,8–10]. Reynolds gave the firstever swarming model for
self-organized flocking. Reynolds observed the natural flocking behavior and identified
three simple rules that define the movement of each swarm member [9]. These rules are
as follows:

(i) Cohesion: Each swarm member must try to travel towards the group’s center. This
behavior is achieved by applying an attractive force between each flock member
and the group’s center of mass, which pulls the member towards the center (refer to
Figure 2a).

(ii) Separation: Every member must keep a safe distance from its neighbors to prevent
collisions. This is achieved by exerting a repulsive force between each flock member
and its nearest neighbors (refer to Figure 2b).

(iii) Alignment: Every member in the swarm should try to match its neighbors’ speed and
direction. This behavior is achieved by exerting an attractive force between each flock
member and its neighbors. This pushes the member’s velocity closer to the group’s
average velocity (refer to Figure 2c).
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Figure 2. Reynolds’ flocking principles: (a) cohesion, (b) separation, (c) alignment. ~xi and ~vi are the
position and velocity of the ith drone, respectively. ~vc, ~vs, and ~va represent the cohesion, separation,
and alignment velocity vectors, respectively. The final velocity of a drone is decided only by the
drones inside the circular boundary.

If ~vc, ~vs, and ~va represent the velocity vectors resulting from the cohesion, separation,
and alignment rules, respectively, then the final velocity ~Vf of a drone after incorporating
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all three rules is given by Equation (1). Here, rc, rs, and ra are their respective weights in ~Vf .

~Vf = rc ∗ ~vc + rs ∗ ~vs + ra ∗ ~va (1)

One point to note here is that the Reynolds model deals in velocities. It computes
the velocity of each drone for the next frame based on the flocking rules and inherently
exerts the required force to achieve that velocity. We adopt the same approach in the
proposed model.

Eversham et al. [8] analyzed the classic Reynolds flocking model in detail and
described the impact of the individual parameters on the observed flock behavior.
Blomkvist et al. [10] proposed to use the Reynolds model to model flocking behavior
in the case of prey escaping a predator attack. However, these models work in a very
constrained environment with no obstacles. Braga et al. [6] considered the presence of
obstacles and proposed an obstacle avoidance rule for swarm members. To detect obsta-
cles, they used distance-based sensors. All these models rely on communication among
drones, which may not be possible in real-world environments. Our proposed approach
SmrtSwarm considers these real-world constraints and provides a robust solution that
requires very little communication between drones. Communication is required only in
a GPS-aided environment to broadcast its position, and no communication is required in
a GPS-denied environment.

2.1.2. Leader–Follower Swarming

In leader–follower swarming, one or more group members undertake the role of a
leader, while the remaining group members serve as followers [20]. The leaders determine
the direction and pace of the flock, whereas the followers adjust their movements to
maintain a certain distance or formation relative to the leaders. This flocking is commonly
observed in avian colonies, where one or a few birds take the lead, and the remainder
follow their movements. Bhowmick et al. [21] proposed a model with a leader–follower
architecture with more than one leader; however, that number is fixed. They demonstrated
how each member tends to move towards the center of the flock without colliding and still
remains in the flock. However, it only operates in two dimensions and does not account for
obstacles. Our proposed model SmrtSwarm works in a 3D space, even with obstacles.

Walker et al. [22] also proposed a leader–follower-based swarming model that con-
siders multileader systems. However, the leaders are chosen dynamically during flight.
Humans are needed to control all the leaders. If the swarm divides itself into clusters,
each with a leader, and they become segregated, the operator must manually bring the
leaders closer together each time this happens. This can occur frequently in an environ-
ment with obstacles. The SmrtSwarm model addresses this issue by defining a confine-
ment area around the leader and adding additional forces. Unlike the other two models,
Zheng et al. [23] proposed a flocking method with a single leader only. They also consid-
ered privacy concerns, such as hiding the leader if there is an adversary. However, their
model does not define how to identify an adversary in a flock—its location or identity.

Reza Olfati-Saber [13] pointed out one disadvantage of the Reynolds flocking model:
creating fragments in the swarm during flight time. Hence, the paper presented a method
to make the swarm similar to an α-lattice, ensuring no fragments are formed. However,
the leader in their model is virtual and can change anytime during the flight. Hence, this
required extra computation; also, it is not scalable to the environment when there is no
GPS present. Our paper presents a simple yet effective algorithm that can be scalable to
environments where GPS is an issue.

2.2. Swarming in a GPS-Denied Environment

As already discussed, most proposed models rely on GPS for location and velocity
information. But relying solely on GPS for swarm navigation and coordination can pose
challenges in real-world environments. GPS signals can be disrupted or lost due to various
factors such as signal jamming, multipath interference, and natural obstructions such
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as mountains, trees, and buildings. In such scenarios, swarms that heavily depend on
GPS can face serious performance issues and may also suffer from complete failure [24].
To address this challenge, swarms must be designed to be more robust and resilient to
GPS unavailability.

The drones thus need distance-sensing hardware [22,24]. Distance sensors are typically
limited in range and accuracy. They also have reliability challenges while navigating in
complex environments. In the natural world, birds and fishes rely on their sense of vision
for perceiving distance [25]. A stereo camera is the most often used vision-based sensor for
providing high-resolution images of the drone’s surroundings and enabling it to recognize
neighboring drones and obstacles. We are thus motivated to use such stereo cameras
inspired by the natural world.

Previous works that deploy vision-based sensors in drone swarms use large computa-
tional neural networks to extract and use the information provided by the sensors [2,3,26].
In spite of this, state-of-the-art implementations mostly derive position information from
such sensors. They seldom obtain good-quality velocity information that the Reynolds
model requires. References such as [2,3] offer alternatives to the Reynolds model by
employing a rigorous mathematically derived flocking algorithm that is based on the
Laplace’s equation—it relies on large convolutional neural networks (CNNs) for navigation
in environments with obstacles.

For all the works that have been carried out in this area, most of them use machine
learning methods to process images generated from a vision camera or use some other
sensors to detect the distance and track other agents or obstacles, which is overhead for
a drone for using multiple sensors or heavy computation [27]. And the papers which
have used depth maps are meant for specific applications like flood level monitoring or
processing depth maps with the Bayesian technique [28,29]. Our SmrtSwarm provides an
efficient method of processing images without using any extra sensors or any machine
learning methods to provide a distance of objects nearby to drones; in addition to detect-
ing the objects, it also tracks the agent without requiring any extra hardware/software
implementation. A brief comparison of related work is shown in Table 1. The summary of
Section 2 is given in Figure 3.

1 Both leader–follower and self-organizing swarming have their own benefits and
drawbacks; we combine the best of both to create a hybrid swarming model that
can work in environments with and without GPS signals.
2 Existing works have one or more of the following limitations: they rely on GPS
signals, they do not account for the presence of obstacles, they do not operate in
three-dimensional space, they rely on communication between swarm members,
and they use large CNNs that overwhelm the computational capacity of drones.
SmrtSwarm does not suffer from any of these limitations.
3 Vision-based sensors such as stereo cameras can be utilized for computing the
positions and velocities of other drones in the vicinity. Using large CNNs for
obtaining velocity or depth information from a 3D depth map of the environment is
not a feasible idea. Drones have very limited onboard processing resources—there
is thus a need to create bespoke depth map processing algorithms that are simple
and fast. They should easily be able to run on popular embedded boards.

Figure 3. Insights from Section 2.
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Table 1. A comparison of related work.

Work Year
Flock’s Characteristics Environment

Sensor Used AlgorithmLeader– Self- GPS- Existence of
Follower Organized Denied Obstacles

Eversham et al. [8] 2011 × X × × GPS -
Blomqvist et al. [10] 2012 × X × X GPS -
Barksten et al. [30] 2013 × X × × GPS -
Walker et al. [22] 2014 X × X X Distance-based -
Virágh et al. [31] 2014 × X × × GPS -
Bhowmick et al. [21] 2016 X × × × GPS -
Braga et al. [6] 2016 × X × × GPS -
Schilling et al. [26] 2019 × X X × Vision-based ML-based
Zheng et al. [23] 2020 X X × × GPS -
Schilling et al. [3] 2021 × X X × Vision-based ML-based
Chen et al. [24] 2022 × X X × Distance-based -
Schilling et al. [2] 2022 × X X × Vision-based ML-based
SmrtSwarm 2023 X X X X Vision-based Traditional CV

3. Materials and Methods
3.1. SmrtSwarm in GPS-Aided Environments

Our swarming model is based on the conventional Reynolds model that incorporates
the leader–follower behavior. In our implementation, each drone in the swarm considers all
other drones to be its relevant neighbors even though this is not strictly necessary in larger
settings. To improve the swarm’s coordination and robustness, we suggest a few more
novel swarming rules. The proposed rules are named 1 migration, 2 obstacle avoidance,
and 3 confinement. Note that when working in a GPS-aided setting, every swarm member
is aware of its own position parameters, velocity, and tag, which are broadcasted to the
other members. All swarming rules in the GPS-aided setting rely on this information.

Finally, the weighted sum of all the vectors generated by the newly introduced rules
and the fundamental Reynolds rules are used to calculate the final velocity assigned to
the drone.

The description, implementation, and mathematical representation of the rules are
shown next. The mathematical representation is designed for a drone swarm having n + 1
drones, where one drone is the leader and the remaining n drones are its followers. The
mathematical notations are shown in Table 2.

Table 2. Glossary.

Symbol Meaning

~vi , ~xi Velocity and position of the ith drone, respectively.
~xL, ~zj Position of the leader drone and of the jth obstacle, respectively.
δ Radius of the confined area around the leader.
rc, rs, ra, Weights of the cohesion, separation, alignment, migration, confinement,
rm, rct, roa and obstacle avoidance rules, respectively, in the final velocity of the drone.
~vc, ~vs, ~va, Cohesion, separation, alignment, migration,
~vm, ~vct, ~voa confinement, and obstacle avoidance vector, respectively.

3.1.1. New Rule: Migration Rule

The integration of the migration rule within SmrtSwarm enhances the functionality of
our leader–follower-based model. In such models, the leader drone assumes complete trust
from the follower drones, compelling them to faithfully adhere to its chosen path [1,6,9].
By introducing this novel rule, we address the challenges associated with coordinating a
cohesive and goal-oriented flock.

The essence of the migration rule lies in its ability to facilitate the migration of follower
drones towards the leader drone, thereby ensuring synchronized movement within the
swarm (see Figure 4a). The fundamental objective is to eliminate deviations from the
intended goal, as only the leader possesses the knowledge of the optimal route required to
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reach the destination. This strategic alignment guarantees that each member of the flock
remains focused and informed throughout the journey.

 v m

Leader

(a)

voa

Obstacle

Sensor Rays

(b)

v

vct

ct

Confinement Boundary

Leader

(c)

Figure 4. Proposed flocking rules in a GPS-aided environment: (a) migration; (b) obstacle avoidance;
(c) confinement. Here, ~vm, ~vct, and ~voa are migration, confinement, and obstacle avoidance vectors,
respectively.

The migration vector is the directional vector from a given drone to the leader drone,
which can be calculated by subtracting the position vectors of the respective drones. The
rule is mathematically represented in Equation (2).

~vm = ~xL − ~xi (2)

3.1.2. New Rule: Obstacle Avoidance Rule

In real-world scenarios, the presence of obstacles, such as trees, buildings, poles,
and other objects, poses an alarming challenge for drone swarms [32–34]. To tackle this
challenge, we propose the inclusion of a new rule known as the obstacle avoidance rule
in the SmrtSwarm model. Fundamental to our approach is the deployment of advanced
distance sensors [35] on each drone within the swarm. These sensors can encompass either
vision-based or infrared (IR) technology, providing the ability to detect obstacles within the
environment. We carefully select and integrate these sensors, ensuring their suitability for
obstacle detection tasks and their seamless integration with the overall swarm system.

We devise an obstacle avoidance rule that guides drones in creating new flight paths
devoid of obstacles. Central to this rule is the fundamental directive for each member of
the swarm to navigate in a direction away from the detected obstacle (refer to Figure 4b).
However, we move beyond mere directional guidance. To enhance our obstacle avoidance
strategy, we design the magnitude of the repulsive force in proportion to the inverse
distance between the drone and the obstacle. This approach ensures that the repulsive
force exerted along the line connecting the drone’s center and the obstacle increases as the
proximity to the obstacle decreases. This magnitude adjustment maximizes the likelihood
of successfully steering the drones away from potential collisions and obstructions.

Our approach to obstacle detection and avoidance showcases our awareness of the
real-world challenges faced by drone swarms. By integrating sensors and formulating
an effective obstacle avoidance rule, we aim to ensure the safe navigation and successful
completion of the swarm’s mission even in the presence of obstacles.

Equation (3) shows the mathematical representation of this rule. It takes multiple
obstacles into account.

~voa = −
n

∑
j=1

(~zj/|~xi − ~zj|) (3)

3.1.3. New Rule: Confinement Rule

The obstacle avoidance approach described in Section 3.1.2 may introduce potential
issues where certain members of the swarm diverge from the rest of the group while
avoiding obstacles. Furthermore, follower drones may surpass leader drones due to
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prolonged exposure to these repulsive forces. To mitigate these concerns, we improve the
suggested model by drawing ideas from the Olfati-Saber flocking model [13].

The Olfati-Saber model introduces the concept of a confinement area, which acts as a
protective boundary surrounding the swarm, ensuring that no member, or drone, ventures
outside of it. In our approach, we adopt a similar concept by defining a confined area
around the leader drone. This confinement area serves as a virtual enclosure, preventing
any subset of the flock from detaching or straying away from the main group (see Figure 4c).

According to the confinement rule, if any drone attempts to move outside the confine-
ment area, a force is exerted to redirect it toward the leader drone. This redirection can
be determined by subtracting the position vectors of the leader and the respective drone.
The magnitude of this force is directly proportional to the extent to which the drone has
deviated from the restricted area.

This confinement rule generates a nonzero vector only when a drone is outside the
confinement zone, which is represented by a sphere with a radius of δ centered around the
leader drone. When a member drone strays beyond this region, the confinement force acts
to guide it back toward the leader, ensuring the cohesion and integrity of the flock.

By incorporating this confinement rule, we address the potential problem of swarm
detachment and promote a collective behavior that preserves the cohesion and interdepen-
dence of the flock. The confinement force acts as a guiding mechanism, reinforcing the
importance of staying within the predefined confinement area. This enhancement enhances
the overall efficiency and coordination of the swarm, ensuring that no member drones
deviate too far from the rest of the group.

Equation (4) provides the mathematical representation of the rule.

~vct = −((~xi − ~xL) ∗max(0, |~xi − ~xL| − δ))/|~xi − ~xL| (4)

Up till now, we have discussed the proposed flocking rules. Since SmrtSwarm com-
bines these proposed rules with the basic Reynolds flocking rules and Section 2.1.1 only
provides a brief description of the basic flocking rules, we provide their implementation
details here.

3.1.4. Old Rule: Cohesion Rule

The cohesion vector (part of the original Reynolds model) tries to move the drone
towards the swarm’s centroid. Therefore, we need a vector pointing in that direction. We
calculate this vector by averaging the neighboring drones’ position vectors. Equation (5)
provides the mathematical representation for this rule.

~vc =
n

∑
j=1

(~xj/n) (5)

3.1.5. Old Rule: Separation Rule

The separation vector tries to push the drone away from the neighboring drones; hence,
a repulsive force needs to act between them along the line joining them. The direction
of this force is from the neighbor towards the reference drone, and the magnitude of it is
inversely proportional to the distance between the reference drone and the neighboring
drone. The rule can be mathematically represented as Equation (6).

~vs =
n

∑
j=1

(~xi − ~xj)/|~xi − ~xj|2 (6)

3.1.6. Old Rule: Alignment Rule

The alignment vector tries to move the drone in the direction of the movement of the
swarm. We can obtain the direction by taking the average of the velocities of all the drones
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in the swarm and then moving the reference drone with that velocity. Equation (7) provides
the mathematical representation for this rule.

~va =
n

∑
j=1

(~vj/n) (7)

3.1.7. The Final Velocity

The final velocity ~Vf of a drone after incorporating all these rules is shown in Equation (8).
Here, rm, roa, and rct, rc, rs, and ra are the respective weights of these rules used in calculat-
ing ~Vf . We are basically computing a linear weighted sum. The summary of Section 3.1 is
given in Figure 5.

~Vf = rc ∗ ~vc + rs ∗ ~vs + ra ∗ ~va + rm ∗ ~vm + roa ∗ ~voa + rct ∗ ~vct (8)

1 SmrtSwarm is a self-organizing model with a leader–follower behavior, increasing
coordination and navigation within the drone swarm as opposed to the conventional
Reynolds flocking model.
2 We introduce a migration rule in the proposed flocking model, guiding follower
drones to migrate toward the leader.
3 A confinement rule is implemented, preventing subsets of the flock from detach-
ing and maintaining overall cohesion.
4 Obstacle avoidance is also addressed by equipping drones with sensors and
implementing a rule that directs them away from detected obstacles.
5 To obtain a balanced influence of various behavior, we use the weighted sum
to integrate the effects of the proposed rules with the three fundamental Reynolds
principles.

Figure 5. Insights from Section 3.1.

3.2. SmrtSwarm in GPS-Denied Environments

The model we propose in Section 3.1 requires the presence of a GPS while swarming,
and also some communication regarding the drones’ coordinates. The GPS signal helps
each drone communicate its tags, velocity, and position with the other members of the
swarm so that every drone can decide its motion accordingly. But GPS signal reception is
not always possible in the real world, such as for indoor environments, dense urban areas,
dense forests, security-sensitive environments, and places where there is a possibility of
deliberate signal jamming [14–16]. Hence, we need to adopt SmrtSwarm for GPS-denied
regions. For this, we use a computer-vision-based approach. We deploy a stereo camera
on the drones to capture a specialized image of the environment that we shall refer to as
the depth map. We need to then use a lightweight image processing approach to obtain
the required information about the drones present in the field of view. We need to take
into account that ML-based techniques are computationally expensive (refer to Section 2).
Hence, we need to look at either ultrafast ML techniques or fast conventional algorithms.
We were not able to find good candidate algorithms in the former class; hence, we opted
for the latter class (i.e., conventional computer vision (CV) algorithms).

A depth map provides a pixelwise estimation of the depth or distance of objects from a
particular viewpoint. It is typically represented as a 2D image, where each pixel corresponds
to a depth value indicating the distance from the camera or the viewpoint. We use a
bespoke algorithm on the produced depth map to obtain the neighboring drones’ positions,
velocities, and tags.

3.2.1. Object Detection in the Depth Map

We begin by computing the depth map of the current scene. One example of a depth
map is shown in Figure 6. We make the following observations from the depth map:
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1 A depth map is a 2D matrix, where the value in each cell represents the depth of the
relevant part of the object corresponding to it.

2 The objects seen on the depth map form a cluster of pixels with similar pixel values.
On the boundaries of these clusters, we can find a sudden change in pixel values.

3 The values of the pixels belonging to objects far away from the reference point are
very high.

(a) (b)

Figure 6. (a) Head and lamp image; (b) depth map of the image (adapted from the Tsukuba Stereo
Vision dataset [36]).

We exploit these findings to detect the objects in the depth map. For the purpose of
describing the object detection algorithm, we take one drone from the swarm as a reference
drone. The suggested approach consists of two steps: (1) detecting objects in the depth
map, and (2) determining if the identified objects are drones or obstacles. For the first step,
we propose a depth-first search (DFS)-based approach. We observe that all objects that are
in front of the reference drone form clusters in the 2D matrix corresponding to the depth
map. To identify all the pixels that belong to a particular cluster (object), we traverse the
2D matrix (represented as a graph) using DFS. We ignore objects (clusters) that are far
away from the reference point because they will not influence the movement of the drone.
We also ignore very small clusters because they most likely do not correspond to drones.
Both these behaviors are controlled by threshold parameters. The exact values of these two
thresholds are given in Section 4.3.2. We start by identifying each cluster that is present in
the depth map. These clusters might represent drones as well as obstacles; therefore, the
next step is to determine whether they are drones or regular obstacles. They have different
characteristics, as described in Section 4.3.2.

The identification of objects is not enough because the swarming model requires a
few more details, such as the position and depth for applying the proposed rules. The
drone’s depth is determined by taking the pixel with the lowest value in the cluster that
represents it. The component of the drone closest to the reference drone corresponds to
the lowest pixel value. Additionally, to find its position, we compute the center of the
drone by averaging the coordinates of all the pixels forming its cluster. For obstacles, we
create a bounding box—a rectangular shape encompassing all the pixels in the cluster.
This rectangle provides us with the obstacle’s dimensions, and its depth is determined
by the pixel with the lowest value within the cluster. By incorporating these data, we
exert an obstacle avoidance force on the reference drone, ensuring that it steers clear of the
surrounding obstacle.

3.2.2. Object Tracking

We need the velocities of the neighboring drones to calculate the alignment and
confinement vectors; we need to know where a drone was in the previous and current
frames. In the object tracking algorithm, there is only a single step: tagging. For tracking a
drone, we associate it with a unique tag. Tagging also handles the problem of identifying
objects that leave or newly enter the field of view (FoV) of a drone.
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The tagging of the drones uses the insight that because the drones move slowly, the
difference between their positions in successive frames will be less than a threshold (the
exact value is mentioned in Section 4.3.2). The threshold depends on the cluster size
representing the drone in the depth map. Since every drone in the swarm is of the same
size, the neighbor drone closest to the reference drone has a larger cluster in the depth map
and will move more than the others. Therefore, the threshold for movement in successive
frames for this drone should reflect this fact. All of the drones’ positions within the FoV are
kept in lists. We maintain two such lists, one for the previous frame and the other for the
current frame. While traversing these lists, the following cases may happen:

1 A pair of positions in the list for the previous and current frames exists such that the
difference between them is less than the threshold. Then we conclude that these are
the positions of the same drone, and the drone is given the same tag in the current
frame as it was in the previous frame.

2 If a position in the list for the previous frame exists for which we are not able to find
such a match (described in point 1) in the list for the current frame, then that position
refers to a drone that recently left the FoV, and we do not issue a tag. In other words, if
a tag found in the previous frame is not present in the current frame, then that drone
has left the FoV of the reference drone.

3 If a position in the list of the current frame exists for which we cannot find such a
match in the list of the previous frame, then that position refers to a newly appeared
drone in the FoV. It needs to be assigned a new tag.

The tags are initially assigned in ascending order. As more drones continue to enter
the field of view, we increment a counter and assign the new value as the new drone’s
tag. In this way, we track the drones. We assume that there are no moving objects in the
environments except for swarm members. In other words, this paper only considers static
obstacles, which do not need to be tracked. After the completion of the steps mentioned
in Sections 3.2.1 and 3.2.2 for object detection and tracking, we gather all the required
information about the neighborhood and obstacles in the environment.

We still need a notional leader drone here. It is the drone that is at the front of the
swarm and cannot see any drones in its front-facing camera (towards the direction of
motion). It basically knows where to go. It either has a GPS or, using visual guidance, it
knows the path. The rest either implicitly follow it or have their own guidance system. This
means that the leader drone has special hardware that allows it to set the course; the rest
follow the leader. For instance, if the drones are tracking wildlife and they can see a pack
of deer, then they can all decide (independent of each other) to follow the pack and not the
leader. All the swarming rules are still required to ensure that they behave as a swarm. It
turns out that we need to make some alterations to the Reynolds rules and also propose a
new rule for this setting.

3.2.3. Flocking Rules in GPS-Denied Environments

All the flocking rules proposed for a GPS-aided environment in Section 3.1 are appli-
cable to this case except one—the migration rule. Since all drones have identical physical
characteristics and, as a result, have the same kind of depth map projection, it is impossible
to distinguish between a leader and a follower by looking at the depth map. This is why
we skip the migration rule, which makes follower drones move towards the leader.

All the rules, which use only the position information of the drones forming the swarm
and the obstacles in the environment, are implemented in the same way as mentioned
for GPS-aided environments in Section 3.1 (refer to Figure 7). The rules falling into this
category are the cohesion, separation, and obstacle avoidance rules. The alignment and
confinement rules use velocity and tags, respectively. The algorithmic implementation of
these rules in a GPS-denied environment needs to slightly change. This is because finding
the velocities and tags is more complex than deducing the positions.
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Figure 7. Proposed flocking rules in a GPS-denied environment: (a) cohesion; (b) separation;
(c) alignment; (d) obstacle avoidance. Here, FoV represents the field of view of the reference drone. ~xi

and ~vi are the position and velocity of the ith drone. ~vc, ~vs, ~va, and ~voa represent cohesion, separation,
alignment, and obstacle avoidance vectors.

Alignment Rule for GPS-Denied Environments

According to this rule, a drone needs to move in the direction given by the average
velocity of drones present in its field of view. We store the position vectors of all the drones
in the FoV for the previous and current frames in two lists. We store the tags assigned
to drones for both frames, too. To find the velocity of a drone, we subtract the position
vectors of the current and previous frames. We can find the velocity of only that drone
that is present in both the current and previous frames. The drones which newly appeared
in the FoV or recently left the FoV will not contribute to this. We then need to move the
reference drone in the same direction as the mean average velocity (note: it is a vector). The
complete flow is shown in Algorithm 1.

Algorithm 1: Alignment.

1 Function Alignment():
2 ~va ← 0
3 counter ← 0
4 valNeighbours← 0 /* Initialize the count of valid neighbors */
5 while counter < currPositions.size do

/* Get the current position and tag of the drone */
6 currPos← currPositions[counter]
7 currTag← currTags[counter]
8 i← 0 /* Initialize the inner loop counter */
9 while i < prevTags.size do

10 if currTag == prevTags[i] then
11 prevPos← prevPositions[i] /* Get the previous position of the

corresponding drone */
12 ~va = ~va + (currPos− prevPos) /* Add the difference of positions,

i.e., their velocity in a unit time frame to the alignment
vector */

13 valNeighbours = valNeighbours + 1
14 break
15 end
16 i = i + 1 /* Move to the next tag in prevTags list */
17 end
18 counter ← counter + 1 /* Move to the next drone */
19 end
20 ~va ← ~va/valNeighbours /* Normalize the alignment vector */
21 return ~va
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Confinement Rule for GPS-Denied Environments

In a GPS-denied setting, a drone is said to be out of the confined area if no other drones
are within its field of view. This can easily be found because we maintain a list of position
vectors of all such drones (refer to Section 3.2.3). If a drone is outside the confined area,
we assign it a velocity in the opposite direction of its current velocity vt, known as the
confinement velocity. The drone will continue in this direction until it detects a neighbor
within its field of view. We cannot, however, just let the drone continue because it may not
find any drones, even on this route. To prevent this, we limit the number of frames (κ) for
which the drone can move in the opposite direction. If, within this limit, the drone does
not encounter any drone within its field of view, it returns to its previous direction, i.e., the
direction of vt, and moves 2κ steps, then it moves 4κ steps in the opposite direction, and so
on and so forth, until it sees other drones. Algorithm 2 shows the complete implementation.
In our exhaustive simulations, we never had a case where a drone became lost, even in an
environment with obstacles.

Algorithm 2: Confinement.

1 Function Confinement():
2 ~vct ← 0

// If there are neighboring drones in the FoV
3 if currPositions.size > 0 then
4 con f inementCounter = 0
5 limit = κ

6 end
7 else

/* Set the confinement vector opposite to the previous velocity */
8 ~vct ← (prevVelocity.x, prevVelocity.y,−1 ∗ prevVelocity.z)
9 con f inementCounter+ = 1

/* If the confinement counter exceeds the limit */
10 if con f inementCounter > limit then
11 limit = limit× 2 /* update the limit */
12 end
13 end
14 return ~vct

3.3. Workflow of the Proposed Model

Figure 8 shows the complete workflow of SmrtSwarm in a GPS-denied environment.
For each frame, we compute a depth map, detect all the objects within it, and then compute
their relative positions. We track the drones using information from the previous frame,
and then compute the velocity of all the drones, and their tags. This information is used to
compute all the velocities (yielded by the different rules), and the final target velocity is
a weighted sum of all the individual velocities (similar to Equation (8)). The summary of
Section 3.2 is given in Figure 9.

Start Depth map
detection

Neighbor drones
Computation of
relative positions

of drones
Tracking the
drones

Velocity
computation

Velocity
Asssignmentcomputation

Figure 8. Workflow of SmrtSwarm in GPS-denied environments.
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1 In this model, we address the limitations of GPS signal reception in real-world
environments and propose a computer-vision-based approach using cameras and
depth maps to overcome this limitation.
2 The migration rule from the GPS-aided model needs to be excluded in a GPS-
denied environment due to its inability to distinguish between leaders and followers
based on depth maps.
3 Drones can become lost in a GPS-denied environment. Thus, the confinement
rule needs to also have an element of searching that will allow a drone to rejoin the
swarm if it temporarily moves out.

Figure 9. Insights from Section 3.2.

4. Results and Analysis
4.1. Simulation Setup

We implement SmrtSwarm on Unity, a popular cross-platform game development
engine. It has a lot of features and prebuilt elements for creating custom environments. We
added our code in C# for simulating a drone swarm [37,38] to it. We also experimented
with the Unreal engine [39] but found it to be far slower than Unity, especially when the
number of drones in the flock is increased. Other than visual effects, it was not adding any
additional value. Hence, we opted for Unity version 2020.3.40f1 for simulating our system
(similar to [37]). We use C# version 11.0 [40] for implementing the algorithms. A few
simulation environments were created using Unity assets, and a few were purchased from
the Unity store, which contains urban settings with both low- and high-rise towers and
buildings [41,42]. The configuration details of the simulator are shown in Table 3. The sim-
ulated scenes and the drones placement are shown in Figure 10. In the literature on drones,
using simulators for studying the behavior of large drone swarms is the standard prac-
tice [2,3]. Given that we do not have any other direct competitor that implements swarming
with obstacle avoidance in GPS-aided and GPS-denied environments (see Table 1), we did
not perceive the need to implement any state-of-the-art algorithm and compare the results
with our paper.

Table 3. Platform configuration.

Parameter Value

Simulator Unity 2020.3.40f1
Operating system Windows 10
Main memory 1 TB
RAM 32 GB
CPU Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz
GPU NVIDIA Ge-Force GT 710
Video memory 2 GB

(a) (b)

Figure 10. (a) Simulation scene; (b) drone placement.
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4.2. Setting the Hyperparameters (Coefficients in the Equations)

Recall that in Equation (8) in Section 3, we assigned weights to each component
velocity vector for computing the final velocity vector. In this section, we shall evaluate the
impact of these weights on drone swarming and find their best possible values.

To find the optimum value of each hyperparameter, we first assigned equal weights
to each hyperparameter and then observed which force is acting more aggressively and
which is not. We then fixed all hyperparameters except one and tried to discover its
optimum value (creating a Nash equilibrium). For instance, when determining rs, we tried
to determine how quickly drones are moving apart from one another. The optimum value
was achieved when they moved at such a speed that they did not collide, yet still remained
in the swarm. We then set this hyperparameter around that value and modified other
hyperparameters one by one. We are basically computing a Nash equilibrium here, where
the parameters are the players and the performance is the utility function.

We ran this experiment several times and tried many different parameter perturbations.
For each experiment, we assessed its performance, which is defined as follows. It is a tuple
comprising an integer (number of collisions or #collisions) and a Boolean value (whether
any drone escaped the confinement zone).

Tables 4 and 5 show the obtained results for a scene with an enabled and disabled
GPS signal, respectively. Note that in our simulations we did not observe any collisions
because the hyperparameters were chosen correctly. Specifically, we make the following
observations from the results:

Table 4. Effect of the weights on the overall performance for a GPS-aided environment.

Experiment Weights Performance
No. rc rs ra rm rct roa #Collisions Confined

1 10 1.0 1.0 1.0 2 1.0 3 ×
2 60 1.1 1.5 1.0 15 5.0 5 X
3 75 1.2 1.0 1.1 25 5.0 3 X
4 77 1.2 1.0 1.1 21 5.0 1 ×
5 77 1.2 1.0 1.1 21 5.0 0 X
6 78 1.0 1.2 1.0 24 4.9 1 X
7 80 1.1 1.0 1.2 23 5.1 2 X
8 80 11.0 1.0 1.2 23 5.1 2 X
9 81 1.0 5.5 1.0 25 4.8 3 X
10 81 1.0 1.5 4.0 25 4.8 1 X
11 82 1.0 1.2 1.0 10 4.9 4 ×
12 100 1.1 1.0 1.0 10 10.0 5 X

Table 5. Effect of the weights on the overall performance for a GPS-denied environment.

Experiment Weights Performance
No. rc rs ra rct roa #Collisions Confined

1 10 1.0 1.0 1 1 3 ×
2 100 5.0 1.5 5 1 4 X
3 300 8.0 1.0 1 1 4 X
4 500 6.0 1.0 1 1 5 X
5 800 6.5 1.2 1 1 2 X
6 750 5.5 1.0 1 1 1 X
7 820 6.1 1.0 1 1 3 ×
8 800 6.2 1.5 1 1 1 X
9 750 6.0 1.1 1 1 0 X

10 800 6.0 0.9 1 1 1 X
11 810 6.2 1.2 1 5 0 ×
12 800 6.2 1.0 3 1 1 ×

1 Experiments 5 and 9 (highlighted in bold) show the base set of values of the weights
for the GPS-aided and GPS-denied environments, respectively. We set these values as
the default for the subsequent experiments.



Drones 2023, 7, 573 17 of 22

2 For the best case, the rule contributing the most to the final velocity is cohesion. Even
though the values of rm, rct, and roa are much lower than rc, the overall performance
is quite sensitive to these values—this is also observed in Section 4.4.1.

4.3. Performance Analysis

To evaluate the performance of the proposed model, SmrtSwarm, in terms of the
achieved flocking behavior, we ran the model in the simulated environment shown in
Figure 10 with GPS enabled as well as disabled. We used a 10-drone swarm to begin
with. As mentioned in Section 3.1.3, for a GPS-aided environment, we define a spherical
boundary (radius = 30 m in the x, y, and z directions of Unity’s coordinate system) around
the leader drone as the confinement zone, whereas for GPS-denied environments, the field
of view (FoV) of the drone becomes the confinement area. In our experiments, we used
two cameras on all the drones, each with a field of view of 60◦. Hence, the total FoV was
120◦ (similar to [43]). The swarm size, the simulation environment, the total FoV, and the
confinement zone were the same for every experiment unless stated otherwise.

4.3.1. Swarming in a GPS-Aided Environment

We use two types of tags in SmrtSwarm: Leader and Follower. All the follower drones
are given the Follower tag and the leader is given the Leader tag. The communication
between drones is simulated using Unity’s built-in shared variables. We uploaded a video
of our simulations, which can be accessed using this link [44].

4.3.2. Swarming in a GPS-Denied Environment

In the real world, stereo cameras can directly compute the depth values of each pixel
in the FoV. However, in Unity, the depth values (from simulated cameras) are stored in a
z-buffer called a depth buffer. This buffer is stored in the GPU memory and is not directly
accessible. We wrote a shader program using High-Level Shader Language (HLSL) to read
the depth values [45]. The shader program gives the depth map as a 256× 256 2D matrix.
They lie in the range of 0 to 1. We needed to post-process the data to transform them
to match the camera’s coordinate system. Furthermore, we also considered the camera’s
viewing range, which is 40 in the x, y, and z directions, and converted all normalized
depth values to actual distances (in meters). In Figure 11, a few depth map illustrations are
displayed. We make the following observations from the depth maps:

1 The pixels within an object have similar depth values.
2 We observe that clusters corresponding to obstacles are much larger than those of

drones and have at least 2000 pixels. This defines a threshold for us—we use this to
designate a cluster as an obstacle. Furthermore, obstacles, being static objects, often
start from the bottom of the FoV.

3 Also, there are a few clusters that correspond to random noise (far-away objects),
which can be discarded if the total number of pixels forming a cluster is fewer than 8.

4 As clear from Figure 11, some of the objects in the depth map may be occluded.
Due to the fact that all the drones follow the flocking principles, there must be some
distance between them and, as a result, a significant difference will be present in their
depth values. This allows us to readily filter out each cluster even in the presence
of occlusion.

We tried to design a proof technique for proving that our flocking rules will always
maintain a coherent swarm and avoid collisions in all kinds of environments, regardless
of obstacles. This is ongoing work and our results are not fully mature yet. We exten-
sively searched the web, but we could not find any existing mathematical technique that
similar papers have used. Research in drone swarming is validated using exhaustive
experimentation, as we have performed [46–52].
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(a) (b) (c) (d)

Figure 11. Depth maps of frames with and without obstacles. (a) Frame 1; (b) depth map of frame 1;
(c) frame 2; (d) depth map of frame 2.

4.4. Sensitivity Analysis

To check whether the proposed model is robust enough, we ran the model in four
different simulation environments (refer to Figure 12). These environments cover various
lighting conditions, obstacle types, and relative positions of drones. The resulting swarm
movement for all these cases is shown in an uploaded video [44]. We tuned the weights
according to the scenes and list their final values in Tables 6 and 7. We make the following
observations from the results:

1 The weights are almost the same for all the environments.
2 The model works well for almost all the environments if the value of the six-tuple 〈rc,

rs, ra, rm, rct, roa〉 = 〈80, 1, 1, 1, 25, 5〉 for a GPS-aided environment.
3 For a GPS-denied environment, the optimal value of the weight tuple is 〈750, 6, 1, 1, 1〉.

(a) (b) (c) (d)

Figure 12. Simulation environments: (a) Scene 1; (b) scene 2; (c) scene 3; (d) scene 4.

Table 6. Weights for various simulation environments with GPS.

Scene Weights Performance
rc rs ra rm rct roa #Collisions Confined

1 78 1.0 1.0 1.0 21 5.0 0 X
2 77 1.2 1.0 1.1 21 5.0 0 X
3 77 1.1 1.5 1.0 25 5.0 0 X
4 80 1.2 1.0 1.1 25 5.1 0 X

Table 7. Weights for various simulation environments without GPS.

Scene Weights Performance
rc rs ra rct roa #Collisions Confined

1 750 6.1 1.0 1 1 0 X
2 750 6.0 1.1 1 1 0 X
3 700 6.2 1.5 1 1 0 X
4 800 6.0 1.0 1 1 0 X

4.4.1. Effect of the Proposed Rules

The proposed flocking rules in this paper are migration, confinement, and obstacle
avoidance. To check whether these rules impact the overall swarming behavior, we ran
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the model by disabling these rules individually in the simulation environment shown in
Figure 12d (check the results in the uploaded videos here [44]). We make the following
observations from the results:

1 As per the migration rule, the drones migrated in the direction of the leader; after
disabling this, the drones did not even move, and the significance of the migration
force became abundantly clear.

2 Without the obstacle avoidance force, drones collided with the obstacles.
3 In the absence of the confinement force, all of the follower drones moved far ahead of

the leader. However, when there was a confinement force, they remained confined
within a boundary.

4.5. Scalability Analysis

To check the scalability of the proposed model, we varied the swarm size by keeping
the simulation environment fixed. When the size of our swarm increased, we increased the
radius (δ) of the confined region around the leader so that the swarm could cover a larger
area and we reduced the likelihood of a collision. However, in the case of GPS-denied
environments, there is no concept of a confinement zone. We tuned the weights in this
case as well, and we list the optimal values in Tables 8 and 9. We make the following
observations from the results:

1 The weights were almost the same for all swarm sizes.
2 For the GPS-aided environment, the model worked well with all the swarm sizes if

the weight values 〈rc, rs, ra, rm, rct, roa〉 = 〈80, 1, 1, 1, 25, 5〉. The results are in line with
the observations made in Section 4.4.

3 Similarly, for the GPS-denied environment, the optimal values of weights are the same
as given in Section 4.4.

Table 8. Weights for drone swarms of different sizes in a GPS-aided environment.

Experiment Swarm Radius Weights Performance
No. Size (δ) rc rs ra rm rct roa #Collisions Confined

1 5 30 81.0 1.0 1.2 1.0 25 4.8 0 X
2 7 35 79.0 1.1 1.5 1.1 25 4.7 0 X
3 8 35 80.0 1.0 1.3 1.0 22 5.0 0 X
4 10 40 79.5 1.0 1.4 1.1 24 4.8 0 X
5 12 45 80.0 1.2 1.4 1.0 23 5.0 0 X
6 15 50 79.0 1.1 1.4 1.0 24 5.0 0 X

Table 9. Weights for drone swarms of different sizes in a GPS-denied environment.

Experiment Swarm Weights Performance
No. Size rc rs ra rct roa #Collisions Confined

1 5 790 6.0 1 1.0 1.0 0 X
2 7 808 6.2 1.2 1.0 1.0 0 X
3 8 810 6.0 0.9 1.0 1.0 0 X
4 10 800 6.5 1.0 1.0 1.0 0 X
5 12 795 6.0 1.0 1.0 1.0 0 X
6 15 800 6.0 1.0 1.0 1.0 0 X

4.6. Real-Time Performance of SmrtSwarm

To check the performance of the proposed model, SmrtSwarm, in a real-world en-
vironment, we ran it on a Beaglebone Black board [53]. Beaglebone Black is a popular
embedded board with an ARM Cortex-A8 processor clocked at 1 GHz frequency. It also
has 512 MB RAM. We used Python 3.8 and GCC version 4.9.2 to implement the swarming
model. Table 10 shows the execution time of each step involved in the swarming model on
the board. We make the following observations from the results:

1 For a GPS-aided environment, all the steps have an extremely low latency (<0.3 ms).
Additionally, the variance in execution times is very low (<2%).
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2 The previously mentioned observation (point (1)) holds true in a GPS-denied envi-
ronment as well, except for two steps: object detection and obstacle avoidance. The
maximum and average latencies for these steps vary significantly across frames be-
cause these values are directly proportional to the number of objects in the depth map.

3 The step that takes the longest (with a maximum value of ≈12 ms) is object detection
in the depth map using our algorithm.

4 The total latency for the GPS-aided environment is very low (<0.5 ms). The FPS
(frames processed per second) can be as high as 2000 frames per second, which is
orders of magnitude more than what is required (we typically need 10–20 FPS; 75 FPS
is considered to be high given that traditional displays operate at 30 FPS) for drones,
which are relatively slow-moving. Even for a GPS-denied environment, the maximum
frame rate that can be achieved is 75 FPS (total execution time < 14 ms).

Table 10. Runtime (in milliseconds) breakdown of our proposed method.

Steps
Environment

GPS-Aided GPS-Denied
Max Min Avg Max Min Avg

Object detection - - - 11.87 8.17 9.95
Cohesion 0.04 0.01 0.02 0.02 0.01 0.01
Separation 0.28 0.21 0.24 0.27 0.23 0.25
Alignment 0.01 0.01 0.01 0.02 0.01 0.01
Migration 0.01 0.01 0.01 - - -
Confinement 0.05 0.03 0.04 0.01 0.01 0.01
Obstacle avoidance 0.02 0.02 0.02 1.23 0.84 1.03
Total time 0.44 0.39 0.42 13.55 09.32 11.44

5. Conclusions

In this work, we proposed a leader–follower flocking model for controlling a drone
swarm, aiming to enhance coordination within the swarm. To achieve this, we introduced
three additional rules—migration, confinement, and obstacle avoidance—to the traditional
Reynolds flocking model. These rules play a crucial role in maintaining better coordination
and synchrony among the drones.

While GPS-assisted communication is effective for calculating the target velocity
of each drone under ideal conditions, we recognize the limitations posed by unreliable
GPS signals in real-world scenarios. To address this challenge, we presented a depth-
map-based approach that allows for accurate control and coordination of nearby drones
even in the absence of reliable GPS signals. This alternative approach significantly en-
hanced the swarm’s operational capabilities, enabling precise coordination and control in
various environments.

In addition to our model’s contributions to swarm coordination and overcoming GPS
limitations, it is essential to consider the evaluation of countermeasures and defensive
strategies against adversarial actions. By studying the interactions between the swarm and
moving adversaries, valuable insights can be gained into adversarial tactics, strategies, and
vulnerabilities. These insights can further guide the development of more robust defense
mechanisms and contribute to the creation of resilient swarm behaviors. This is a part of
future work.
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