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Abstract: Unmanned aircraft systems (UASs) with autonomous maneuvering decision capabilities
are expected to play a key role in future unmanned systems applications. While reinforcement
learning has proven successful in solving UAS path planning problems in simple urban environments,
it remains under-researched for some complex mountain environments. In this paper, the path
planning of UAS swarm for the low-altitude rapid traverse in diverse environments is studied when
facing the threats of complex terrain, radars and swarm failure. First, a UAS swarm radar detection
probability is built up for evaluating the radar detection threat by a networked radar system, where
the detection probability of a UAS swarm is equated to a single UAS with appropriate position and
radar cross section named as the swarm virtual leader. Second, a reinforcement learning based path
planning method is proposed to seek the optimal path for the swarm virtual leader which balances
instantaneous reward, including detection probability and path constraints with terminal reward,
including normal rate. Third, a formation optimization strategy is designed to further reduce the
threat of radar detection through dynamically adjusting the formation geometry. Final, simulations in
the complex environment have been carried out to evaluate the performance of the proposed method,
where the path quality, task success rate and normal rate are counted as the performance indicators.

Keywords: UAS; DRL; path planning; formation control

1. Introduction

With the innovation of technologies and hardware related to unmanned systems,
Unmanned aircraft systems (UASs) play an important role in different task scenarios.
Swarms are one example of UAS applications that have become a major focus of the UAS
community. Additionally, the advantages of swarm UAS over individual UAS in terms
of task efficiency are obvious [1], but there are other aspects of swarm UAS that need to
be taken into account; for example, the logistical footprint and planning complexity of
swarm UAS may be larger than that of an individual UAS. For example, in the monitoring
of natural disasters, UAS swarm collaborative monitoring has a larger monitoring area
and faster timing [2] in geographic mapping, and the detection of a terrain swarm can be
more quickly completed using photography [3]. With the rapid development of artificial
intelligence in recent years, the field of autonomous maneuvering decision making for
UASs has become the target of expert research aimed at enabling UASs to accomplish the
task of trajectory planning more quickly under multiple optimized conditions.

Swarm path planning in areas with radar, electromagnetic interference, or with other
sources of interference is a challenging task because the swarm is at risk of detection,
tracking, and failure, potentially resulting in not completing the task. Many countries
are developing stealth UASs with minimized radar cross sections for radar-contested
environments, including the methods for accessing it [4]. This approach can decrease
the chances of radar detection and improve UAS survivability [5]. For successful swarm
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rapid traverse tasks in real-world scenarios, swarms must overcome various obstacles
and uncertainties such as terrain obstacles, radar detection, and swarm failure. Therefore,
efficient path planning strategies for swarm UASs in complex 3D environments have
become an important research topic.

Some traditional path planning methods are widely used for rapid traverse tasks or
path planning in the complex environment, but there are still some shortcomings. Based
on the A-star algorithm, an improved algorithm that can meet the efficiency and accuracy
requirements of the algorithm in a complex three-dimensional environment is proposed,
which makes the route have higher safety and lower cost [6]. To consider both terrain
and UAS constraints, Ref. [7] introduces a particle swarm optimization algorithm, which
improves the performance through adaptive speed tuning, chaotic initialization, and an
improved logistic chaotic map that considers terrain and UAS performance constraints to
find paths with higher safety and a smaller cost function. An improved complete particle
swarm optimization-based 3D path planning algorithm [8] is proposed, which considers
terrain threats, radar detection, and infiltration time. In [9], a framework for optimizing the
trajectory of multiple UASs in dynamic rapid traverse task planning is preset, considering
diverse obstacles and perception constraints. In the field of UAS swarm path planning,
several studies have proposed effective methods to address specific challenges, such as
radar detection and terrain constraints. For example, Ref. [10] proposed genetic algorithms
for threat avoidance path planning with good feasible solutions, while a method that can
successfully plan paths in complex obstacle environments [11] is proposed. However,
many of these methods rely on optimizing a specific objective function, which can lead to
suboptimal results and slow optimization times.

Reinforcement learning (RL) based methods for trajectory planning are gaining
popularity [12–14]. RL can be used to solve a specific problem for optimal control as
well as traditional methods. In RL, an agent achieves an optimal solution to a problem by
continuously interacting with the environment and receiving rewards or penalties based on
its behavior to obtain the maximum accumulated reward. RL is more successful in finding
the optimal control of complex problems because the agent can improve itself over time by
interacting more with the environment. One of the reasons why RL is effective in finding
optimal solutions is its ability to handle problems in complex environments by maximizing
the reward value and iteratively learning from experience. This robustness is a key factor
in the success of RL-based methods. In [15], a deep reinforcement learning approach is
proposed for the radar route planning that can handle the problem of sparse rewards and
improve the performance of the learning agent. To improve the convergence speed of the
algorithm, a Relevant Experience Learning-DDPG approach is proposed in [16], which
finds the most similar experience to the current state for learning using expert knowledge.
Considering the threat of radar, a situational assessment model is constructed, and the path
planning problem of UASs in a multi-threat environment is solved using the dual deep
Q-networks algorithm [17]. A two-aircraft cooperative penetration strategy based on DRL
is proposed [18] for the continuous action space, and an approximate strategy optimization
algorithm is used to achieve a two-aircraft cooperative reconnaissance mission. Existing
reinforcement learning methods can solve the problem of UAS penetration path planning
in some complex environments, but most of them only plan paths in two-dimensional
planes and do not consider the impact of terrain changes on paths. And the studies that
have considered terrain threats in 3D environments did not explore the threat and failure
assessment of UASs by other factors such as radar, but only did avoidance training.

Despite numerous works on UAS rapid traverse path planning, several key issues
remain unresolved. In many cases, radar is considered an impassable obstacle, but due
to the difficulty in finding a path that completely avoids radar, the planned path of the
UAS must pass through it. Few works consider path planning based on UAS swarm rapid
traverse tasks, usually because too many UASs would require a large amount of computing
resources and increase the overall system complexity, and it is difficult to estimate the radar
detection probability of the UAS swarm. Generally, when a UAS reaches its target position,
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the task is considered complete. Previous works have considered the normal operation rate
of the swarm to a lesser extent, focusing more on the path cost at individual waypoints
and swarm collision avoidance. In [19], although radar detection and tracking is taken into
account during path planning, the possibility of failure to the UAS while traveling is not
addressed. The swarm planning process is only concerned with energy consumption and
collision avoidance [20,21]. However, when the swarm rapidly traverses diverse threats
area, the UASs in the swarm can failure, so using the normal operation rate (normal rate) as
a new indicator can better optimize the paths. We correlate the probability of UAV failure
due to electromagnetic interference or other sources of interference in the threat area with
the more complex probability of radar detection in the subsequent discussion.

In this paper, a framework for UAS swarm path planning based on reinforcement
learning and formation control algorithms is proposed to address the aforementioned issues
while ensuring the safety, efficiency, and robustness of the planned path. Our method out-
performs existing approaches by planning high-quality paths in complex environments in
a shorter time, and by increasing the success and normal rates of the swarm for completing
the task. We summarize our contributions as follows:

1. An effective equivalent model method for establishing the radar detection probability
of a UAS swarm in a network radar system is proposed. By considering the number of
UASs in a radar resolution cell and the radar cross section of each UAS, the detection
probability of a UAS swarm can be approximated as that of a single UAS. This
approximation allows for the simple and rapid calculation and evaluation of the
swarm’s detection probability.

2. A novel path planning method based on reinforcement learning is proposed, which
balances the instantaneous rewards and terminal rewards. This method considers
normal rate as a key indicator and takes into account the threat of failure to the swarm
along the path, thereby forming an optimized path.

3. A formation optimization strategy is presented that can reduce the probability of
detection and mitigate the threat of failure. By dynamically adjusting the formation
geometry of the swarm, we optimize the number of UASs in each radar resolution
cell to ensure that the radar detection probability of the UAS swarm does not exceed
a predetermined threshold.

4. We present extensive simulations and experiments of the proposed method, and these
results show that our method outperforms existing methods in terms of combined
path quality, task success rate, and swarm normal rate.

The remainder of this paper is organized as follows. Section 2 introduces the prob-
lem formulation. In Section 3, we present the swarm rapid traverse algorithm based on
reinforcement learning. Section 4 discusses the control of the movement of all UASs in the
swarm, based on the results obtained from the reinforcement learning component. The
simulation results of the algorithm are analyzed in Section 5. Finally, we summarize the
paper in Section 6.

2. Problem Formulation
2.1. UAS Dynamics Model

The focus of this paper is on the maneuvering decision of the UAS in a three-dimensional
space. Still, we do not consider the influence of external conditions such as wind while
ignoring the side-slip angle of the UAS. The relationship between the coordinate system
and each angle of the UAS is shown in Figure 1.

In the inertial coordinate system, the X-axis points positively to the north, the Y-axis
points positively to the east, and the Z-axis is vertically upward. The dynamics equation of
the UAS i is shown below.
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ṗi = Avi

v̇i = g(ni,x − sin ϑi),
ϑ̇i =

g
vi
(ni,z cos µi − cos ϑi),

χ̇i =
gni,z sin µi

vi cos ϑi
,

(1)

where A = [cos ϑi cos χi, cos ϑi sin χi, sin ϑi]
T, pi = [xi, yi, zi]

T ∈ R3 denotes the position of
UAS i, vi represents the current velocity of the UAS i, ϑi denotes the angle from the xoy
plane to vi, χi denotes the angle from the X-axis to the projection of vi in the xoy plane and
µi ∈ (−π, π] denotes the roll angle of the UAS around vi. g is the gravitational acceleration,
ni,x and ni,z denote the overload of the UAS i, the first is the tangential overload and the
second is the normal overload. We denote the control input ui as

ui , [ni,x, ni,z, µi]
T. (2)

 

Figure 1. The model of UAS.

2.2. UAS Topology Model

We adopt a leader–follower formation control approach, where this leader represents
the virtual UAS. The path of the entire UAS swarm is pre-planned and serves as a reference
path for all UASs within the swarm, and all UASs follow this path. A UAS swarm with N
UASs is pre-evenly divided into n groups, each of which has an independent virtual leader
and is located at the geometric center of the group, defining the set of virtual leaders for the
all groups as V = {l1, l2, . . . , ln}. It should be noted that the UAS formation configuration
is constant in each group, so we can change the formation geometry of the swarm by
adjusting the distance between the virtual leaders of different groups. Based on this, we
can dynamically change the number of UASs in a radar resolution cell.

Define a minimal spherical envelope of radius W such that it encompasses all the
UASs in every group. A virtual leader l is set for the UAS swarm, and its collision radius is
expanded to W, thus ensuring that the path planned based on l allows each group to avoid
collision with obstacles while following. Therefore, the envelope of the virtual leader l is
defined as

Cobs
l =

{
x|‖x− pl‖ 6 W, x ∈ R3

}
. (3)

where pl denotes the position of the virtual leader l.
Denote the desired positions of the virtual leader l (VL) and the virtual leader in group

j (VLj) as p∗l and p∗lj
, respectively. Define a deviation vector

Φ , {φ1, φ2, . . . , φn}, (4)
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which specifies the deviation of the position of each group with respect to p∗l . Given by
Equation (4), we can derive the desired position p∗lj

of the VLj as follows,

p∗lj
= p∗l + φj, lj ∈ V . (5)

The desired geometry formation of the UAS swarm is changed via tuning Φ.

2.3. Equivalent Radar Detection Model for UAS Swarm

For a single radar system, the detection probability of UAS is only related to the
distance from UAS to the radar center when the factors such as false alarm probability and
transmitter power are known. In one cycle, the detection probability [22] of the radar is
given by the following equation:

Pdet = exp
(

ln(PF)R4

Kσ

)
= exp

(
CdR4

σ

)
, (6)

where PF denotes the false alarm probability of the radar, R denotes the distance between
the UAS and the radar, K denotes the factor related to the radar power, and σ is the Radar
Cross-Section (RCS) of one UAS. In this paper, the UASs are all homogeneous and each
UAS maintains the same σ during flight.

When all UASs are located within one radar resolution cell as shown in Figure 2, the
radar treats them as one target with position pl and the echo intensity is the superposition
of the echo intensity of each UAS. That is, the RCS of N UASs in one radar resolution cell
is Nσ.

 

Figure 2. N UASs in one resolution cell.

In contrast, when the UASs are in separate resolution cells, the radar system will
determine that there are multiple targets. According to the elevation resolution cell ∆α,
the azimuth resolution cell ∆β and the range resolution cell ∆R, the maximum distance
between two adjacent resolution cells can be calculated as

dmax =
√

∆α2 + ∆β2 + ∆R2. (7)

The distance between groups in a UAS swarm is small compared to dmax; thus, we
consider that if the distance between any two groups is less than dmax, then they are in a
radar resolution cell.

In the real world, multiple radars can be deployed to form a networked radar system
to improve the detection performance, the model of which must be considered here. In the
networked radar system, the number of resolution cells of different radars occupied by the
swarm is different, so we use the worst case to represent the probability of being detected
at this time. According to Equation (6), we define the probability that the networked radar
system detects UASs in one resolution cell as:
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PM
det = 1−

Ir

∏
i=1

(
1− exp

(
CdiRi

4

Miσ

))
6 1−

Ir

∏
i=1

1− exp

 CdiRi
4

(max
i

Mi)σ

 , P̄M
det, (8)

where Mi indicates the number of UASs in one resolution cell of radar i, Cdi denotes the
performance parameter of the radar i, Ri denotes the distance between the center of the
UASs in the resolution cell and the radar i, Ir denotes the total number of radars that can
detect UASs, and P̄M

det is the worst case detection probability. We can obtain the equivalent
model when planning the swarm path as follows:

P̄M
det = 1−

Ir

∏
i=1

1− exp

CdiR
′
i
4

σ
′

, (9)

where σ
′

denotes the equivalent RCS value, and R
′
i denotes the distance between the VL

and radar i.

2.4. UAS Swarm Failure Model

According to the radar principle and tracking theory [23,24], the radar needs to detect
the target for a sustained period of time to initiate a trajectory of target. And UASs can
only failure if the radar can consistently track the swarm. Therefore, we first define the
probability that groups of UASs located in one resolution cell are continuously tracked by
the radar during the time interval ∆Td [15].

Pa = P(Υ = 1) =
1

∆Td

∫ t

t−∆Td

P̄M
detdτ, (10)

where Υ = 1 represents the event that the swarm is detected. Actually, Pa is only the
probability of whether the swarm is detected or not, not the probability of failure. Therefore,
we further define the probability of failure for each UAS given that the swarm is detected.

P(ςi = 1|Υ = 1) =

(
R2

a − ‖pl − pi‖
2

R2
a

)
, (11)

where ςi = 1 denotes the event of UAS i failure, Ra denotes the radius of possible failure
and pl is the position of VL. Eventually, we can evaluate whether each UAS failure by

Pdam , P(ςi = 1|Υ = 1)P(Υ = 1) =

(
R2

a − ‖pl − pi‖
2

R2
a

)
Pa. (12)

2.5. Low-Altitude Rapid Traverse Task Description

The UAS swarm faces a variety of different threats when performing rapid traverse
tasks on a complex environment. In this paper, the main threats considered by the swarm
include collision with terrain, detection by radar, and swarm failure. The swarm needs
to stay as far away from radar as possible during rapid traverse, reduce flight time in the
radar area, and in the end state needs to reach the target position while maintaining a high
normal rate and a short flight range. There are several task requirements that need to be
accomplished by the swarm during the rapid traverse task:

• Avoid collision with terrain. Equation (3) is used to determine whether the virtual
leader l collides with the terrain when planning the rapid traverse path, ensuring that
Cobs

l ∩ T = ∅ is guaranteed at any time, where T denotes the terrain obstacle space.
• Approach the target position. Normally, the swarm needs to be as close to the target

location as possible at every moment to avoid exploring and traveling in the oppo-
site direction. Therefore, the distance from the virtual leader l to the target position
DlT = ‖pl − pT‖ should decrease with time, where pT denotes the position of the target.
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• If there is no threat, the swarm tend to travel at a preset low altitude Hopt. Radar
does not easily detect near-ground targets due to the curvature of the earth and the
interference of ground clutter with radar. However, if the altitude of swarm is too low,
it will face threats from more types of threats.

• The swarm needs to pass through the radar area with a low probability of detection
P̄M

det, reducing the number of failure UASs Ndam. The closer the swarm is to the center
of the radar, the more easily it will be detected; the swarm needs to avoid being close
to the radar during its flight.

Combining the situations of movement, altitude, radar detection and swarm failure,
we define

ΓA =
DlT
DIT

+

∣∣H − Hopt
∣∣

30
,

ΓB = P̄M
det +

Ndam
Nsur

,
(13)

where H denotes the altitude of the l, DIT is the distance between the initial position and
the target position and Nsur denotes the number of the normal UASs.

Define the real-time comprehensive situation in evaluating the rapid traverse process
of UASs as

Γ = CΓ1ΓA + CΓ2ΓB, (14)

where CΓ1 and CΓ2 are scaling factors representing the impact of different situation factors
on the situation assessment. Moreover, since the range of values of ΓA and ΓB differs
greatly, we have to balance their effects by CΓ1 and CΓ2. Therefore, the UASs rapid traverse
planning decision problem can be considered as an optimization problem,

min
[nxt ,nzt ,µt]∈A

∫ tn

t0

Γt
(
nxt , nzt , µt

)
dt, (15)

where A denotes the set of control inputs for the VL, Γt
(
nxt , nzt , µt

)
means Γt is the function

of nxt , nzt and µt.

2.6. Algorithm Framework

In the context of reinforcement learning-based path planning for UAS swarms, whether
each UAS should have its own individual network or share a network with the swarm
depends on the specific application scenario and requirements.

If each UAS has its own separate network, it means that each UAS can make decisions.
However, having a separate network for each UAS also has some drawbacks. First, this
increases the complexity and cost of the system, requiring more hardware and software
resources. Second, due to the lack of effective coordination mechanisms between UASs,
conflicts and competition may arise among UASs, leading to a decrease in the overall
efficiency and performance of the system. In contrast, by planning a path for the VL of the
swarm and combining it with a cluster formation control algorithm, the complexity of the
system can be effectively reduced and conflicts can be optimized. Therefore, compared
with direct planning control for each UAS, we can control the UAS by the above simple
and effective method, making full use of two different optimization strategies to solve the
problem of swarm formation flight, as well as decomposing the complexity of the problem
into smaller sub-problems, which is more conducive to the convergence of the algorithm,
thus improving the efficiency and scalability of the algorithm. This paper proposes a
method that combines a reinforcement learning and formation control algorithm to better
enable collaboration within the swarm, thereby improving efficiency and performance. The
flowchart is shown in Figure 3.
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Figure 3. The flowchart of algorithm framework.

3. Rapid Traverse Task Planning Based on Deep Reinforcement Learning

In the path planning of UAS swarm, the normal rate is an important indicator, but
it is difficult to accurately evaluate the final normal rate during the planning process. In
addition, the objective function we propose has complex high-order nonlinearity, making it
difficult to obtain the optimal solution. To better consider the factors of threat and normal
rate in path planning, we adopt a deep reinforcement learning approach. Specifically, we
incorporate threat into instantaneous rewards and normal rate into final rewards, to ensure
that the swarm can successfully complete the task with high normal rate in the face of
threats. By this approach, we can calculate an optimal path that considers the balance
between threat and normal rate and ensures the UAS swarm can efficiently execute rapid
traverse task in complex environments.

To be precise, we utilized proximal policy optimization (PPO). PPO is a cutting-edge,
benchmark, model-free, on-policy, policy gradient reinforcement learning algorithm de-
signed by OpenAI [25]. It improves upon the classical policy gradient (PG) algorithm and
actor-critic (AC) algorithms [26]. PPO not only exhibits excellent performance and lower
complexity, but also possesses superior tunability, finding the best balance between imple-
mentation, batch sampling efficiency, and ease of tuning. To attempt the implementation
part, we first formulate our problem as MDP, and the key assumption of an MDP is that the
probability of transitioning from one state to another depends only on the current state and
the action taken, and not on any previous states or actions. The MDP is defined in terms
of a tuple (S ,A, γ,R,P), where S denotes the state space, A denotes the action space, P
denotes the state transition probabilities,R denotes the reward function, and γ denotes the
discount factor, where 0 6 γ 6 1, respectively, and several of these are discussed later.

3.1. State Space

The state of the virtual leader l of the UAS swarm can reflect information about the
state of the swarm in the environment. We consider the design of the state space of the
virtual leader l from three aspects: the first is the state of l, the second is the relative
relationship between l and the target position pT , and the third is the relative distance
of l and the radars. In this paper, the variables contained in the state space are listed in
Table 1, where DlT = ‖pl − pT‖ and ζ ∈ (−π, π] denote the distance between l, the target
position, and the angle between the line connecting them and the direction of the X-axis,
respectively. Ri denotes the distance between l and radar i. Overall, the state s contains
three parameters, as follows:

s = [pi, vi, ϑi, χi, ψl , λ]. (16)
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Table 1. The state space.

Variables Meanings

pl ∈ Ω Position of virtual leader l
vl ∈ [vmin, vmax] Speed of virtual leader l

ϑl ∈ [−π, π] Flight-path inclination angle of l
χl ∈ [−π, π] Flight-path azimuth angle of l
ψl = [DlT , ζ] Relationship between target position and l

λ = [R1, R2, . . . , RIr ] Relationship between radars and l

3.2. Action Space

In our problem setting, the action a is determined by the control input u at each
moment, and since u is continuous, the action space is also continuous. The action space
contains all feasible control inputs u. The range of the action space is as follows:

A =


nx ∈ [−1, 1],
nz ∈ [−1, 1],
µ ∈ (−π, π],

(17)

where nx, nz, µ denote the tangential overload, normal overload, and roll angle of the UAS,
respectively. Ultimately, the action space of VL can be regulated within a range, as shown in
Figure 4. At each moment, the VL selects an action a ∈ A according to the current state of s,
i.e., it selects a control input u and uses this control input to drive itself in the environment.

 

Figure 4. UAS action range.

3.3. Reward Function

A well-designed reward function can effectively improve the convergence speed of
the algorithm and optimize the final result; thus, how to design the reward function is a
crucial part of reinforcement learning. The design of the reward function is based on the
task requirements mentioned in Section 2.5. For the swarm corresponding to the VL, we
design its reward function, as follows:

• The element that moves closer to the target position. In order to prevent the sparse
reward problem [27] and improve the sampling efficiency, this paper uses a distance-
based bootstrap reward. As shown in Equation (18), the virtual leader l will be
rewarded for each approach to the target during the exploration of the environment.

Rap = Cap1 exp(−DlT) + Cap2clip
(

∆DlT
200

,−1, 1
)

, (18)

where Cap1, Cap2 are constants representing the weights of VL to the target distance,
and the proximity to target, ∆DlT denotes the distance difference between the current
moment and the previous moment to the target position.

• The element of altitude control. The altitude of the virtual leader during flight should
tend to a desired altitude Hopt. When the virtual leader deviates from this altitude,
the system will obtain a negative reward.
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Ralt = −Calt

∣∣Hl − Hopt
∣∣

30
, (19)

where Calt denotes the influence factor of altitude deviation on the system reward,
and Hl is the altitude of VL.

• The element of radar detection. The VL needs to reduce the radar detection as it
approaches the target position. The closer the leader is to the center of the radar, the
greater the penalty.

Rradar =
Ir

∑
j=1

f
(

DlRj

)
, (20)

f (x) =


−Cd1P̄M

det, if x ∈ (Rdan, Rdet];
−Cd2(Rdan − x), if x ∈ [0, Rdan];

0, otherwise,

(21)

where Cd1 and Cd2 denote the penalty factor of the swarm approaching the radar;
Rdan is a preset parameter that denotes the danger range, i.e., the probability of being
detected increases when the VL-to-radar distance is less than this value; Rdet denotes
the effective detection distance of the radar.

• The element of swarm failure. The penalty termRdam in the reward function is given
for the degree of failure as follows:

Rdam =

{
−Cda

Ndam
Nsur

, if Ndam > 0;
0, otherwise,

(22)

where Nsur is the number of normal UASs in the swarm, Ndam is the number of UASs
failure and Cda is a constant greater than zero that regulates the level of impact of the
failure on the swarm.

• The element of reaching the target. The rewards on arrival at the target position are
as follows:

Rarrive =

{
10$, if DlT < 10, $ > 0.5;
0, otherwise,

(23)

where $ = Nsur
N denotes the normal rate of the UAS swarm after completing the task.

After arriving at the target position and satisfying the normal rate, the system is re-
warded heavily, prompting the system to converge more easily in subsequent training.

In summary, the evaluation reward function for maneuvers in the system can be
defined as

R = Rarrive + CΓ1(Rap +Ralt) + CΓ2(Rradar +Rdam), (24)

where CΓ1 and CΓ2 indirectly affect the tendency of the system in path planning by influ-
encingR. When the weight of CΓ2 is greater, the swarm will demonstrate preference to the
path that is less detected by radar, i.e., the safer path.

3.4. Proximal Policy Optimization

The PPO algorithm can be better applied to continuous control tasks, and its objective
function is optimized as follows

Lclip(θ) = Êt[min(rt(θ), clip(rt(θ), 1− ε, 1 + ε)At)], (25)

with

rt(θ) =
π(at|st; θ)

π(at|st; θold)
, (26)

where θold and θ represent the network weights before and after the update, respectively.
The system effect is observed by the ratio of the action probability of the current strategy



Drones 2023, 7, 567 11 of 21

π(at|st; θ) to the action probability of the previous strategy π(at|st; θold) [25]. It means that
if the current policy is more appropriate, the value of rt(θ) will be greater than 1, and vice
versa, the value of rt(θ) will be between 0 and 1. The PPO algorithm improves the stability
of the training agent behavior by restricting the policy updates to a small range. The clip
function in Equation (25) is a truncation function that restricts the values of the old and new
policy parameters rt(θ) to the interval [1− ε, 1 + ε]. In brief, the purpose of this trick is to
prevent the distribution of θ and θold from varying too much, while avoiding the problem
of difficult network convergence. When the estimated advantage At [28] is positive, it
indicates that the current action has a positive impact on the optimization goal, and it helps
the system to measure whether the action improves the default behavior of the policy. As
illustrated in Algorithm 1, set the maximum number of iterations per training, and if the
algorithm can output a feasible solution within this number limit, then this solution must
satisfy $ > 0.5 and Cobs

l ∩ T = ∅ at any time t.

Algorithm 1: RL-Based Path Planning for Swarm Virtual Leader l
input :Environment and UAS model
output :The optimal path T∗l of the virtual leader of the swarm.

1 Initial policy network π with random parameter θ, value network V with random
parameter ω, and hyper-parameters: the learning_rate, batch_size, and γ
max_episode_length.

2 for each episode K ∈ {1, 2, 3, . . . } do
3 Initialize the initial state of the virtual leader l and training environment.
4 for t = 0 to max_episode_length do
5 Observe state st = [pi, vi, ϑi, χi, ψl , λ].
6 Perform action at ∈ A based on policy πK(θ), update the position of the

virtual leader l, and obtain the state st+1.
7 if Cobs

lt+1
∩ T 6= ∅ or Arrival == True then

8 Break.
9 end

10 Obtain an instantaneous reward based on the approach reward rap, altitude
control reward ralt, radar detection reward rradar, and failure destruction
reward rdam of the current state. Add up the instantaneous and terminal
rewards to get the comprehensive rewardRt.

11 end
12 Collect a batch of path data D = (st, at,Rt) from the current policy network

πK and use it to update the policy network.
13 Compute estimated advantage At.
14 Compute surrogate loss Lclip(θ) using PPO objective.
15 Update policy network π(θ) and value network V(ω) using gradient descent.
16 end
17 for t = 0 to max_episode_length do
18 Generate control input ult for virtual leader l using policy π∗(θ) and value

function V∗(ω).
19 Obtain p∗lt+1

according to Equation (1) and p∗lt
20 if Arrival == True then
21 Break.
22 end
23 Store waypoint p∗lt+1

in the path T∗lt .
24 end
25 Generate an optimal path T∗l for virtual leader l.
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4. Formation Optimization Strategy

Based on the previous section, we can obtain a reference path T∗l for the entire UAS
swarm. Although the swarm radar detection probability P̄M

det of each waypoint is considered
when planning this reference path, a strong constraint is not imposed on this parameter, so
there may be some waypoints with higher radar detection probability on the path. These
waypoints will increase the threat of swarm failure and undermine the effectiveness of the
final rapid traverse task. Therefore, this section presents the strategy to optimize the rapid
traverse task completion effect by changing the formation geometry of the UAS swarm.

4.1. Formation Geometry Change

According to Equation (9), the geometry of the formation affects the number of UASs
in the radar resolution cell, which further affects P̄M

det. The swarm changes the formation
geometry by splitting and merging groups, thus reducing the failure to the swarm. Splitting
and merging of swarms can be achieved by changing the deviation vector Φ. According to
Equation (5), we can obtain the desired position p∗lj

for each group, and next discuss the
solution of Φ.

If the separation distance between two groups j and k is expanded to equal dmax, i.e.,∥∥φj − φk
∥∥ = dmax, we consider them to be in different radar resolution cells. For an easy

description, we define a distance set as

E = {ε1, ε2, . . . , εn−1}, εi = ‖φi − φi+1‖, (27)

where εi denotes the distance interval between two adjacent groups.
Define the instruction F for the formation geometry change, as shown in Figure 5.

 

Figure 5. Split and merge.

At time t, if a split operation is performed, Ft = 2Ft−1,F0 = 1; if a merge operation is
performed, Ft =

Ft−1
2 . It should be noted that the UAS swarm consisting of n groups that

can be split up at most e times satisfies relation n = 2e.
When F = 1, the groups keep the initial position deviation Φ0. When F = m, we

define the set of elements in the part of the set E that needs to be updated as E ′T so that the
elements in it are equal to dmax and the rest of the elements in E remain unchanged, and E ′T
is defined as follows

E ′T =
{

ε = dmax|ε ι, ε2ι, . . . , εn−ι, ι =
n
m

}
. (28)

Based on Equation (28) and the reference waypoint p∗l in T∗l , we can obtain the
deviation vector Φ that satisfies Equation (27). Finally, according to Equation (5), the
desired position p∗lj

of the VLj can be computed.
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The flowchart is shown in Figure 6, where Ppre denotes the set detection
probability threshold.

 

Figure 6. The flowchart for calculating the desired position of the groups.

4.2. Control Law

As for the control law, we only use the potential field. To begin with, it should be
noted that if the swarm needs to split, then the desired position of the front group will
move forward along the reference path, so that the attractive force will drive the group
to split forward; similarly, if the swarm needs to merge, then the back group will also be
driven to merge forward.

An artificial potential field is used here to drive the group to chase its desired position.
The attractive force of each group lj, lj ∈ V is designed as follows:

Fatt
lj

= K1

(
p∗lj
− plj

)
, (29)

where K1 is the positive parameter of the attractive force.
To avoid collisions between groups, there exists a repulsive potential field and a

repulsive force. The repulsive potential field generated by group j and its neighboring
groups is defined as

Urep
lj

=


1

n−1 ∑n
k=1,k 6=j

K2
2


∥∥∥∥p∗lj
−p∗lk

∥∥∥∥−d

d−da

2

, if d 6 dmax,

0, otherwise,

(30)

where d =
∥∥∥plj
− plk

∥∥∥ denotes the distance between the VLj and VLk, da indicates the safe
distance; if the distance between any two groups is less than it, they will collide, and K2 > 0
is the proportional coefficient. From Equation (30), the total potential field generated by
the virtual leader of all groups is given by

Urep
l =

n

∑
j=1

Urep
lj

. (31)

Then, the repulsive force is the partial derivative of the total repulsive potential field,
as shown below

Frep
lj

= −
[

∂Urep
l

∂pl1
, . . . ,

∂Urep
l

∂pln

]T

. (32)

According to Equation (32), it can be observed that the repulsive force on lj ranges

from positive infinity to zero along with d ranging from da to
∥∥∥p∗lj
− p∗lk

∥∥∥. Obviously, the
closer the virtual leaders of two adjacent groups are, the greater the repulsive force is,
and it does not make their distance less than da. For lj, it is subjected to the following
combined force

Flj
= Fatt

lj
+ Frep

lj
. (33)

Then, the combined force Flj
can be resolved into two components along the longitu-

dinal axis and the vertical axis, denoted as Fj,x and Fj,z, respectively. nj,x and nj,z can be
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calculated from Fj,x and Fj,z. Based on this, we can obtain the control input u∗lj
of the virtual

leader for each group and use it to control the motion of the whole group.

5. Experiments

In this section, we first introduce the experimental setup, and then give the simulation
results of the UAS swarm performing the rapid traverse task under different conditions,
analyze the different simulation results, and give the number of normal UASs when the
final swarm reaches the target position.

5.1. Environment and Training Setup

The experiments are conducted in a simulated mission area, and the simulation sets the
planning scenario in a rectangular area of a size 230 km × 160 km × 1.6 km, corresponding
with the x, y and z coordinate axes, respectively. As shown in Figure 7, We set two initial
positions and one ending position in the environment, and deploy five radars around the
line connecting the starting points and ending point, and the coordinate information is
shown in Table 2, where zi denotes the terrain altitude corresponding to x, y.

  

(a) Three−dimensional environment. (b) Top view of the environment.

Figure 7. Environment setup.

Table 2. Initial Position Information.

Radar Position Initial Swarm Position

(80,000, 95,000, z1)
(100,000, 35,000, z2) (39,800, 36,500, 300)
(41,000, 71,000, z3)
(130,000, 50,000, z4) (122,000, 23,000, 300)
(118,000, 88,000, z5)

The parameters mentioned in the previous section and the parameters of the algorith-
mic model are set in Table 3.

In the simulation of the swarm’s rapid traverse, the neural network structures are
all fully connected neural networks, the output layer uses a tanh activation function, and
all others are Relu activation functions. The learning rate is 0.000125, the discount factor
is 0.9, and the number of samples taken in batch during training is 64. The decision
cycle T of the system is 1 s, and a maximum of 550 decisions are made for an episode.
The training round ends if any of the following conditions are met: the training exceeds
the max_episode_length; the swarm collides with the terrain Cobs

l ∩ T 6= ∅ or reaches
the target.
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Table 3. Design of the training parameters.

Variable Value Variable Value

N 40 Ra 0.3 km
∆Td 10 Rdet 20 km

Cap1, Cap2 5, 2 Hopt 0.3 km
Cd1, Cd2 2, 0.01 vmin 150 m/s

Calt 0.65 vmax 300 m/s
Cda 0.4 W 0.3 km

batch_size 64 Rdan 10 km
γ 0.9 max_episode_length 550

learning_rate 0.000125

5.2. Simulation Setup and Evaluation Indicators

The number of failure UASs is related to a random judgment of the probability of
failure for each UAS. To further validate the effectiveness of the proposed method, so we
perform a numerical simulation of the swarm rapid traverse system using the Monte Carlo
method. There are four indicators established to evaluate the simulation results:

• Average path length (APL, Dave
total): The average length of the planned path should

be as short as possible to reduce energy consumption, time costs, and the risk of
being detected.

• Average rapid traverse success rate (APSR, ρave): Given the total time of a simulation,
the number of simulations in which the UAS swarm completed the rapid traverse
task is counted as a percentage of the total number of simulations. This index can
evaluate the learning efficiency of the evaluation environment and reward settings in
the algorithm.

• Average swarm normal rate (ASSR, $ave): It implies the average UAS normal rate
among all simulations that completed the task. Higher normal rate indicates better
resistance and reliability, which is essential for successful deployment of UAS swarm.
This indicator is crucial for assessing the operational effectiveness of the swarms in
carrying out their tasks.

• Average algorithm computation time (AACT, tave
total): The computation time of the

algorithm is measured and should be as short as possible to ensure a real-time and
efficient performance.

At the same time, evaluation indicators need to be defined:

$ave =
1

MN

M

∑
η=1

Nsur,η , Dave
total =

1
M

M

∑
η=1

Dtotal,η ,

tave
total =

1
M

M

∑
η=1

ttotal,η , ρave =
1
M

M

∑
η=1

ρη ,

(34)

where M is the total number of Monte Carlo simulations; η = 1, 2, 3, . . . , M is the index
of the simulation. ρη denotes whether the single planning is successful or not, and takes
the value of 1 if successful. $ave, Dave

total, tave
total and ρave denote ASSR, APL, AACT, and

APSR, respectively.
To examine the ability of the swarm to perform tasks in the constructed simulation

environment, tests are performed by varying the number of radars NIr and the parameters
CΓ1 and CΓ2. We combined NIr = 1, 2, 3, 4, 5 with different ratios of CΓ1

CΓ2
, and conducted

corresponding experiments and analyses. Then, the algorithm proposed in this paper is
compared and analyzed with the classical A* and RRT* algorithms to prove the scalability,
adaptability, and robustness of the algorithm by comparing the abovementioned indicators.
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5.3. Results and Discussions

Multiple radars are present in the rapid traverse path to enable the tracking and
constraint of the swarm. The overall goal of swarm rapid traverse is to plan a path that
avoids collisions while balancing range and failure. Based on this, five radars are deployed
in the environment, and the parameter CΓ1

CΓ2
= 1 is set. The UAS swarm starts the rapid

traverse task from two initial positions, where the swarm passes through the radar detection
areas and approaches the target position. The formation geometry is changed in the radar
area to reduce the probability of detection and to guarantee the normal rate of the UASs in
the final arrival at the target position.

Using the built swarm rapid traverse model to solve the problem, the path of the
swarm is obtained as shown in Figure 8, and the 3D path is shown in Figure 9. In Figure 8a,
the swarm passes through one radar area, while the swarm passes through two radar
areas in Figure 8b. The formation geometry change instruction F for the swarm in the
radar areas along the two paths mentioned above is shown in Figure 10a, where the X-axis
represents the time series of the swarm after entering the radar area. The green and red
lines correspond to the paths in Figure 8a,b. That is, the virtual leader crosses two radar
areas in Figure 8b, the first two subplots in Figure 10a represent the instruction changes for
this case.

(a) Planned path from the first initial position. (b) Planned path from the second initial position.

Figure 8. The path of the virtual leader l of the UAS swarm.

 
 

(a) Planned 3D path from the first initial position. (b) Planned 3D path from the second initial position.

Figure 9. The 3D path of the virtual leader l of the UAS swarm.
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(a) Changes in formation geometry instructions. (b) Number of normal UASs in the swarm.

Figure 10. Formation instructions and number of normal UASs.

According to Section 2.4, we can obtain the change in the number of UASs in the radar
areas as shown in Figure 10b. The results showed that the number of UASs in the UAS
swarm that finally completed the rapid traverse task is 27 and 21, and the normal rate of
the swarm is 67.5% and 52.5%, respectively. In order to show more clearly the formation
geometry changes of the UAS swarm during the task, we explain the path in Figure 8b as an
example. And according to Equation (12), we can evaluate and decide whether each UAS
is failure or not, and get the final normal state of the swarm as shown in Figure 11. The
UAS swarm first maintains the initial formation geometry. After entering the radar area,
it gradually splits, increasing the distance between groups, and the formation geometry
changes the most when it is closest to the radar. During the flight away from the radar
region, the swarm merges and converges to the initial formation geometry.

 

Figure 11. Formation control along the path.
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To demonstrate the capability of the proposed algorithm to handle rapid traverse tasks
in unknown environments and to validate its generalization and robustness, we randomly
generate positions for swarms and vary the number of radars in the environment. The
proposed algorithm is then evaluated in these randomly generated environments, and the
results are shown in Figure 12.

(a) UAS swarm path planning with single radar. (b) UAS swarm path planning with dual radars.

(c) UAS swarm path planning with three radars. (d) UAS swarm path planning with four radars.

Figure 12. Random environment rapid traverse path.

When M = 500, we combine different radar numbers with different ratios of CΓ1
CΓ2

, and
the results of the evaluation indicators are shown in Figure 13. Based on the results, it is
obvious that the ASSN decreases as the number of radars increases. This is because an
increase in the number of radars increases the probability of the swarm being in the radar
area, making it more prone to failure. We can clearly observe the impact of the parameters
on the indicators. A smaller value of CΓ1

CΓ2
means that the swarm pays more attention to the

negative impact of the radar; thus, it tends to avoid the radar. On the contrary, the larger
the value, the more the swarm tends to move towards the target position. Therefore, the
total path length is inversely proportional to this ratio.

The simulation environment for the comparison test of the proposed algorithm with
the improved A* algorithm and RRT* algorithm is shown in Figure 7, and results of the
comparison test are shown in Table 4, where the cost function settings in the comparison
algorithm are consistent with the proposed algorithm.

From the experimental results in Table 4, it can be observed that:

1. The proposed algorithm increases 24.76%, and 30.66% in the normal rate $ave com-
pared with the other two algorithms, respectively. It shows that the proposed al-
gorithm can obtain flight paths with a lower detection probability and improve the
normal rate of UASs.
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2. The proposed algorithm is slightly longer than the A* algorithm in terms of path
length Dave

total, but it outperforms the A* algorithm in terms of the speed of solution.
Compared with the RRT* algorithm, the path length is reduced by 11.99%. Compared
with the traditional algorithm, the proposed algorithm can obtain a shorter flight path,
which enables the UAS cluster to cross the detection threat area quickly.

3. The proposed algorithm is shorter than the other two algorithms in terms of running
time tave

total, with a significant reduction of 30.7% and 86.3% in computing time, respec-
tively. In complex environments, the proposed algorithm is more adaptable, i.e., it is
more capable of handling unknown environments and abnormal situations, because
it can adjust its strategy according to the changes in the environment, thus finding the
optimal path quickly.

4. The proposed algorithm is higher than the other two algorithms in terms of a rapid
traverse success rate ρave, which indicates that the algorithm has a better robustness
and stability.

 

(a) The influence of NIr and CΓ1
CΓ2

on ASSN. (b) The influence of NIr and CΓ1
CΓ2

on APL.

Figure 13. Monte Carlo simulation.

Table 4. The results of the comparison test.

Evaluation
Indicators Proposed Algorithm Improved A* RRT*

$ave 77.56% 52.8% 46.9%
Dave

total (km) 121.694 117.237 138.276
tave
total (s) 250.9× 10−3 362.3× 10−3 1835.4× 10−3

ρave 95.24% 83.96% 62.94%

6. Conclusions

In this paper, a novel path planning method for a UAS swarm rapid traverse task is
proposed, which enables the swarm to achieve the goal of improving normal rate under
the condition of no collision. First, the dynamics model of UAS and the radar detection
model are established, and the task requirements of the flight are clarified, which lay
a good foundation for the subsequent effective training. Second, the principle of deep
reinforcement learning is introduced. A reasonable state space, action space, and reward
function are designed to effectively avoid the disadvantage of reward sparsity in long-
running time systems and make the network converge effectively. Then, the reinforcement
learning algorithm is combined with the formation control algorithm, and the output of
the network is applied to the algorithm of the formation keeping and reconfiguration to
control the movement of UASs in the swarm, avoiding the direct processing of the high-
dimensional UAS cluster information. Final, the simulation results demonstrate that the
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proposed algorithm can significantly enhance the normal rate of the swarm after the rapid
traverse task.

In future work, we will study end-to-end UAS decision making and planning methods
to accomplish tasks such as the real-time dynamic obstacle avoidance of UAS swarms by
adding sensor information.
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