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Abstract: Despite the growing demand for unmanned aerial vehicles (UAVs), the use of conventional
UAVs is limited, as most of them require being remotely operated by a person who is not within
the vehicle’s field of view. Recently, many studies have introduced reinforcement learning (RL) to
address hurdles for the autonomous flight of UAVs. However, most previous studies have assumed
overly simplified environments, and thus, they cannot be applied to real-world UAV operation
scenarios. To address the limitations of previous studies, we propose a stepwise soft actor–critic
(SeSAC) algorithm for efficient learning in a continuous state and action space environment. SeSAC
aims to overcome the inefficiency of learning caused by attempting challenging tasks from the
beginning. Instead, it starts with easier missions and gradually increases the difficulty level during
training, ultimately achieving the final goal. We also control a learning hyperparameter of the
soft actor–critic algorithm and implement a positive buffer mechanism during training to enhance
learning effectiveness. Our proposed algorithm was verified in a six-degree-of-freedom (DOF) flight
environment with high-dimensional state and action spaces. The experimental results demonstrate
that the proposed algorithm successfully completed missions in two challenging scenarios, one for
disaster management and another for counter-terrorism missions, while surpassing the performance
of other baseline approaches.

Keywords: reinforcement learning; autonomous flight control; unmanned aerial vehicle; soft
actor–critic; JSBSim

1. Introduction

Unmanned aerial vehicles (UAVs) are used in diverse areas, such as entertainment
(e.g., light shows), networking, smart agriculture, and missions that are dangerous or
inaccessible to humans, including search and rescue, surveillance, blood transport, pho-
togrammetry, natural disaster risk measurement, and counter-terrorism [1–12]. Although
UAV control technology has steadily advanced in recent years, the main control methods
still involve the use of wireless remote operation or preprogramming. With remote opera-
tion, there is a risk that the communication link may fail to work in real-time. Additionally,
the controllable distance is limited. While there are no communication link limitations with
the preprogramming option, it can only be applied to limited missions and cannot adapt to
unexpected situations. To overcome these limitations and maximize the potential of UAVs,
researchers have developed autonomous flight algorithms for UAVs [13–15].

UAVs can be divided into rotary-wing UAVs, flexi-wing UAVs, and fixed-wing UAVs.
Rotary-wing UAVs fly using lift generated by the rotation of their blades. Rotary wings can
take off and land vertically in small spaces and remain stationary in the air. Fixed-wing
UAVs have wings that are fixed to the fuselage and utilize the lift generated by the pressure
difference between the air above and below the wings to fly. They are relatively stable
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compared to rotary wings and capable of flying at high speeds and high altitudes. Due
to these differences, fixed-wing UAVs are primarily used for military and surveillance
purposes, where they are suitable for high-altitude and long-range missions [16,17]. Flexi-
wing UAV refers to an aircraft where the shape of the wings changes during flight to
optimize flight performance or achieve specific objectives. Various forms of modifications,
such as wingspan, area, camber, chord, thickness, and aspect ratio, have been studied [18,19].

Researchers have long studied autonomous flight for fixed-wing UAVs in military
aircraft. Their approaches range from rule-based techniques to reinforcement learning
(RL) techniques. The traditional approach of autonomous flight for UAVs was based on
the rule-based method, where experts determine the favorable actions for achieving a
mission in a specific situation and subsequently plan rules to perform the corresponding
maneuvers [20–23]. Because rule-based techniques enable aircraft to perform predetermined
maneuvers under given conditions, it is difficult to respond appropriately to unexpected
situations [24]. Hence, recent studies have utilized RL techniques that are particularly
suited to learning to make decisions quickly in unpredictable or uncertain situations [25–31].
Masadeh et al. [6] utilized multi-agent deep deterministic policy gradient and Bayesian
optimization to optimize the trajectory and network formation of UAVs for rapid data
transmission and minimize energy consumption and transmission delay in a situation
where multiple UAVs are used as repeaters in a wireless network. Gong et al. [11] developed
an intelligent UAV that can detect dynamic intruder targets using RL. The performance
of RL-based target detection using Sarsa, and Q-learning was found to be superior to the
existing systems that perform random or circular target detection.

In the field of autonomous flight of fixed-wing UAVs, various studies have adopted
RL techniques. For example, to simplify the action space, Yang et al. [28] trained a deep
Q network (DQN) to select appropriate maneuvers for UAVs in dogfighting situations
and showed successful results in simulated one-on-one short-range dogfights. However, it
has the limitation of simplifying the maneuver space to 15 predefined maneuvers. Wang
et al. [29] proposed a league system that can flexibly respond to various maneuvers of the
enemy aircraft in a simulation environment where the speed of the aircraft is continuously
limited, achieving a win rate of 44% and a probability of not losing 75%. However, the
experimental environment is limited to 2D, which is difficult to apply to the actual envi-
ronment. Lee et al. [30] introduced an enhanced version of self-imitation learning and
a random network distillation algorithm. However, the experiment was performed in a
3 degrees of freedom (DOF) environment, which does not reflect realistic environments.
Furthermore, several studies [31–34] have proposed RL-based techniques for chasing,
landing, or maintaining the altitude of an aircraft under various flight conditions, but
all experiments have either had a limited action space or were conducted in a simplified
simulation environment. In summary, existing works need further verification in more
diverse and realistic environments.

In a realistic 6-DOF flight environment, it is difficult to learn high-dimensional characteris-
tics of the state and action spaces [35]. To overcome high dimensionality, Imanberdiyev et al. [36]
proposed TEXPLORE, which improves the conventional model-based reinforcement learn-
ing using decision trees to learn the given environment model. It achieves the desired
learning results in fewer epochs compared to the Q-learning. Wang et al. [37] introduce
a method called nonexpert helper, where a pre-policy network provides guidance to the
agent in exploring the state space. Wang et al. [38] have developed a deep reinforcement
learning (DRL) framework for UAV navigation in complex environments with numerous
obstacles. However, these studies focus on navigation rather than UAV control.

To address the limitations of previous studies on training fixed-wing UAVs for au-
tonomous flight, we propose a novel learning method for UAV agents. First, for effectively
learning high-dimensional state and action spaces, a positive buffer is added to the expe-
rience of past successes. Second, we apply a new technique that suppresses alpha, the
temperature parameter that encourages exploration, after achieving the desired goal of
maintaining the stable performance of the soft actor–critic (SAC) algorithm. Finally, we
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propose a novel stepwise SAC (SeSAC), which assigns easy missions at the beginning of
training and then gradually increases the difficulty while training to reach the desired
goal successfully.

The proposed algorithm was implemented in realistic simulation environments that
we constructed using the 6-DOF flight dynamics model JSBSim [39], instead of using a
simplified simulation environment. Specifically, we conducted experiments on two realistic
scenarios, including disasters and counter-terrorism, to verify the effectiveness of the
proposed approach. The experimental results show that the agent trained through the
SeSAC successfully completed missions in two challenging scenarios, while outperforming
other RL-based approaches.

The contributions of this paper are summarized as follows:

• In this study, we constructed realistic flight environments based on JSBSim, a 6-DOF
flight environment with high-dimensional state and action spaces;

• We define states, actions, and rewards for the UAV agent to successfully accomplish
disaster management and counter-terrorism missions. We incorporated past experi-
ences by stacking the states of previous time steps into the states by utilizing a 1D
convolution layer. Additionally, we customized the episode rewards and time step
rewards to match the specific characteristics of each mission;

• We introduce a positive buffer and a cool-down alpha technique into the SAC algo-
rithm to improve learning efficiency and stability;

• Finally, we propose SeSAC by incorporating the concept of stepwise learning. Through-
out the experiments, it was confirmed that the agent trained with SeSAC succeeded in
the mission with fewer learning epochs and a higher average reward.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the RL and SAC algorithms. In Section 3, we propose the SeSAC and define the
UAV agent’s states, actions, and rewards. Section 4 describes the experimental scenarios
and presents the results. Finally, Section 5 concludes this research and discusses future
research directions.

2. Background
2.1. Reinforcement Learning

RL is an important field of machine learning that solves sequential decision-making
problems [40]. In RL, an agent interacts with an environment. As illustrated in Figure 1, the
agent takes actions based on a policy for a given state, and the environment responds with
a reward for that action. RL repeatedly goes through this process to ultimately learn policy
π, aiming for optimal decision-making. This process adheres to the “Markov property”,
which implies that given the current state St, the history prior to that state does not provide
any additional information about the next state St+1 or the reward Rt+1 [40]. Therefore, all
the necessary information is encapsulated in the current state St, making the RL problem
one where the agent learns the optimal policy within the structure of a Markov Decision
Process (MDP).

In Figure 1, the agent and environment interact at each timestep. At time step t, the
agent makes action at based on state st observed from the environment. Then, the next state,
st+1, is stochastically determined, given st and at, and the reward r(st, at) is provided as a
feedback from the environment. The agent repeats this process until a termination condition
is met. The purpose of the RL algorithm is to find the optimal policy π∗ that maximizes
the expected total reward at each timestep t, as shown in Equation (1). In Equation (1), γ
represents the discount rate, with a value between 0 and 1, where τ represents trajectories
((s1, a1), (s2, a2), · · ·).

π∗ = argmaxπ∑
t

Eτ∼π γt−1[r(st, at)]. (1)



Drones 2023, 7, 549 4 of 21Drones 2023, 7, 549 4 of 22 
 

 
Figure 1. The concepts of reinforcement learning. 

In Figure 1, the agent and environment interact at each timestep. At time step 𝑡, the 
agent makes action 𝑎  based on state 𝑠  observed from the environment. Then, the next 
state, 𝑠 , is stochastically determined, given s  and 𝑎 , and the reward 𝑟(𝑠 , 𝑎 ) is pro-
vided as a feedback from the environment. The agent repeats this process until a termina-
tion condition is met. The purpose of the RL algorithm is to find the optimal policy 𝜋∗ 
that maximizes the expected total reward at each timestep 𝑡, as shown in Equation (1). In 
Equation (1), 𝛾 represents the discount rate, with a value between 0 and 1, where 𝜏 rep-
resents trajectories (𝑠 , 𝑎 ), (𝑠 , 𝑎 ), ⋯ . 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸 ~  𝛾 𝑟(𝑠 , 𝑎 ) . (1)

2.2. Actor–Critic Algorithm 
Based on the learning goal, RL algorithms can be categorized into value-based and 

policy-based algorithms [41]. Value-based algorithms focus on estimating the value of 
each state through a value function in order to choose the optimal action in a given state. 
By learning and updating the value function, the agent determines its behavior based on 
the expected return it can receive in the future. Policy-based algorithms focus on learning 
a policy by which the agent chooses actions directly. Typically, the policy is represented 
by a probability distribution for choosing each action in a given state, and when choosing 
an action in a given state, the agent probabilistically selects an action based on this func-
tion. The actor–critic algorithm combines the strengths of value-based and policy-based 
algorithms [42]. 

The actor–critic algorithm consists of an actor network that learns policies and a critic 
network that approximates the values of states. Specifically, the actor network incremen-
tally learns better actions by updating its policies to maximize rewards, given the state 
value function estimated by the critic network [43]. In other words, the actor network and 
the critic network are updated alternately. 

2.3. Soft Actor–Critic 
The SAC algorithm was announced by Berkeley and DeepMind in 2018 [44]. It en-

courages exploration through entropy and improves learning efficiency by reusing learn-
ing data through a buffer [44]. The objective function to maximize in the SAC algorithm 
is defined as 𝐽(𝜋 ) = 𝐸 ~  𝛾 𝑟(𝑠 , 𝑎 ) + 𝛼𝐻(𝜋 (∙ |𝑠 )) , (2)

where 𝜃 is the parameter set of the actor network, and 𝛼 is the balancing parameter for 
the entropy term 𝐻  with larger values encouraging exploration. 𝛼  is often called the 
temperature. 

Figure 1. The concepts of reinforcement learning.

2.2. Actor–Critic Algorithm

Based on the learning goal, RL algorithms can be categorized into value-based and
policy-based algorithms [41]. Value-based algorithms focus on estimating the value of
each state through a value function in order to choose the optimal action in a given state.
By learning and updating the value function, the agent determines its behavior based
on the expected return it can receive in the future. Policy-based algorithms focus on
learning a policy by which the agent chooses actions directly. Typically, the policy is
represented by a probability distribution for choosing each action in a given state, and
when choosing an action in a given state, the agent probabilistically selects an action based
on this function. The actor–critic algorithm combines the strengths of value-based and
policy-based algorithms [42].

The actor–critic algorithm consists of an actor network that learns policies and a critic
network that approximates the values of states. Specifically, the actor network incrementally
learns better actions by updating its policies to maximize rewards, given the state value
function estimated by the critic network [43]. In other words, the actor network and the
critic network are updated alternately.

2.3. Soft Actor–Critic

The SAC algorithm was announced by Berkeley and DeepMind in 2018 [44]. It encour-
ages exploration through entropy and improves learning efficiency by reusing learning
data through a buffer [44]. The objective function to maximize in the SAC algorithm is
defined as

J(πθ) = ∑
t

Eτ∼πθ
γ[r(st, at) + αH(πθ(·|st ))] , (2)

where θ is the parameter set of the actor network, and α is the balancing parameter for
the entropy term H with larger values encouraging exploration. α is often called the
temperature.

The SAC algorithm adds the term H representing entropy to (1). The entropy term
H(π(·|st )) is introduced to encourage the agent’s exploration. This term enforces the
probabilities of all actions occurring as equally as possible, thereby enabling the exploration
of diverse action spaces to explore better policies and various optimal points [45].

3. Proposed Method

In this study, we propose a learning method to efficiently train an agent in an envi-
ronment with continuous state and action spaces of the autonomous flight environments.
Specifically, a positive buffer is additionally used in the SAC algorithm to use the experi-
ence of successful episodes. Furthermore, the cool-down alpha technique is introduced for
learning efficiency and stability. Finally, a novel SeSAC is proposed to conduct learning
incrementally from easy missions until the final goal is reached.
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3.1. Positive Buffer

The SAC algorithm stores the experience of past episodes in the replay buffer in the
form of a tuple (st, at, rt, st+1) to conduct off-policy learning [44]. In general, the experiences
from episodes are stored in a replay buffer regardless of the success or failure of the episode,
and a batch with a fixed size is randomly sampled from the replay buffer for training.
Therefore, all experiences are sampled with equal probability without distinction between
successful and unsuccessful episodes. However, if successful and unsuccessful episodes
are clearly distinguished as UAV missions, the experience from successful episodes can be
reflected in the early stages of learning to improve learning efficiency. With this aim, we
create a positive buffer where the experience from successful episodes is stored separately
and utilized for learning. As shown in Figure 2, the proposed model uses three memory
buffers. The episode buffer serves as a temporary buffer, storing only tuples from a single
episode, while the replay buffer retains all experiences. Once an episode is completed,
tuples stored in the episode buffer are added to the positive buffer if the agent meets the
success criteria score set by the hyperparameters. If the episode fails, these tuples are
discarded. Each memory adopts a strategy of deleting the oldest tuples if the predefined
memory size is exceeded. For training, data is randomly extracted in batch sizes from both
the replay and positive buffers. In the early stages of training, if there are no successful
episodes, sampling is conducted solely from the replay buffer. Once the size of the positive
buffer exceeds the batch size, training samples are drawn from both the positive and replay
buffers at a 3:1 ratio.
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Figure 2. The architecture of the SAC with a positive buffer.

The bottom part of Figure 2 shows how SAC learns. The actor uses a Policy network
to take a given state as input and output a probability for each action. The Critic consists of
two main Q-networks and two corresponding target Q-networks. The main Q-networks
perform training and constantly update the parameters θ1 and θ2 of each network, while
the target Q-networks remain frozen by periodically copying the parameters θ1 and θ2
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to θ1 and θ2. This allows the parameters of the network used to predict the target value
to stabilize over time, increasing the consistency of the predictions and ensuring stable
training.

3.2. Cool-Down Alpha

In SAC, the optimal policy π∗ is the one that maximizes the objective function defined
in Equation (2) where H(π(·|st )) is used to encourage exploration. It maximizes the
entropy of the probabilities of all actions that can be selected in the current state st. Hence,
with higher α values, it performs random actions, thereby encouraging exploration. On the
other hand, at smaller values, exploitation is encouraged with the aim of maximizing the
reward [44].

A high α can enhance an agent’s performance by promoting exploration in its initial
stages during training when a good policy for mission completion is not obtained yet.
However, a large α can compromise the stability of the learning process in its later stages
following a successful mission. To address this issue, we apply αcool , the cool-down alpha, to
maintain the learning process stable when the learned policy can be considered sufficiently
good after a certain number of consecutive successful missions.

The above-described positive buffer and cool-down alpha were added to the SAC
algorithm, which is represented in the pseudocode in Algorithm 1. Three values must be
set before learning: Rs, Ns, αcool . Rs is set as the value of the reward provided to the agent
when it achieves the desired goal, which is the success criterion of the episode. Ns is the
threshold of the number of consecutive successful missions for applying αcool .

Algorithm 1: Soft Actor–Critic + Positive Buffer + Cool-down alpha

1 : Set : Rs, Ns, αcool
2 : Initialize θ1, θ2, φ �Initialize main Q-network weights θ1, θ2 and policy network weight φ

3 : θ1 ← θ1, θ2 ← θ2 � Initialize target Q-network weights θ1, θ2
4 : BR, BP ← ∅ � Initialize replay and positive buffer
5 : R, N ← 0
6 : For each episode Do
7 : BE ← ∅ � Initialize episode buffer
8 : For each timestep Do
9 : at ∼ πφ(·|st )
10 : st+1 ∼ p(·|st, at)
11 : BR ← BR ∪ {(st, at, rt, st+1)}
12 : BE ← BE ∪ {(st, at, rt, st+1)}
13 : R← R + rt
14 : End For
15 : IF R ≥ Rs Then
16 : BP ← BE
17 : N ← N + 1
18 : End IF
19 : For each gradient step Do
20 : θi ← θi − λQ ∇θi JQ(θi) for i ∈ {1, 2} �Update Q-function parameters
21 : φ← φ− λπ∇φ Jπ(φ) �Update policy weights
22 : θi ← τθi + (1− τ)θi for i ∈ {1, 2} �Update target network weights
23 : IF N ≥ Ns Then
24 : α← αcool
25 : ELSE
26 : α← α− λ ∇α J(α) �Adjust temperature parameter
27 : where, J(α) = Eat∼πt

[
−αlog πt(at|st)− αH

]
28 : End IF
29 : End For
30 : End For
31 : Output : θ1, θ2, φ
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3.3. Stepwise Soft Actor–Critic

In the proposed SeSAC learning process, we gradually elevate the criteria for successful
completion of the episode, thereby training the agent in the desired direction. Specifically,
our proposed SeSAC performs learning by initially relaxing the termination conditions to
allow for easy mission success and gradually increasing the difficulty of these conditions to
reach the desired goal. This approach enables the agent to progressively accomplish the
desired objective, beginning with a lower difficulty level.

Let G f inal , G, and C represent the level of the final goal, the level of the initial goal, and
the margin level increase for each step, respectively. Algorithm 2 shows the pseudocode
of our proposed SeSAC algorithm. In this algorithm, once the agent completes learning
for the current goal, G, the difficulty of the mission is increased by C step by step until
it reaches G f inal , and learning continues until the final goal is achieved. An episode is
deemed successful if the cumulative reward for that episode exceeds Rs, the threshold for
episode success. Furthermore, if N consecutive episodes are successful, it is assumed that
learning for that level is complete, and the difficulty is escalated to proceed with the next
level of learning. In the example depicted in Figure 3, the final goal is set as a target radius
of 0.1 km, the initial goal is set as 1.0 km, and C (difficulty increment) is set as −0.1 km.

Algorithm 2: Stepwise soft actor–critic (SeSAC)

1 : Set G f inal , G, C, N, Rs
2 : Initialize NC = 0, G = Ginitial
3 : For each episode Do
4 : IF G 6= G f inal Do
5 : R← 0
6 : For each timestep Do
7 : at ∼ π(·|st )
8 : st+1 ∼ p(·|st, at)
9 : R← R + rt
10 : End For
11 : If R ≥ Rs Then
12 : NC ← NC + 1
13 : Else
14 : NC ← 0
15 : End If
16 : If NC = N Then
17 : G ← G + C
18 : End If
19 : Else
20 : Break
21 : End If
22 : End For
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3.4. Environment and Agent Design
3.4.1. Environment

In this study, the UAV is implemented on JSBSim, an open-source flight dynamics
model [39]. JSBSim is a lightweight, data-driven, nonlinear, 6-DOF open-source flight dy-
namics model that allows for sophisticated flight dynamics and control. Aircraft types and
their equipment, such as engines and radar, are modeled in extensible markup language,
so that they can be simply modeled in comparison to existing models. Hence, it has been
used in various applications, including flight design, spacecraft, and missile design [30]. In
addition, due to these advantages, JSBSim is applied for a variety of purposes in RL studies
that require a sophisticated simulation environment. One major example is the air combat
evolution program, supervised by the US Defense Advanced Research Projects Agency [25].
JSBSim was developed in C++, but for suitable adaptability in a Python environment, we
modified the JSBSim-Wrapper developed in [46] to suit the experimental environment in
this study.

JSBSim-Wrapper defines 51 types of information about aircraft position, speed, en-
gine status, and control surface positions, such as aileron and rudder, among the data
generated by JSBSim. For this study, 10 states were selected from this information, and an
additional 8 states were calculated based on the information about the target, resulting in a
total of 18 states utilized for the learning process. Moreover, from the 57 aircraft options
provided by JSBSim, an INS/GPS-equipped fixed-wing aircraft was chosen as the agent
for the experiments. The experiments were conducted using JSBSim’s default atmospheric
environment, which is modeled based on the 1976 U.S. Standard Atmosphere and assumes
no meteorological phenomena such as clouds or rainfall. The key libraries used in this
study include Python 3.8.5, JSBSim 1.1.5, PyTorch 1.9.0, and Gym 0.17.2.

3.4.2. States

The states are represented by the finite set S. Each state must be obtainable from the
environment and should contain the information required to learn the agent [47]. In this
study, we combine Sbasic, which includes the location and flight dynamics information
of the agent directly obtainable from JSBSim, and Srelative, which includes the relative
geometrical relationship with the target. Specifically, the state of the agent at timestep t is
as follows:

St = {Sbasic, Srelative},
where Sbasic = {zt, ϕt, ψt, θt, ut, vt, wt, pt, qt, rt} and

Srelative = {Dxt, Dyt, Dzt, Dt, Pt, Ht, AAt, HCAt}.
(3)

Figure 3 shows Sbasic, the agent’s information that it receives from JSBSim, and Table 1
shows the definition of all elements of the state. In Sbasic, the position of the agent is not
used because we utilize its relative position to the target in Srelative. However, the altitude
of the agent is important information for performing maneuvers, so Sbasic includes agent’s
altitude z.

Figure 4 presents a detailed overview of each element. The aspect angle (AA) is
the angle from the tail of the target, and the heading cross angle (HCA) is the heading
difference between the two UAVs. If AA and HCA are known, then the vectors of the two
aircraft can be expressed on a two-dimensional plane, as shown in Figure 4.

In this study, the 18 states defined above were stacked for 15 timestep states into
one observation, and we applied a one-dimensional convolutional layer (1D CONV) to
incorporate the agent’s past information into the input state and reduce the number of
parameters, as shown in Figure 5. This new input state to the network is denoted by ss

t and
is defined as follows

ss
t = ∑14

i=0 wist−i, (4)

where wi is the weights for 1D CONV kernel for time step t− i.
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Table 1. State definitions.

State Definition State Definition

z z-axis position r z-axis rotation rate
ϕ x-axis rotation angle Dx Difference in x-axis position
θ y-axis rotation angle Dy Difference in y-axis position
ψ z-axis rotation angle Dz Difference of z-axis position
u x-axis velocity P Pitch angle to target
v y-axis velocity H Heading angle to target
w z-axis velocity D Distance between agent and target
p x-axis rotation rate AA Aspect angle
q y-axis rotation rate HCA Heading cross angle
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1D CONV is commonly employed for analyzing and processing sequential data such as
signals and speech [48]. We utilized 1D CONV to compress the information, encompassing
not only the agent’s current state but also the states from a specific time period in the past,
in order to construct the input state.

3.4.3. Actions

The type of agent in this paper is a fixed-wing UAV. Hence, the action vector consists
of the stick position sx, sy and rudder pedal angle ρ, which controls the control surface,
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allowing the aircraft to move, and the throttle angle τ, which controls the aircraft’s thrust
(see Table 2). The action at time step t is defined as

at =
(
sx, sy, τ, ρ

)
(5)

Table 2. Definition of actions.

Action Definition Action Definition

sx X-axis stick position (−1–1) τ Throttle angle (0–1)
sy Y-axis stick position (−1–1) ρ Rudder pedal angle (−1–1)

3.4.4. Reward

The agent evaluates its action based on the given reward and learns to maximize
the sum of expected future rewards. Thus, providing an appropriate reward according
to the achievement of the agent is critical for successful learning [49]. We categorize the
rewards into success rewards, failure rewards, and timestep rewards. Success rewards
are given once the agent achieves the mission objective at the end of the episode. Failure
rewards are received at the end of the episode if the agent fails to achieve the goal and
crashes to the ground or overtakes the target, which means the mission has failed. Timestep
rewards are given at each timestep to address the sparse reward problem in which the agent
cannot be effectively trained due to lack of supervision when rewards are given sparsely
(e.g., episodic rewards that are given only after an episode ends). Timestep rewards include

• Distance reward: Reward for the difference between the distance from the target at
timestep t− 1 and the distance from the target at timestep t. This induces the agent to
approach the target without moving away from it;

• Line-of-sight (LOS) reward: Reward increases as the agent’s heading direction accu-
rately faces the target in three-dimensional space. It consists of the pitch score and
heading score, which are calculated based on the pitch angle and heading angle to the
target, respectively.

The detailed definitions of success, failure, and timestep rewards will be described in
the experimental design section of Section 4, as it is necessary to tailor the rewards to align
with the specific characteristics of the mission.

4. Experiments
4.1. Experiment Design

To verify the effects of SeSAC, positive buffer, and cool-down alpha, we conducted
comparative experiments on two baseline models, proximal policy optimization (PPO) [50]
and SAC, as well as SAC + positive buffer (SAC-P), SAC-P + cool-down alpha (SAC-PC),
and SAC-PC + stepwise learning (SeSAC). Here, the PPO is a policy-based algorithm
proposed by OpenAI and widely used in various research and applications. The main
objective of PPO is to maintain the similarity between the new policy and the previous
policy during learning to ensure stability. The “proximity” condition in PPO prevents large
updates in the policy, leading to improved stability and data efficiency [50].

In this study, we constructed experimental environments with two different missions.
A precise approach mission (PAM) assumes a situation in which the agent must access
a precise point to enter the disaster site or perform firefighting activities. The goal is to
precisely approach a fixed target. As shown in Figure 6, the agent starts level and straight
flight at an altitude of 25,000 feet and a speed of 300 knots with a bank angle of 0 degrees.
The episode ends when the agent collides with the ground or approaches the target, 7.8 km
away at a height of 500 ft. We assume that the goal is achieved if the agent is within 0.1 km
of the target.
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A moving target chasing mission (MTCM) is a counter-terrorism mission to track
unlicensed aircraft approaching an airport or a defense maneuver scenario to protect
important assets, in which the goal is to approach the moving target at a distance that can
reduce the threat. The agent starts level and straight flight at an altitude of 25,000 feet and
a speed of 300 knots with a bank angle of 0 degrees. The episode ends when the agent
collides with the ground or approaches the circling target, which is 5.0 km away at a height
of 500 ft. In this mission, it is assumed that the goal is achieved if the agent maintains
within 12 degrees of AA&HCA for five consecutive timesteps and stays within 2.4 km of
the target’s rear.

4.1.1. Reward Function for PAM

The reward function for PAM comprises three components: two episodic rewards—success
reward and failure reward—and a distance reward, given at each time step.

• Success reward: This reward represents the success condition of the mission and is
given as a reward of 500 when Dt < 0.1 km and Dzt < 0.1 km;

• Failure reward: This reward is received by −100 when zt < 0.1 km or AAt > 90◦,
which means the agent failed the mission by colliding with the ground or overtaking
the target;

• Distance reward: The agent receives a value of Dt−1 − Dt at every timestep. This
reward becomes negative when the agent is farther away from the target and positive
when it is closer.

4.1.2. Reward Function for MTCM

The reward function for MTCM was composed of two episodic rewards and two
timestep rewards by adding an LOS reward for continuous guidance in the direction of the
moving target.

• Success reward: This reward of 100 is given when Dt < 2.4 km and AA < 12◦ and
HCA < 12◦. Additionally, if the agent satisfies these conditions consecutively for five
timesteps, it is considered a success.
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• LOS reward: As the agent’s gaze moves further away from the target, it receives a
smaller reward, as follows

LOS reward = pitch reward + heading reward,

Where pitch reward =

(
0.3 exp

(
−0.5

(
Pt−θt

3◦

)2
)

,

and heading reward =

(
0.3 exp

(
−0.5

(
Ht−ψt

3◦

)2
)

.

(6)

• Failure and Distance reward: Same as PAM’s Failure and Distance reward.

4.1.3. Model Structure and Hyperparameters

The model for the experiment of the proposed method is based on the actor–critic
algorithm, which consists of an actor and critic network. The model structure and the set of
hyperparameters are shown in Table 3.

Table 3. Model structure and hyperparameters.

Hyperparameter Value Hyperparameter Value

Optimizer Adam τ 10−4

The learning rate for actor
network 10−4 Activation function SeLU

The learning rate for critic
network 10−3 Replay buffer capacity 105

Batch size 128 Positive buffer capacity 105

Configuration of hidden layers [128, 64, 32, 32]

For SeSAC, the difficulty gradually increased from the initial goal to the final goal,
as shown in Figure 7. Specifically, in the PAM, we set the success condition for the initial
goal to the target radius of 2.0 km. If it succeeds at least five times consecutively, then the
target’s radius is reduced by 0.1 km so that it reaches the final goal of 0.1 km after 20 steps.
For the MTCM, we set the success condition for the initial goal to be 3.5 km behind the
target with AA&HCA of 45◦. If it succeeds in the mission 10 times consecutively, then the
distance is reduced by 0.1 km, and the AA&HCA is reduced by 3◦, so that it reaches the
final goal of 2.4 km after 12 steps. Table 4 shows the hyperparameters Ns, αcool , Rs set in
Algorithm 1 and G f inal , G, C, N, Rs set in Algorithm 2.
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Figure 7. Scenarios for SeSAC. (a) In PAM, the agent learns step-by-step from the initial goal, which
is a target radius of 2.0 km, to the final goal of 0.1 km. (b) In MTCM, the agent learns step-by-step
from the initial goal, which is a target distance of 3.5 km and AA&HCA set to 45◦, to the final goal of
a target distance of 2.4 km and AA&HCA set 12◦.

Table 4. Hyperparameters for stepwise soft actor–critic.

Hyperparameter PAM MTCM

Ns 50 50
αcool 0.01 0.01
Rs 490 490

G f inal Target radius: 0.1 km Target distance: 2.4 km, AA&HCA: 12◦

G Target radius: 2.0 km Target distance: 3.5 km, AA&HCA: 45◦

C Target radius: −0.1 km Target distance: −0.1 km, AA&HCA: −3◦

N Five episodes Ten episodes

4.2. Experiment Results
4.2.1. Result for PAM

Table 5 presents the results of PPO, SAC, SAC-P, SAC-PC, and SeSAC for the PAM
scenario. The score refers to the sum of rewards received by the agent in one episode. In
the PAM scenario, if the agent successfully accomplishes the mission, it receives a reward
of 500. However, if the mission fails, it receives a reward of −100. Additionally, at each
timestep, the agent receives a distance reward based on how far or close it is to the target.
If the agent consistently moves away from the target, leading to a mission failure, it will
receive a large negative score. The “Min score” and “Max score” columns indicate the
lowest and highest scores achieved in individual episodes, respectively. The “Mean score”
column represents the average score calculated from 3000 episodes, reflecting higher values
when there are more successful episodes or when the agent shows progress in the desired
direction. The “Cumulative successes” column refers to the total number of successful
episodes accumulated during the 3000 episodes. Cumulative successes, along with the
mean score, serve as indicators to assess the achievement of stable learning.

Unlike other experiments, the SeSAC experiment is presented in two parts: SeSAC
(entire), which covers all 3000 episodes from the initial goal, and SeSAC (final goal), which is
the result after the 842nd episode when the target radius of 0.1 km is reached. PPO failed to
accomplish the mission in 3000 episodes and performed poorly across all metrics compared
to the naive SAC. SAC-P and SAC-PC had lower average scores but outperformed SAC in
terms of cumulative successes. These results can be interpreted as the increased success
rates being attributed to the utilization of successful experiences stored in the positive
buffer. In the case of SAC-PC, the cumulative number of successful episodes exceeded the
threshold set by the cool-down alpha, indicating that the influence of cool-down alpha also
played a role in the experiment. SeSAC, which combines SAC-PC with stepwise learning,
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demonstrated superior performance compared to other methods. After 842 episodes,
SeSAC successfully reached the final goal of 0.1 km, with a total of 1640 successes since then.

Table 5. Comparison results of baseline models on PAM.

Min Score Max Score Mean Score Cumulative Successes

PPO −555.33 −47.91 −68.96 0
SAC −133.42 509.82 −9.73 9

SAC-P −124.53 510.20 −64.85 17
SAC-PC −134.33 511.00 −64.03 62
SeSAC
(entire) −157.05 509.85 274.33 1781

SeSAC
(final goal) −157.05 509.85 338.31 1640

Figure 8 shows the change in the cumulative rewards per episode. The proposed
SeSAC achieved a stable score of at least 490 after about 1600 episodes, while learning was
unsuccessful with the other comparison models. In Figure 8, the black dashed line shows
the scores for the SeSAC model as the difficulty of the mission success criteria gradually
increases from an initial target radius of 2.0 km to a final target radius of 0.1 km. All other
solid lines, including the red solid line representing SeSAC, show scores at the final target
radius of 0.1 km. Due to the progressive increase in the difficulty of SeSAC, we can observe
significant fluctuations in the score plot. It shows a pattern where the agent repeatedly
experiences failures after successfully completing the mission at a lower difficulty level
when facing higher difficulty levels. PPO showed the lowest score among the other models.
Furthermore, when comparing the naïve SAC with the advanced techniques proposed
in this paper, it was challenging to observe significant differences in performance in this
experiment. This means that the objective of PAM, which requires precise reaching of
specific points in a 3D space, is difficult to achieve without stepwise learning. However,
SAC-PC showed a trend of improving scores around the 2000th episode, indicating a
potential for success. This suggests that the positive buffer and cool-down alpha play a role
in enhancing the performance of SAC-PC.

Figure 9 details the relationship between the target radius, which represents difficulty,
and the score of the SeSAC in the PAM mission, where the red solid line represents the
target radius, and the difficulty increases gradually as the target radius decreases from
the initial goal of 2.0 km to the final goal of 0.1 km. The initial goal of reaching a target
radius of 2.0 km was achieved after 258 episodes, and from there, the difficulty continued
to increase until reaching a target radius of 0.5 km. Accomplishing the 0.5 km target
required a relatively long time. By comparing the score plot represented by the black
dashed line and target radius, we observed that during the episode range of 200th to 400th,
where the agent consistently achieved the objectives and faced increasing difficulty, high
scores were obtained. The final goal of reaching a target radius of 0.1 km was achieved
in episode 842, and after a series of successes and failures, it converged to a relatively
stable score after episode 1500. The agent demonstrated a stepwise learning approach,
leveraging the experiences learned in previous stages to rapidly increase the difficulty.
Despite encountering periods of stagnation during the learning process, as evident from
the score graph, the agent exhibited a pattern of alternating between failure and success,
ultimately leading to successful learning and progression to the next stage.

Figure 10 shows a 3D plot of the learning process of the SeSAC algorithm for PAM.
The blue solid line is the path of the agent, and the red circle is the target radius that the
agent needs to reach. At the beginning of the training, the agent aims at an easy target
with a wide range, but as the agent succeeds in the mission consecutively, the radius
gradually decreases.



Drones 2023, 7, 549 15 of 21

Drones 2023, 7, 549 15 of 22 
 

in this paper, it was challenging to observe significant differences in performance in this 
experiment. This means that the objective of PAM, which requires precise reaching of spe-
cific points in a 3D space, is difficult to achieve without stepwise learning. However, SAC-
PC showed a trend of improving scores around the 2000th episode, indicating a potential 
for success. This suggests that the positive buffer and cool-down alpha play a role in en-
hancing the performance of SAC-PC. 

 
Figure 8. Score plot of each model for the PAM scenario. In the plot, the solid lines of PPO, SAC, 
SAC-P, SAC-PC, and SeSAC (Final goal) are the experimental results for the target radius of 0.1 km, 
which is the mission success criterion of PAM, and the black dotted lines of SeSAC (Stepwise goal) 
represent the scores of the process of increasing the difficulty from the initial goal of SeSAC to the 
final goal. 

Figure 9 details the relationship between the target radius, which represents diffi-
culty, and the score of the SeSAC in the PAM mission, where the red solid line represents 
the target radius, and the difficulty increases gradually as the target radius decreases from 
the initial goal of 2.0 km to the final goal of 0.1 km. The initial goal of reaching a target 
radius of 2.0 km was achieved after 258 episodes, and from there, the difficulty continued 
to increase until reaching a target radius of 0.5 km. Accomplishing the 0.5 km target re-
quired a relatively long time. By comparing the score plot represented by the black dashed 
line and target radius, we observed that during the episode range of 200th to 400th, where 
the agent consistently achieved the objectives and faced increasing difficulty, high scores 
were obtained. The final goal of reaching a target radius of 0.1 km was achieved in episode 
842, and after a series of successes and failures, it converged to a relatively stable score 
after episode 1500. The agent demonstrated a stepwise learning approach, leveraging the 
experiences learned in previous stages to rapidly increase the difficulty. Despite encoun-
tering periods of stagnation during the learning process, as evident from the score graph, 
the agent exhibited a pattern of alternating between failure and success, ultimately leading 
to successful learning and progression to the next stage. 

Figure 8. Score plot of each model for the PAM scenario. In the plot, the solid lines of PPO, SAC,
SAC-P, SAC-PC, and SeSAC (Final goal) are the experimental results for the target radius of 0.1 km,
which is the mission success criterion of PAM, and the black dotted lines of SeSAC (Stepwise goal)
represent the scores of the process of increasing the difficulty from the initial goal of SeSAC to the
final goal.

Drones 2023, 7, 549 16 of 22 
 

 
Figure 9. The SeSAC’s PAM scenario plot depicts a decreasing target radius from 2.0 km to 0.1 km, 
represented by a red line, with corresponding score changes. 

Figure 10 shows a 3D plot of the learning process of the SeSAC algorithm for PAM. 
The blue solid line is the path of the agent, and the red circle is the target radius that the 
agent needs to reach. At the beginning of the training, the agent aims at an easy target 
with a wide range, but as the agent succeeds in the mission consecutively, the radius grad-
ually decreases. 

   
Episode 255 

(Target radius 2.0 km) 
Episode 287 

(Target radius 1.5 km) 
Episode 324 

(Target radius 1.0 km) 

   
Episode 728 

(Target radius 0.5 km) 
Episode 864 

(Target radius 0.1 km) 
Episode 3000 

(Target radius 0.1 km) 

Figure 10. Visualization of the experimental results of the SeSAC algorithm for the PAM scenario. 
The blue line is the path of the agent, and the red sphere is the target radius. 

Figure 9. The SeSAC’s PAM scenario plot depicts a decreasing target radius from 2.0 km to 0.1 km,
represented by a red line, with corresponding score changes.



Drones 2023, 7, 549 16 of 21

Drones 2023, 7, 549 16 of 22 
 

 
Figure 9. The SeSAC’s PAM scenario plot depicts a decreasing target radius from 2.0 km to 0.1 km, 
represented by a red line, with corresponding score changes. 

Figure 10 shows a 3D plot of the learning process of the SeSAC algorithm for PAM. 
The blue solid line is the path of the agent, and the red circle is the target radius that the 
agent needs to reach. At the beginning of the training, the agent aims at an easy target 
with a wide range, but as the agent succeeds in the mission consecutively, the radius grad-
ually decreases. 

   
Episode 255 

(Target radius 2.0 km) 
Episode 287 

(Target radius 1.5 km) 
Episode 324 

(Target radius 1.0 km) 

   
Episode 728 

(Target radius 0.5 km) 
Episode 864 

(Target radius 0.1 km) 
Episode 3000 

(Target radius 0.1 km) 

Figure 10. Visualization of the experimental results of the SeSAC algorithm for the PAM scenario. 
The blue line is the path of the agent, and the red sphere is the target radius. 
Figure 10. Visualization of the experimental results of the SeSAC algorithm for the PAM scenario.
The blue line is the path of the agent, and the red sphere is the target radius.

4.2.2. Result for MTCM

The MTCM experiment was conducted on a moving target. To complete the mission,
the agent must stay within 2.4 km of the target for five consecutive timesteps while main-
taining an AA and HCA within 12 degrees. For the SeSAC experiment, which required a
change in difficulty, the initial target was set to a target distance of 3.5 km and an AA and
HCA of 45 degrees, as shown in Figure 6, and the target distance was reduced by 0.1 km
and the AA and HCA by 3 degrees after 10 consecutive successful missions.

Table 6 shows the experimental results of our proposed models and comparative
models for MTCM. The experimental results consist of the minimum, maximum, and mean
scores of each experiment for 3000 episodes, cumulative successes, and the first convergent
episode. The score represents the sum of rewards received in an episode, and cumulative
success indicates the number of successful episodes out of 3000, serving as a metric for
learning stability. The first convergent episode refers to how quickly the desired objective
was achieved, representing the efficiency of learning. Here, the first convergent episode to
identify the convergence point of the learning method was obtained following:

Convergent criteria =
50

∑
i=0

(Rt−i − Rs) <
Rs

2
, at =

(
sx, sy, τ, ρ

)
, (7)

where Rt is episode score of timestep t and Rs is the success criterion of the episode, which
was set to 490 in the experiment.
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Table 6. Comparison results of baseline models on MTCM.

Min Score Max Score Mean Score Cumulative Successes First Convergent
Episode

PPO −2303.86 72.70 −359.96 2 -
SAC −665.86 984.03 −296.78 22 -

SAC-P −728.24 1829.24 95.21 1387 1602
SAC-PC −638.35 1120.11 28.62 1246 1951
SeSAC
(entire) −650.34 928.17 404.90 2584 660

SeSAC
(final goal) −391.14 927.32 505.99 2308 660

The experimental results indicate that PPO and SAC, similar to the results of PAM,
were unable to successfully complete the mission. On the other hand, SAC-P, SAC-PC,
and SeSAC, which applied positive buffers, were able to achieve high average scores and
succeed in more than 1000 episodes. Although SAC-PC, which introduced cool-down alpha,
took about 350 episodes longer than SAC-P to converge to the desired score, a comparison
of the plots of SAC-P represented by the green solid line and SAC-PC represented by
the gold solid line in Figure 11 after the 1500th episode reveals that the introduction
of cool-down alpha contributes to increased stability of the agent after achieving the
desired score.
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SeSAC showed overwhelming results in the mean score, cumulative success, and first
convergent episode compared to other comparison methods. In particular, SeSAC showed
superior performance in both cumulative successes and the first convergent episode com-
pared to other methods, with over 1000 episodes of higher performance in each case. Also,
after converging on the target score at episode 660, the score remained stable, influenced
by the cool-down alpha. Figure 12 provides a more distinct depiction of the experimental
results for MCTM. SeSAC demonstrated notably faster convergence than other meth-
ods, with a stable score after convergence. This highlights the clear superiority of the
proposed method.
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Figure 12. Score plot and target distance of the SeSAC for the MTCM scenario. The red solid line in
the plot represents the target distance, which is one of the conditions that control the difficulty of the
MTCM scenario.

To verify the training process of SeSAC in detail, Figures 12 and 13 present the scores
for each episode and the movement path of the agent, respectively. In Figure 13, the red
and blue lines represent the movement paths of the target and the agent, and the cone
shape at the rear of the target shows the target that the agent needs to reach. As shown in
Figure 13, the agent adapted to the increasing difficulty by learning step by step through
the SeSAC algorithm, and after 627 episodes, it succeeded in reaching the final goal of a
target distance of 2.4 km and AA&HCA within 12 degrees.
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Figure 13. In the MTCM scenario’s score plot, a blue line traces the agent’s path, while a red line
depicts the targets. The yellow fan-shaped area, influenced by target distance, AA, and HCA, denotes
success criteria. As this region narrows, the mission’s difficulty increases.
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5. Conclusions

In this study, we have developed a new training method, SeSAC, for efficient learning
of fixed-wing UAVs in continuous state and action space environments. SeSAC performs
stepwise learning, starting from easier missions, to overcome the inefficiency of learning
caused by attempting challenging tasks from the beginning. We also added a positive
buffer to utilize experiences from successful missions and controlled the hyperparameter
that determines the amount of exploration in the SAC algorithm to enable stable learning.
Furthermore, to effectively train the agent in a 6-DOF environment, we designed optimal
states, actions, and rewards and integrated past states into the learning process using a 1D
convolutional layer.

Experiments were conducted in two scenarios: the precision approach mission and
the moving target-chasing mission. The proposed SeSAC approach demonstrated superior
performance compared to PPO and conventional SAC, not only in terms of scores but also
in the total number of successful episodes and first convergence episodes, indicating faster
convergence and stable learning results. In particular, when using the First convergent
episode as an indicator to assess the efficiency of learning, both PPO and the traditional
SAC did not converge. However, SAC-P and SAC-PC converged in 1602 and 1951 episodes,
respectively. In contrast, SeSAC demonstrated the effectiveness of the proposed methodol-
ogy by converging to the desired score in just 660 episodes. Additionally, a comparison
between SAC-P, SAC-PC, and SeSAC revealed that the three techniques used in SeSAC,
namely positive buffer, cool-down alpha, and stepwise learning, individually contribute to
performance enhancement and stability. These results suggest that the approach applied to
fixed-wing UAVs in this paper can be extended to other UAV types, such as rotary-wing or
flexi-wing UAVs, opening up possibilities for applications in various fields.

However, currently trained agents are not able to perform their missions perfectly in
new situations outside of the specific mission designed in the scenario. To address this, we
are exploring two research directions: (1) developing a new approach that enables agent
adaptation to various situations by individually training complex missions as modular
units and connecting them, and (2) exploring two research directions: developing a new
approach for agent adaptation through alternate training between the agent and the goal,
and expanding the current SeSAC method to enhance agent performance. These research
topics are planned to be addressed in future studies.
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