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Abstract: This paper offers a comprehensive review of traditional and advanced stockpile volume-
estimation techniques employed within both outdoor and indoor confined spaces, whether that be
a terrestrial- or an aerial-based technique. Traditional methods, such as manual measurement and
satellite imagery, exhibit limitations in handling irregular or constantly changing stockpiles. On the
other hand, more advanced techniques, such as global navigation satellite system (GNSS), terrestrial
laser scanning (TLS), drone photogrammetry, and airborne light detection and ranging (LiDAR),
have emerged to address these challenges, providing enhanced accuracy and efficiency. Terrestrial
techniques relying on GNSS, TLS, and LiDAR offer accurate solutions; however, to minimize or
eliminate occlusions, surveyors must access geometrically constrained places, representing a serious
safety hazard. With the speedy rise of drone technologies, it was not unexpected that they found their
way to the stockpile volume-estimation application, offering advantages such as ease of use, speed,
safety, occlusion elimination, and acceptable accuracy compared to current standard methods, such
as TLS and GNSS. For outdoor drone missions, image-based approaches, like drone photogrammetry,
surpass airborne LiDAR in cost-effectiveness, ease of deployment, and color information, whereas
airborne LiDAR becomes advantageous when mapping complex terrain with vegetation cover,
mapping during low-light or dusty conditions, and/or detecting small or narrow objects. Indoor
missions, on the other hand, face challenges such as low lighting, obstacles, dust, and limited space.
For such applications, most studies applied LiDAR sensors mounted on tripods or integrated on
rail platforms, whereas very few utilized drone solutions. In fact, the choice of the most suitable
technique/approach depends on factors such as site complexity, required accuracy, project cost, and
safety considerations. However, this review puts more focus on the potential of drones for stockpile
volume estimation in confined spaces, and explores emerging technologies, such as solid-state LiDAR
and indoor localization systems, which hold significant promise for the future. Notably, further
research and real-world applications of these technologies will be essential for realizing their full
potential and overcoming the challenges of operating robots in confined spaces.

Keywords: stockpile volume estimation; drone photogrammetry; terrestrial laser scanning; GNSS;
TLS; airborne LiDAR; indoor stockpile measurement; confined spaces; solid-state LiDAR; indoor
localization systems; rail-mounted LiDAR

1. Introduction
1.1. Background

Stockpile volume estimation is an essential process for bulk material management
within industries that rely on stockpiles of different materials as inputs and outputs for
the various stages of production. Due to atmospheric conditions, it is usually preferred to
store stockpiles within confined spaces such as silos, sheds, barns, domes, and hoppers,
which poses a challenge for inspection [1,2]. This is because these environments suffer
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from poor lighting and visibility conditions due to dust and darkness, along with lack of
global positioning, uneven and slippery terrains, and sensor interference [3]. That said, it is
critical to constantly monitor stockpile volumes within confined spaces to ensure efficient
material management.

Traditionally, ground-based methods for estimating stockpile volumes such as walk-
ing wheel, global navigation satellite system (GNSS), or terrestrial laser scanning (TLS)
have been utilized. However, these methods are associated with risks for the employees,
while inspecting hard-to-reach or dangerous areas whose inspection is needed to increase
reference measuring points and, hence, improve estimation accuracy. On the other hand,
aerial surveying has gained popularity as a fast and safe solution within outdoor missions.
In recent years, drone photogrammetry has become a common solution for surveying
stockpiles in a variety of industries such as mining [4,5], quarrying [6,7], construction site
monitoring [8,9], and agriculture and forestry [10,11]. In fact, large volumes of aerial 2D
photos are typically processed using classical photogrammetry methods or structure from
motion (SfM; a more modern approach that automates much of the processes involved
in classical photogrammetry) [12,13] to create 3D topographical models and orthomosaic
maps. That said, airborne LiDAR (Light Detection and Ranging) is another advanced
drone surveying method that can cover larger areas while collecting higher resolution
data, compared to that obtained from drone photogrammetry. However, it is typically
more expensive and heavier than the other drone sensors. Clearly, drones may not be
typically designed for confined spaces applications. In fact, a recent review on autonomous
exploration of confined subterranean spaces highlighted the challenges of robotic operation
in confined spaces, including robust and reliable map generation, precise localization,
efficient path planning, and safe navigation [14]. As a result, only a small number of studies
have applied drones for indoor stockpile volume estimation, and these studies have only
emerged in recent years.

Over the past decade, several review studies have tangentially considered stockpile
volume estimation, and here we present a brief summary of these studies, underscoring
their respective scope and limitations. Jaboyedoff et al. [15] primarily focused on using
LiDAR to examine landslides, including their volume, but did not extend the scope to
stockpile volume estimation. Colomina and Molina [16] comprehensively reviewed drone
usage in photogrammetry and remote sensing, demonstrating the application of LiDAR
technology in unmanned aerial systems (UASs). However, their study did not specifically
address the volume-estimation application. Sliusar et al. [17] explored drone technology
applications in solid waste landfills and dumpsites, with a majority of the research con-
centrating on landfill volumetric analysis using aerial photogrammetry. Livers et al. [18]
compared and reviewed methods for estimating the volume of wood jams, concluding that
visual estimates remain the most time-efficient approach. Deliry and Avdan [19] presented
a review paper addressing the accuracy of drone-based photogrammetry, while considering
earthwork and snow volumetric measurements using drone photogrammetry techniques.
However, they emphasized the need for further investigations to assess the accuracy of these
techniques in various contexts, including volumetric analysis. Malang et al. [20] conducted
a systematic literature review on drone implementation in warehouse management, noting
that only one study applied drone technology for volume estimation. This observation
highlights the need for further research in this relatively unexplored area.

Stockpile volume estimation is an interdisciplinary topic spanning various fields,
including remote sensing and photogrammetry, geomatics and surveying, geospatial infor-
mation systems (GIS), civil engineering and construction, mining and geology, agriculture
and forestry, environmental science and waste management, and robotics and automation.
Despite the valuable contributions of the aforementioned reviews, there has not been a
review work focusing on terrestrial and aerial techniques for stockpile volume estimation
in open and confined environments. Therefore, this review paper aims to comprehensively
address techniques for outdoor stockpile volume estimation, techniques for stockpile vol-



Drones 2023, 7, 537 3 of 32

ume estimation within confined spaces, and the future perspective of stockpile volume
estimation within confined spaces.

1.2. Research Approach

The objective of this study is to present a comprehensive review of the methods
developed and challenges encountered in stockpile volume-estimation research. Via an
extensive comparative analysis of the conducted research into the field, including that for
indoor missions which are not covered in existing review papers, this study is anticipated
to add value across multiple fields. For clarity, the scope of this review encompasses
any work involving the measurement and monitoring of stockpile volumes, including
earthworks and landfills. All studies on indoor missions within confined spaces, such as
warehouses, were also included. However, not all outdoor missions were considered. This
is because review papers considering drone photogrammetry were already published in
2020 and 2021 [19,21]. Consequently, we only focused on the most recent studies utilizing
the photogrammetry approach starting from 2020 to 2023. Studies employing solely TLS
and GNSS techniques were selectively excluded from this review. While these methods
are undoubtedly pivotal in the domain of stockpile volume estimation, they have been
extensively studied and are now considered conventional. As such, the focus of this review
is geared towards emerging and advanced methods, particularly those leveraging drone
and LiDAR technologies. In this context, TLS and GNSS techniques are commonly used as
benchmark standards against which these new methods are compared, and, as such, the
inclusion of standalone TLS and GNSS studies is not considered here, as it would divert
from the main objective of this review.

Keyword search terms employed in compiling the papers used to inform this re-
view included: ‘stockpile volume estimation’, ‘stockpile measurement’, ‘photogrammetry’,
‘aerial survey’, ‘drone-based volume estimation’, ‘structure from motion (SfM)’, ‘digital
surface model (DSM)’, ‘digital elevation model (DEM)’, ‘terrestrial laser scanning’, ‘indoor
volume estimation’, ‘warehouse stockpile measurement’, ‘earthwork volume calculation’,
and combinations of these terms. Furthermore, drone synonyms like ‘UAV’, ‘UAS’, and
‘aerial’, and stockpile synonyms like ‘earthwork’ and ‘landfill’, were considered. Relevant
publications were assembled utilizing online databases, including Web of Science, Scopus,
Google Scholar, ResearchGate, and journal publisher websites. Some interesting trends
appeared during this search process. For example, Figure 1 shows the historical trend we
found for the collected publications related to aerial stockpile volume estimation, based on
our search criteria and keywords, while using Scopus. Clearly, the data reveal a significant
surge in the application of drones for stockpile volume estimation starting from 2012.
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Figure 1. Historical trend of research articles on aerial stockpile volume estimation, based on the
search results acquired from Scopus using relevant keywords. The data reveal a marked increase in
the application of drones for stockpile volume estimation, starting from 2012. This trend highlights the
growing interest and adoption of drone-based solutions for accurate and efficient stockpile volume
measurements in various industries.
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After gathering the papers, each was assessed objectively concerning its scope. To
collect additional papers referenced in the initial set of publications, a backward citation
search was performed, scrutinizing the citations at the end of each article to ascertain their
significance to the present study. A forward citation search was also executed to complete
the paper compilation, pinpointing novel findings related to the topic where publications
subsequent to a given study cited the original work. The analysis of each paper entailed
extracting the employed technique, application, and key findings, such as the precision of
the estimated volume.

The layout of this paper is as follows: Section 2 offers an outline of the various
techniques employed in estimating stockpile volumes. Section 3 delivers a review of the
most recent methods applied for outdoor stockpile volume estimation, focusing on state-of-
the-art technologies like drone-based photogrammetry and LiDAR surveying. Section 4
delves into the intricacies of estimating stockpile volumes within indoor environments,
addressing the challenges and reviewing relevant solutions and studies in this niche area.
The paper then culminates with Section 5, which presents insightful discussions, critical
remarks, and prospective directions for future exploration in this field.

2. Techniques for Estimating Stockpile Volumes
2.1. Overview

A wide range of techniques exists for estimating stockpile volumes, spanning from
straightforward manual methods to more sophisticated approaches. A flowchart demon-
strating a classification of these techniques, along with their typical respective sub-methods
used for 3D reconstruction, is illustrated in Figure 2. In this section, we will briefly discuss
these various techniques and their relevant applications.
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Figure 2. A flowchart demonstrating techniques used for stockpile volume estimation, along with
their typical most commonly applied sub-methods for 3D model reconstruction. Note that, techniques
in dash-lined boxes are not extensively reviewed in this work. Techniques in blue boxes represent the
focus of this work.

2.2. Manual Measurements

Manual measuring techniques include the use of a walking wheel, truckload-and-
bucket-count, or even a less accurate method like eyeballing [22]. The truckload-and-bucket-
count method is suitable for small stockpiles, but it becomes impractical for large ones.
Generally, manual techniques are time-consuming and require physical effort. However,
for common shapes such as conical and elongated piles, the volume can be estimated using
a measuring tape and standard formulas [23].

2.3. Satellite Imagery

Satellite imagery (or Earth-observation imagery, spaceborne photography, or simply
satellite photo) can be used for earthwork monitoring and stockpile volume estimation [24–28].
This method is useful for monitoring changes in landfills over a long period of time,
particularly for large areas. However, it requires ground knowledge of the area and, in fact,
provides low accuracy results for volume estimation. Additionally, it cannot be used for
dynamic stockpiles, where sizes change regularly.
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2.4. GNSS Surveying

GNSS surveying involves using GNSS signals via a GPS/GNSS receiver and antenna
to determine the position of points on surfaces relative to other points. Surveying using
GNSS can utilize either Real-Time Kinematic (RTK) or Post-Processed Kinematic (PPK)
methods. RTK provides real-time corrections to the GNSS signals, enabling centimeter-level
accuracy or even sub-centimeter levels of accuracy when post-processing algorithms are
employed [29,30]. It usually requires a base station and a robot that communicates in real
time (Figure 3). PPK, on the other hand, stores the raw GNSS data for post-processing
later. Both RTK and PPK methods can achieve high accuracy, but they are used in different
scenarios, based on the specific requirements of the survey, such as the need for real-time
results, the available infrastructure, and other factors [31]. To transform GNSS data into a
reconstructed 3D model, methods such as the Triangulated Irregular Network (TIN) and
Inverse Distance Weighting (IDW) are among the most commonly used approaches [32].
Note that GNSS surveying only collects single points around and over the area of inter-
est, and the accuracy of the modeled surfaces increases when more points are collected.
However, surveyors need to walk around and climb the stockpiles to place the GNSS
receivers over the measurement points, which can entail safety hazards, depending on the
inspection environment.
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Figure 3. Visual illustration of the Real-Time Kinematic (RTK) GNSS technique, integrating the
interaction between GNSS, base station (providing reference coordinates for correction), and a robot
(drone or rover) with RTK module (used for mobile data collection).

2.5. Photogrammetry Surveying

Photogrammetry is a non-contact technique for acquiring reliable and accurate 3D
information of the Earth’s surface and its environment from overlapping the acquired 2D
images [33] (Figure 4). This technique has gained popularity in recent years, especially
with the emergence of drone-based photogrammetry surveys. Among the various pho-
togrammetric methods, structure from motion (SfM) and stereo imaging are widely used
techniques for surveying and reconstructing three-dimensional structures. While SfM
automatically solves for the camera positions and orientations without the need for known
reference points, stereo imaging utilizes two or more images taken from different angles to
extract depth information and reconstruct the 3D structure [34]. Currently, many processing
software for photogrammetry are available such as Envi, Agisoft Metashape, and Bentley
ContextCapture. These software tools can directly generate a 3D model by sequencing 2D
aerial images. For a comprehensive understanding of drone photogrammetry, the reader is
referred to the review article by Berra and Peppa [21].
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Figure 4. Visual demonstration of a drone photogrammetry workflow, showcasing a drone capturing
images, satellites providing positioning data, a drone operator controlling the flight, and a Ground
Control Point (GCP) for enhancing spatial accuracy. This method is widely used for stockpile volume
estimation.

Drone photogrammetry has proven to be an efficient method for conducting aerial
surveys, especially in areas where direct access is difficult. However, to obtain accurate
volume estimations of stockpiles, Ground control points (GCPs) are required. GCPs are
known coordinate reference points that are placed in the area of interest and used to scale
the 3D model. The positions of GCPs are usually estimated using methods such as GNSS,
hence representing a potential drawback of this method. Additionally, generating a 3D
model from images taken under low-light conditions or with homogeneous textures can be
challenging.

2.6. Terrestrial Laser Scanning (TLS) and Airborne LiDARs

TLS, also known as Terrestrial LiDAR, is a popular method for acquiring 360◦ panoramic
3D coordinates of numerous points on land. It is achieved by emitting laser pulses to-
wards these points and measuring the distance from the device to the target [15] (Figure 5).
The process of aligning multiple TLS scans into a unified 3D model is known as scan
registration [35–37]. It begins with identifying common features across different scans and
using them for initial alignment. Algorithms, such as the Iterative Closest Point (ICP)
and Normal Distributions Transform (NDT), are then employed to refine this alignment
by minimizing the difference between corresponding points. Manual adjustments and
error minimization techniques may be used to ensure alignment quality. Once accurately
aligned, the scans are merged into a single cohesive 3D model. This complex process
requires a combination of specialized software, automated algorithms, and manual inter-
ventions, and it plays a vital role in ensuring that the final 3D model faithfully represents
the scanned environment.

TLS has become an industry standard due to its relatively straightforward operation
and the sub-centimeter accuracy it can achieve. However, TLS can be considered an
expensive approach. Additionally, when surveying large and complex surfaces, TLS must
be moved repeatedly to minimize occlusion (unscanned areas) and to ensure sufficient
density of the collected data [38]. Clearly, this may pose personnel risks when working in
hard-to-reach and/or dangerous environments.

Airborne LiDAR is an alternative method that can overcome some of the limitations of
TLS. It involves using a drone to conduct a complete survey without risking the surveyors.
However, airborne LiDAR requires more processing data than TLS: TLS collects panoramic
data from fixed single points, making it easier to match/register the point cloud. Airborne
LiDAR, on the other hand, is mounted on a flying object, which may lead to more data pro-
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cessing cost and potentially errors. Within the processing of airborne LiDAR data, Digital
Elevation Models (DEMs) and Digital Surface Models (DSMs) are commonly generated.
A DEM provides the bare ground surface without any objects, while a DSM includes all
objects on the surface, such as buildings and trees.
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Figure 5. Visual demonstration of Terrestrial Laser Scanning (TLS) in action, capturing precise 3D
point cloud data of a stockpile for accurate volume estimation. The TLS system emits laser pulses
to measure distances and create a detailed representation of the stockpile’s shape and dimensions.
Colors in the pile represent a visual means to show change of elevation.

3. Outdoor Stockpile Volume Estimation
3.1. Overview

This section will focus on reviewing studies that considered photogrammetry and
LiDAR-based methods, as they are the most advanced techniques currently adopted for
outdoor stockpile volume estimation. In fact, among stockpile and landfill monitoring and
volume-estimation techniques, drone photogrammetry has become widely adopted due to
advantages such as easiness to use, and speed and safety, as well as acceptable accuracy,
when compared with the standard methods, such as TLS and GNSS. Here, studies utilizing
aerial photogrammetry published since 2020 are considered. For less recent contributions
to aerial photogrammetry, the reader is referred to previous review contributions such as
that by Berra and Peppa [21], the work by Deliry and Avdan [19], and an earlier review
study by Colomina and Molina [16]. To the contrary, the selection of studies employing
LiDAR-based approaches was not limited to a particular time frame. This was mainly due
to the relatively limited number of publications in comparison to those focused on drone
photogrammetry.

3.2. Drone Photogrammetry

Unmanned aerial vehicles (UAVs), or drones, comes in/with various sizes, control
mechanisms, and design configurations. They range from large-scale drones, similar to
the Global Hawk, through miniature systems (e.g., [39–41]), to the latest nano and pico
air vehicles (e.g., [42–45]). These platforms have enabled testing of innovative aerial
solutions, e.g., control strategies [46–49], difficult to apply in manned aircraft. Drones are
categorized into several types based on mission capabilities, including horizontal take-off
and landing (HTOL), vertical take-off and landing (VTOL), various hybrids, helicopters,
and unconventional designs [50]. Despite this diversity, fixed-wing (HTOL) and rotary-
wing (VTOL) drones are commonly used in research and commercial applications for 3D
mapping missions [51]. Fixed-wing drones are often preferred in surveying expansive
areas quickly. Conversely, rotary-wing drones possess the unique capability to hover and
maneuver in any direction, making them a logical choice for small areas and indoor tasks.

Drone photogrammetry is generally seen as a faster and safer solution for monitoring
and volume estimation. For instance, drone photogrammetry was applied in missions for
dump and landfill waste management [38], earthwork in mining and quarrying [52,53],
and agriculture [10]. Table 1 summarizes drone photogrammetry-based approaches for
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stockpile/earthwork volume estimation that appeared in the literature since 2020. The table
compares these studies taking into account aspects such as application, drone platform,
data-processing method, and estimated volumetric error. In the following paragraphs, we
will highlight some of the main aspects of the studies considered in Table 1.

In terms of accuracy, most of the studies, in Table 1, reported volumetric errors in
the range of ≈0–3% compared to results from TLS, GNSS-RTK, or actual known vol-
ume. However, few studies, such as [54,55], reported slightly higher average error values
around 7–12%. Remarkably, the most common way to calculate the volumetric difference
was by comparing the estimated volume using drone photogrammetry to the ground truth
volume obtained using TLS. For example, the study by Ajayi and Ajulo [56] adopted such
approach, but to establish a baseline for comparison, they also considered the actual volume
determined by the mill machine processing the material. Hence, the volume derived from
the mill machine served as a reference or ‘ground truth’ volume, against which the volume
estimates obtained from TLS and drone photogrammetry were validated and compared.
Their results revealed that the volumetric errors for the TLS and drone photogrammetry
methods were +2.9% and −2.3%, respectively. Although the difference in the absolute val-
ues of the percentage errors between the two methods is minor (0.6%); the total difference
between the two percentage errors is 5.2%.

In another study by Kokamägi et al. [57], volume estimates using drone photogram-
metry were compared to both TLS (as ground truth) and GNSS. Their results showed
volumetric errors of 1% and 6%, when comparing drone and GNSS to TLS, respectively.
Mora et al. [58] showed that obstructions in the collected data while using TLS resulted
in occlusions of about 7%, while using aerial photogrammetry provided 100% coverage.
Another special study was that by Cho et al. [59], who conducted survey tests using two
types of drones: a VTOL fixed-wing drone and a multi-rotor drone. Their results showed a
minor difference of only 0.4% in the estimated volume produced when using the two drone
platforms. That said, this result could just be an artifact of using different onboard cameras.
Moreover, they showed that the difference in the estimated volume, in comparison to the
cross-section method, was only 1.1%. Consequently, they argued that aerial photogramme-
try can replace the current existing cross-section method, required by regulations such as
the engineering instructions and standard of construction estimate.

Other studies, such as those conducted by Idrees and Abdulrahman [60] and Lee and
Lee [52], considered estimating the volume of a dam using drone photogrammetry while
comparing the results to that produced from the GNSS-RTK method. To ensure accurate
volume estimation by the GNSS-RTK, multiple measurements at different locations on the
dam were obtained to account for any variations in the shape. Idrees and Abdulrahman [60]
conducted the aerial survey at different flight altitudes, and the error in the estimated
volume between the two methods was minor (<0.3%). On the other hand, Lee and Lee [52]
showed that the estimated volumes from GNSS-RTK and drone photogrammetry had a
difference of 2%. However, clearly, the hours of surveying needed while using the GNSS-
RTK technology can be avoided when using drones that can reduce the mission time to just
few minutes.
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Table 1. Summary of research articles that adopted drone photogrammetry for outdoor stockpile volume estimation, during the period from 2020 to 2023.

Application Surveyed Area [m2] Country Drone/Platform Image-Processing
Software

Reference
Volume [m3]

Volumetric
Error [%] Ground Truth Reference

Open sand
quarry ≈145,000 Italy DJI Phantom 4 Agisoft Metashape ≈45,000 - - [6]

Stockpiles ≈3000 Malaysia DJI Phantom 4 Pro Agisoft Photoscan 6441 2.6 Manual measuring [61]

Stockpiles 1530 Nigeria DJI Mavic Air Agisoft Metashape Pro 2750 2.3 Mill machine [56]

Foundation pit 61,000 China DJI Phantom 4 RTK Bentley
ContextCapture - - - [62]

Stockpiles 463
Estonia

DJI Phantom 4 Pro
Agisoft

Photoscan
722.5

1.1

TLS [57]Aibotix Aibot X6 0.7

Stockpiles 394 DJI Phantom 4 Pro 674 2.3

Stockpiles 345 USA KongCopter FQ700X8
PRO + lens

Agisoft Metashape

487.1

1.4

TLS [58]
Bentley

ContextCapture 1.7

PixElement 1.1

Earthwork ≈70,000 Korea
VTOL fixed wing

Agisoft Photoscan ≈104,000 1.3 Design drawing [59]
Multi-rotor drone

Dam 45,840 Kurdistan-Iraq DJI Phantom 4 Pro Agisoft Photoscan Pro 352,551 <0.3 GNSS-RTK [60]

Stockpiles 393.9
- Custom drone and

custom ground robot Visual-SLAM
470.2 0.3 Dense

reconstruction
[63]

Landfill 53,628 250,057 0.3

Landfill 82,000

Russia

DJI Phantom 3 Pro
Agisoft Metashape 406.7

0.8

TLS [38]

X-FLY
(specialized) 0.9

Landfill 119,000
DJI Phantom 3 Pro

DroneDeploy 358
4.9 (no GCP)

X-FLY
(specialized) 2.1 (no GCP)

Open pit quarry ≈20,000 Malawi DJI Phantom 3 Pix4D mapper 2.2 Pro 265.4 2.6 Mill [64]

Charcoal heaps 80,000 Brazil DJI Phantom 3 Agisoft Metashape Pro 1,796,223 6.5 GNSS-RTK [54]
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Table 1. Cont.

Application Surveyed Area [m2] Country Drone/Platform Image-Processing
Software

Reference
Volume [m3]

Volumetric
Error [%] Ground Truth Reference

Stockpiles ≈15,000 - DJI Phantom 4 Pro Agisoft
Photomodeler 63,688 <0.1 Mill and

GNSS-RTK [65]

Fly ash
stockpiles

-
USA DJI Air 2S Pix4D Mapper

0.14 53 Known
[55]

1400 1649.1 11.9 Mill

Earthwork 20,000 Korea DJI Inspire 1 Agisoft Metashape 147,316.2 2.1 GNSS-RTK [52]

Construction site 100,000 Korea DJI Phantom 4 Pro Pix4D Mapper 354,399 0.7 GNSS-RTK [66]
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The exploration of innovative methods to enhance photogrammetry, such as the use
of RTK drones, specialized geodetic class of drones, or a collaborative approach involving
aerial-ground robots, has been gaining traction in the field. RTK drones, recognized for
their superior positional accuracy in aerial mapping, outperform their consumer-grade
counterparts by leveraging RTK technology [67]. This technology employs a fixed base
station and advanced algorithms to correct GNSS signal errors in real time, as depicted
in Figure 3. Despite their higher cost, the accuracy afforded by RTK drones was demon-
strated by Jiang et al. [62] while evaluating earthwork volume changes, as they managed to
reconstruct the 3D model with an average RMS (Root Mean Square) accuracy of 2–3 cm.
When comparing the use of non-specialized low-cost drones with specialized geodetic
class drones, Filkin et al. [38] intriguingly found no significant difference in results when
using them for a waste disposal site volume estimation. On the other hand, collaborative
approaches involving aerial-ground robots have shown promise in improving reconstruc-
tion accuracy, as highlighted by Liu et al. [63], whose system improved pile reconstruction
accuracy by 61% compared to a single-agent setup, hence enhancing the volume-estimation
error for a large landfill to an average error value of 0.27%.

Studies have consistently shown a tendency for increased volumetric errors when
estimating the volumes of smaller piles. For instance, Liu et al. [68] focused on estimating
the volumes of various small food piles, which had an average volume of 136,610 mm3

(≈136.6 × 10−6 m3). Their estimations displayed an average error of 7%. In a similar vein,
Putra et al. [69] explored the estimation of volumes for small sand piles, which had an
average volume of 47.85 mm3 (≈48 × 10−9 m3) and encountered a remarkably high average
error of 23%. Kuinkel et al. [55] also, demonstrated this trend by estimating the volume
of a comparatively small pile with a volume of 0.14 m3. Even with the smallest recorded
error in this study, their error still reached 14%. These findings underscore the ongoing
challenges in accurately estimating the volume of small piles using photogrammetry and,
hence, the resulting larger volumetric errors.

Ground control points (GCPs) can help photogrammetry software to estimate stockpile
volumes with greater accuracy. GCPs are physical points on the ground with known
coordinates estimated with methods such as the GNSS. Moreover, GCPs can be used to
validate the accuracy of the photogrammetric workflow and ensure that the estimated
stockpile volumes are within an acceptable range of error. According to the findings of
Kokamägi et al. [57], reducing the number of GCPs from 16 to 7 led to an increase in
the volumetric error of estimated volume from 2.3% to 3.2%. Additionally, their research
indicated that avoiding GCPs led to a significant decrease in the estimated volume, showing
a change of approximately 6.9% when compared to scenarios using seven GCPs. Other
studies such as [55] also showed that conducting an aerial survey without utilizing GCPs
can lead to volumetric errors of up to 12%. To address this issue, studies such as that by
Liu et al. [70] and He et al. [71] developed correction methods for cases where GCPs are
not available. Moreover, many studies have taken into account the impact of the flying
altitude on the achieved accuracy of volume estimation. As expected, Rohizan et al. [61]
showed that a lower altitude setting produces high volumetric error. Conversely, Idrees and
Abdulrahman [60] reported that flying at 25 m produced better results than flying at 50 or
100 m. Lee and Lee [52] similarly found that flying at 50 m provided better estimation than
flying at 100 m. However, these results are subjective and are potentially misleading, having
produced their results in absolute figures. As a result, some researchers have determined
altitude requirements in relative rather than absolute terms. To improve volume-estimation
accuracy, Kuinkel et al. [55], for instance, concluded that the flight altitude should be 3.5 to
5 times the height of the stockpile. In addition, Idrees and Abdulrahman [60] introduced a
new factor and called it the “surface-volume ratio” for volume comparisons, suggesting
that smaller surface–volume ratios led to more accurate volume estimations. This was
supported by Tucci et al. [72], who also showed that as the surface–volume ratio decreases,
the computed volume becomes more accurate. Evidently, there is an expectation for an
optimum flight altitude that depends on the mission being conducted: while higher flying
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altitudes provide wider viewport coverage, they also lead to less texture detail; hence,
the optimal flight height will be clearly influenced by the pile scale and texture [63]. In
fact, the impact of the flying altitude on the accuracy of volume estimation is a key factor
that should be considered in aerial surveys, and, as discussed previously, relative altitude
measurements and the surface–volume ratio are useful starting measures in determining
this optimal flying altitude.

As a final discussion point in this section, we consider the impact of the captured image
quality on volume-estimation accuracy, a topic that has been investigated by several studies.
For example, Vacca [6] found that low-quality images never produced a volume difference
greater than 1% compared to high-quality images. Similarly, de Carvalho et al. [54] reported
that both high- and low-quality images resulted in similar volume estimations, but with
vastly different processing times: 687 min for high-quality images versus 24 min for low-
quality images. Note that there is no doubt that high-quality images are better for 3D
reconstructions, but for volume-estimation purposes, higher quality images have a lesser
effect on accuracy enhancement. Vacca’s study [6] also demonstrated the effect of the grid
size on 3D surface generation, showing that a 1 m grid size provided similarly accurate
estimates as a 0.5 m grid size. However, this result should be considered with caution as
the study only considered a large survey area of approximately 145,000 m2. Cho et al. [59]
found that changing the image sample size from 4 cm to 10 cm had a minor effect on
the estimated volume, with an increase from 103,393 m3 to 105,667 m3: an increase of
2.2% for a surveyed area of 70,000 m2. All in all, the previous discussions show that the
quality of captured images can have limited effect on volume estimation. While low-quality
images may provide similar volume estimations as high-quality images, they will also
require much lower processing times. Finally, the grid size of the generated 3D surface can
also have an impact on volume-estimation accuracy, but this may vary depending on the
surveyed area.

3.3. LiDAR Surveying

The use of LiDAR-based scanning techniques has found application in various fields.
In agriculture, for instance, Zhang and Grift [73] used a LiDAR approach to measure
crop height, while Siebers et al. [74] utilized a 3D LiDAR on a rover to monitor plant
growth. In soil surface measurement, Foldager et al. [75] used a rail-mounted 3D LiDAR
to achieve a narrow measurement of 40 mm and monitor changes over time. For mining
and earthwork, Carabassa et al. [76] monitored soil erosion using a drone equipped with
a LiDAR sensor, and Liu et al. [77] applied an aerial-borne LiDAR approach to monitor
mining. In the context of stockpile monitoring and estimation, LiDAR sensors can be
applied in various ways, such as being attached to a drone, rail-mounted, tripod-mounted,
or handheld by an operator (Figure 6). Table 2 summarizes LiDAR-based approaches for
outdoor stockpile volume estimation. The table compares these studies considering aspects
such as application, platform, scanning payload, and estimated volumetric error.

Table 2. Summary of research articles that adopted LiDAR-based scanning for outdoor stockpile
volume estimation.

Application Surveyed
Area [m2] Country Platform Scanning

Payload
Reference

Volume [m3]
Volumetric
Error [%]

Ground
Truth Reference

Quarrying site 12,300 Sweden
Drone

(Matrice
600 Pro)

3D LiDAR
(Velodyne

Ultra Puck)
366.75 0.7 TLS [78]

Coal stockpiles 200,000 Brazil

Drone
(DJI

Matrice
100)

3D LiDAR
(SICK LD-

MRS420201)
- - - [79]
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Table 2. Cont.

Application Surveyed
Area [m2] Country Platform Scanning

Payload
Reference

Volume [m3]
Volumetric
Error [%]

Ground
Truth Reference

Coal stockpiles 1400

UK
Custom

quadcopter

1D LiDAR
(Benewake

TFmini)

- - -

[1]
Gypsum pile 62.5 3 2.4 Truck

load

Coal piles - China Handheld
2D LiDAR
(SICK LD-

MRS400001)
3000–30,000 <0.8 - [80,81]

Several
stockpiles on
barges

728 China Handheld
3D LiDAR
(Velodyne
HDL-32E)

9437 1.6
Manual
measure-

ment
[71]

Soil stockpile 35 Finland Excavator
Solid-state

2D profilome-
ter/LiDAR

9.4 1.5–5.5 Buckets
count [82]

Chickpea pile 0.07 Turkey Rail
2D LiDAR

(Hokuyo URG-
04LX-UG01)

0.00375 0.5 Known
weight [83]

Stacked boxes - China Rail

3D LiDAR
(SICK

LMS511-10100
PRO)

≈0.16 ≈3 Known
volume [84]
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Starting with airborne-LiDAR systems, Amaglo [78] conducted aerial surveying with 

a drone (customized Matrice 600 Pro) equipped with a 3D LiDAR (Velodyne Ultra Puck) 

to scan and estimate the volume of a stockpile, comparing its results with that from TLS 

and drone photogrammetry. While TLS required three times the capturing time taken by 

both photogrammetry and LiDAR, LiDAR required only half the processing time of the 

other methods. In terms of the estimated volume, the difference between the volume 

Figure 6. A visual illustration of the various modes of usage of LiDAR sensors for stockpile monitor-
ing and volume estimation, showcasing an airborne LiDAR system attached to an aerial platform, a
rail-mounted LiDAR, a tripod-mounted LiDAR setup, and a portable handheld LiDAR sensor used
by a surveyor. Colors in the pile represent a visual means to show change of elevation.

Starting with airborne-LiDAR systems, Amaglo [78] conducted aerial surveying with
a drone (customized Matrice 600 Pro) equipped with a 3D LiDAR (Velodyne Ultra Puck)
to scan and estimate the volume of a stockpile, comparing its results with that from TLS
and drone photogrammetry. While TLS required three times the capturing time taken
by both photogrammetry and LiDAR, LiDAR required only half the processing time of
the other methods. In terms of the estimated volume, the difference between the volume
estimated by TLS compared to that from LiDAR and photogrammetry was around 0.7%
and 3%, respectively. Forte et al. [79] also employed a drone equipped with a LiDAR
sensor but used online/real-time localization estimation by fusing on-board data (such
as IMU and GPS) and the LiDAR data with known environmental factors to correct the
estimated altitude of the drone. They applied this approach to estimate the volume of
three large coal stockpiles, using a DJI Matrice 100 drone equipped with a 3D LiDAR (SICK
LD-MRS420201). The volume estimation obtained without altitude correction resulted in
a misaligned point cloud, which subsequently led to a volumetric error exceeding 10%
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when compared to the point cloud fully aligned via the proposed method. Alsayed et al. [1]
conducted a study in a UK cement plant, where they employed a drone equipped with
GPS for localization, a 1D LiDAR for mapping, and a barometer for altitude. The system
was assessed by mapping a coal pile of unknown volume in an open area and a pile with
a known volume in a semi-confined space. Visual inspection of the generated stockpile
surface revealed a strong correlation with the actual pile in the open area, and the volume
of the pile in the semi-confined area was measured with a volumetric error of around 2.4%.
This study was the first to demonstrate the effective use of a single-point range sensor (1D
LiDAR) pointed towards the ground for scanning stockpiles, presenting a cost-effective
and efficient way of stockpile mapping and is illustrated in Figure 7.
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Figure 7. Visual illustration of a drone following a trajectory path above a stockpile within an area of
interest, while capturing 1D LiDAR data projected onto the stockpile for stockpile reconstruction and
volume-estimation purposes.

Turning to other approaches for mobilizing a LiDAR sensor, Zhang and Yang [80]
and Zhang et al. [81] conducted a LiDAR-based stockpile volume scanning and estimation
mission for a coal storage yard in Huanghua Port in China, while walking around the stock-
pile with a line scanning LiDAR (2D LiDAR) from SICK Company (Waldkirch, Germany)
(LD-MRS400001), together with a position sensor based on two GNSS receivers. The 3D
modeling was argued to be completed within 30 s after conducting the measurement,
with the volume and mass of the coal piles being estimated with an error that is less
than 0.8%. However, this approach can be considered expensive due to the requirement of
several devices (2D LiDAR sensors, two GNSS receivers, attitude sensor, and an embedded
industrial computer). Interestingly, He et al. [71] conducted a comparison of stockpile
volume estimation using LiDAR-based walking and aerial photogrammetry. Both methods
provided volumetric errors around 1–2% compared to the actual volume. However, the
main limitation of the walking approach with a LiDAR scanner is that, if a stockpile is
stacked beyond the field of view of the laser beams, the surveyor will need to climb the
stockpile to scan the surface and eliminate/minimize occlusions. Note that, in this context,
another approach to measuring stockpile volume is to use a 2D profilometer attached to
an excavator, as conducted by Niskanen et al. [82]. They conducted a test to measure the
volume of a conical soil pile with the reference volume being obtained by two methods: the
number of buckets used (which led to a volume of 9.25 m3), and the measurement of the
pile’s height and radius (which resulted in a volume of 9.54 m3). The volumetric errors,
estimated using Matlab’s alpha shape function and Trimble RealWorks, were 1.5–2.0% and
2.5–5.5%, respectively, depending on the reference volume used in calculating the error.
However, notably, GNSS and IMU facilities were still required in this work to generate a
3D model of the stockpile.
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Finally, a transmission platform can be used to mobilize the LiDAR sensor while
scanning. Bayar [83] employed a 2D LiDAR to scan and measure the volume of a small
pile of chickpeas. The LiDAR was mounted on a rail and was moved in a zigzag motion
using two stepper motors. The pile volume was estimated with approximately 0.5% error.
Zhao et al. [84] also employed a LiDAR scanning approach to estimate stocked objects
volume, while attaching a 3D LiDAR (SICK LMS511-10100 PRO) to a transmission platform
(a controlled rail). The study included scanner calibration using initial status parameters
(IMUs). The approach was validated by estimating the volume of several stacked boxes,
demonstrating an approximate 3% volumetric error. However, the scans were conducted
from only one side; hence, for complex objects this approach may fail as it may become
necessary to scan from several sides.

4. Indoor Stockpile Volume Estimation
4.1. Overview

In this section, we will adopt a different arrangement compared to the previous sec-
tion. This divergence primarily arises due to the unique challenges inherent to indoor
environments and the relative scarcity of studies specifically targeting these scenarios.
Unlike outdoor volume estimation, which has been the subject of extensive research and
boasts a wealth of established methodologies, the same missions, but in indoor domains,
are far less explored. This lack of an extensive knowledge base necessitates the consider-
ation of not only key techniques but also potential practices relevant to indoor stockpile
volume estimation.

Aiming to offer a review of the present state and potential future directions for indoor
volume estimation, this section adopts a unique structure. In light of the growing utilization
of drones for stockpile volume estimation in outdoor applications, this section begins with
an examination of the challenges associated with deploying drones in indoor missions.
This is followed by a review of current industrial solutions designed for such tasks. Finally,
this section explores studies that have been conducted on stockpile volume estimation
within indoor environments, categorized into three subsections: aerial, rail, and tripod-
mounted systems. This organization is intended to present a comprehensive roadmap
for exploring the unique conditions and challenges of indoor volume estimation, thereby
fostering advancements in the field.

4.2. Challenges to Missions in Confined Spaces

Conducting robotic missions in confined spaces poses several challenges due to limita-
tions of GPS signals, which affect localization and the usual necessity to operate beyond
the line of sight [85]. In fact, the challenges associated with utilizing robotic platforms in
confined spaces for stockpile volume-estimation purposes are summarized in Table 3. How-
ever, probably the most significant issue of these is operation in GPS-denied environments,
and, to address this issue, simultaneous localization and mapping (SLAM) algorithms
are typically applied, and have proved to be proficient for localization and mapping in
confined spaces. These algorithms use sensors such as cameras or lasers (LiDAR) to detect
distances and angles of the surrounding features and build a map of the environment, while
simultaneously localizing themselves within that map [86]. Huang et al. [87] provided
a comprehensive overview of SLAM algorithms, including LiDAR SLAM, visual SLAM,
and their fusion. They discussed that LiDAR-based SLAM is not affected by changes in
light conditions, making it the most suitable option for operations in low-illumination
environments. However, the required 3D LiDAR sensors are heavier compared to vision
sensors, leading to the use of larger and more expensive carrying platforms.
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Table 3. Challenges related to robotic missions in confined spaces for stockpile volume estimation.

Challenge Description

GPS Signal
GPS signal loss affects robot/drone localization; however, potential solutions
include the use of SLAM algorithms with sensors effective for localization and
mapping in GPS-denied environments.

Narrow Clearances and Obstructions Space constraints between the storage ceiling and stockpile peaks, as exemplified
in Figure 8, require careful mission planning.

Stockpile Texture Variations
Uniform or highly textured surfaces represent a challenge for both visual and
LiDAR systems, as uniform surfaces lack distinct features for recognition while
highly textured surfaces may lead to uncertainties in identifying unique features.

Darkness and Dust Darkness and dust have significant effects on visual-based approaches; however,
LiDAR provides less drift in localization and operates well in poor visibility.

Sensor Weight Most 3D LiDAR sensors can be heavy, requiring larger carrying platforms within
aerial missions, which are subsequently harder to fly within confined spaces.
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Figure 8. Illustration of intricate and irregularly shaped stockpiles within warehouses and sheds, fea-
turing narrow clearances and obstructions between the storage ceiling and the stockpile peaks. These
challenges can pose difficulties for drone applications in such environments. Furthermore, additional
complications may arise in situations where the surroundings are completely dark and dusty.

While photogrammetric approaches can be considered economical and effective for
stockpile monitoring within outdoor missions, they cannot provide accurate volume esti-
mates within indoor facilities due to several factors. First, altitude is usually limited within
indoor missions. Second, automated feature detection and matching of the captured images
under low-light conditions is challenging. On the other hand, stockpile storage illumination
and texture do not favor visual- or LiDAR-based localization. In fact, illumination can
be inconsistent, dim, or even absent in certain areas, making it difficult for visual-based
systems to capture clear, accurate images, as visual-based approaches rely heavily on the
quality of light to accurately capture images. Moreover, stockpiles in indoor settings can
exhibit a wide range of textures, from smooth and uniform to rough and irregular. These
variations in texture can create challenges for both visual- and LiDAR-based localization
systems. Both systems can struggle to identify and distinguish features in uniform, texture-
less surfaces, and LiDAR systems may experience difficulties in accurately capturing the
intricate details of highly textured surfaces due to the scattering of the laser light. These
challenges, along with other factors, such as narrow clearances and obstructions between
the storage ceiling and the stockpile peaks, can be appreciated from the example demon-
stration in Figure 8. Furthermore, GNSS signals are required for data collected by either
aerial or ground approaches, as well as for programmed drone mission flights. Therefore,
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the use of drones for indoor mapping is not feasible unless the platform is equipped with
an obstacle avoidance system and/or real-time SLAM capabilities.

In situations where darkness and dust are present, laser-based sensors, such as LiDAR
sensors, are favorable compared to visual-based approaches. Papachristos et al. [88]
conducted aerial tests for underground inspection and mapping. Their experimental
tests, conducted in a long mine, showed that LiDAR-based SLAM provides less drift in
localization than visual-based SLAM. Generally, LiDAR sensors are widely considered in
applications within dusty and dark environments, owing to their ability to detect targets
despite poor visibility [89,90].

4.3. Present-Day Industrial and Commercial Solutions

Despite the challenges discussed in Section 4.2, several industrial and commercial
solutions do exist for mobile indoor stockpile scanning and measuring. For instance,
GeoSLAM [91] offers a LiDAR-based technology and software that can map and estimate
the volume of stockpiles stored within confined spaces without the existence of a GPS
signal. This system relies on a spinning 3D LiDAR scanner that can be handheld or
mounted on a drone (Figure 9). In order to operate effectively in GPS-denied environments,
GeoSLAM integrates advanced SLAM algorithms that are capable of processing complex
environments with high accuracy. This high-performing SLAM technology, combined with
the rapid data-acquisition capabilities of the LiDAR scanner, results in high-resolution,
accurate, and reliable maps of the indoor environment. Moreover, the system employs
an onboard processing unit to handle the immense computational load required by these
sophisticated SLAM algorithms. This onboard processing enables real-time operation,
ensuring the device can rapidly map its environment and track its location within that
environment concurrently.

Drones 2023, 7, x FOR PEER REVIEW 17 of 31 
 

 

Figure 9. A versatile spinning 3D LiDAR system with an integrated motor, similar to Hovermap 

and GeoSLAM devices, designed for compatibility with handheld, vehicle-mounted, drone-

mounted, and tripod-mounted setups. Equipping a 3D LiDAR with an integrated motor considera-

bly enhances its capabilities and expands its field of view. For instance, if a LiDAR has a 270-degree 

horizontal field of view (FOV) and a 30-degree vertical FOV, spinning the LiDAR around its hori-

zontal axis (y-axis in the figure) significantly increases the FOV to 270 degrees in both the horizontal 

and vertical directions. This adaptability allows for more comprehensive coverage. 

The Hovermap drone, developed by Emesent [93], stands as another example solu-

tion for confined space surveying. Emesent’s specialty in drone autonomy and LiDAR 

mapping is epitomized by the Hovermap’s ability to autonomously fly beyond the line of 

sight and communication range. Moreover, it can seamlessly transfer from drone to 

handheld scanning, enabling its use in an array of challenging environments. The center-

piece of this system is an actuated rotary 3D LiDAR scanner and onboard real-time pro-

cessing, which excels in creating high-definition maps under challenging conditions, in-

cluding dimly lit or GPS-denied spaces. Alongside its robust mapping capabilities, the 

Hovermap drone features advanced collision avoidance, which is a vital attribute for safe 

operations in environments such as mines or intricate infrastructure. The system’s practi-

cality was validated in an underground mining study conducted by Jones et al. [94], where 

it generated intricate 3D maps, thereby enriching the understanding of the mine’s struc-

ture and condition. 

In addition to mobile scanners, static 3D-level sensors can be mounted on storage 

and silo ceilings to measure the height, area, and volume of stockpiles, using 3D laser 

scanners. These sensors can also account for dust build-up. Some available 3D-level sensor 

options include BinMaster’s 3DLevelScanner [95] and ABB’s VM3D 3D Volumetric Laser 

Scanner System [96]. In small areas, such as silos, static 3D-level sensors are prevalent and 

valuable within the different industries. However, in larger areas, like sheds, multiple 

scanners are needed to ensure full coverage, significantly increasing costs for initial acqui-

sition and installation. This results in higher capital expenditure (CAPEX) and higher op-

erational expenditure (OPEX) due to routine maintenance and functional testing. Further-

more, costs escalate when managing multiple stockpiles in several storage facilities. 

Finally, while numerous industrial and commercial solutions are available for indoor 

stockpile measuring, these technologies often come with significant limitations. These in-

clude having high initial acquisition and installation costs, and that many of these solu-

tions are proprietary, and thus are not open-source, limiting their accessibility and cus-

tomization options for end-users. Consequently, such drawbacks create barriers for wide-

spread adoption. 

4.4. Optimizing Drone Solutions 

Recently, multirotor drones have been employed in numerous applications involving 

confined space inspection, including stockpile volume estimation, e.g., [1,97,98]. Multi-

rotor drones, in particular, possess the ability to hover and fly in all directions, making 

Figure 9. A versatile spinning 3D LiDAR system with an integrated motor, similar to Hovermap and
GeoSLAM devices, designed for compatibility with handheld, vehicle-mounted, drone-mounted,
and tripod-mounted setups. Equipping a 3D LiDAR with an integrated motor considerably enhances
its capabilities and expands its field of view. For instance, if a LiDAR has a 270-degree horizontal
field of view (FOV) and a 30-degree vertical FOV, spinning the LiDAR around its horizontal axis
(y-axis in the figure) significantly increases the FOV to 270 degrees in both the horizontal and vertical
directions. This adaptability allows for more comprehensive coverage.

Another solution comes from a company named “Flyability” [92], specializing in aerial
confined space inspection, as they announced their new generation of drones capable of
mapping stockpiles within dusty and dark confined spaces, such as cement plants. This
capability is mainly due to the upgrade of the drone platform with a 3D LiDAR scanner.
Operating in tandem with GeoSLAM Connect, the newly incorporated 3D LiDAR scanner,
effectively handles mapping and monitoring tasks, even in GPS-denied environments.
Additionally, the drone is equipped with LED lights and a camera to capture images and
provide visibility in dark conditions when feasible. It also features a protective cage that
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enables it to withstand collisions, protecting both the drone and the infrastructure being
inspected. When it comes to navigation, operators have the option of utilizing live vision
feeds or real-time generated maps, offering flexibility based on mission requirements.

The Hovermap drone, developed by Emesent [93], stands as another example solution
for confined space surveying. Emesent’s specialty in drone autonomy and LiDAR mapping
is epitomized by the Hovermap’s ability to autonomously fly beyond the line of sight
and communication range. Moreover, it can seamlessly transfer from drone to handheld
scanning, enabling its use in an array of challenging environments. The centerpiece of this
system is an actuated rotary 3D LiDAR scanner and onboard real-time processing, which
excels in creating high-definition maps under challenging conditions, including dimly lit
or GPS-denied spaces. Alongside its robust mapping capabilities, the Hovermap drone
features advanced collision avoidance, which is a vital attribute for safe operations in envi-
ronments such as mines or intricate infrastructure. The system’s practicality was validated
in an underground mining study conducted by Jones et al. [94], where it generated intricate
3D maps, thereby enriching the understanding of the mine’s structure and condition.

In addition to mobile scanners, static 3D-level sensors can be mounted on storage and
silo ceilings to measure the height, area, and volume of stockpiles, using 3D laser scanners.
These sensors can also account for dust build-up. Some available 3D-level sensor options
include BinMaster’s 3DLevelScanner [95] and ABB’s VM3D 3D Volumetric Laser Scanner
System [96]. In small areas, such as silos, static 3D-level sensors are prevalent and valuable
within the different industries. However, in larger areas, like sheds, multiple scanners are
needed to ensure full coverage, significantly increasing costs for initial acquisition and
installation. This results in higher capital expenditure (CAPEX) and higher operational
expenditure (OPEX) due to routine maintenance and functional testing. Furthermore, costs
escalate when managing multiple stockpiles in several storage facilities.

Finally, while numerous industrial and commercial solutions are available for indoor
stockpile measuring, these technologies often come with significant limitations. These
include having high initial acquisition and installation costs, and that many of these
solutions are proprietary, and thus are not open-source, limiting their accessibility and
customization options for end-users. Consequently, such drawbacks create barriers for
widespread adoption.

4.4. Optimizing Drone Solutions

Recently, multirotor drones have been employed in numerous applications involving
confined space inspection, including stockpile volume estimation, e.g., [1,97,98]. Multirotor
drones, in particular, possess the ability to hover and fly in all directions, making them
well-suited for indoor missions. Moreover, these drones have the potential to reduce risks
of entrapment and dust inhalation in confined spaces, thus improving occupational safety
and health (OSH) measures by minimizing or eliminating the need for physical human
intervention and consequently enhancing overall employee wellbeing. In what follows, we
will consider some of the most notable contributions that utilized aerial drones for indoor
stockpile volume-estimation missions.

Kumar et al. [97] developed an algorithm for aerial stockpile volume estimation using
a stereo depth camera and deep learning. Their approach can be applied to indoor missions
as it does not rely on GPS signals. However, it is limited to small piles since the camera
must detect the entire pile to establish its boundary and estimate the volume. Furthermore,
the estimation error increased from 1% to 9.8% when the volume was increased to around
six times the original volume. This is besides the fact that vision-based approaches are
not favored in dark environments. Gago et al. [98] demonstrated the development and
evaluation of an aerial robotic system for stockpile volume estimation within warehouses.
They used a DJI Matrice 100 quadrotor drone and equipped it with a 3D LiDAR (Velodyne
VLP 16 Puck Lite). For navigation, the drone relied on the drone controller and the LiDAR
point cloud, utilizing the storage walls or ceiling as reference points for autonomous flight.
In other words, by continuously scanning and mapping the surrounding environment,
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the drone identifies these structures, and uses this information to maintain stable flight
paths, avoid obstacles, and effectively navigate within the confined space. They tested
various SLAM approaches for online mapping (LOAM, BLAM, RTAB-MAP) and found
out that, due to the LiDAR’s vertical position and the storage’s high level of symmetry,
the SLAM approaches consistently generated a shorter and curved storage representation.
Consequently, they applied an offline mapping strategy to reconstruct the 3D model of
the warehouse with the help of the warehouse parameters and blueprints. As such, the
stockpiles were estimated with volumetric errors of approximately 1.5% within simulation
tests and 2.2% within real experimental tests. Alsayed et al. [99,100] presented an efficient
scan-matching approach for drone-based mapping in confined spaces. Their method relied
on an Iterative Closest Point (ICP) algorithm suitable for low-rate and low-dense LiDAR
scans, as it utilized the horizontal layer from a 3D LiDAR scan to estimate the required
transformation matrices in a computationally efficient manner. This technique allowed
real-time 3D map generation of the scanned environment and was complemented by an
indoor navigation path-planning strategy. The approach was tested using simulations only,
and the results demonstrated successful scan-matching at various flight speeds and scan
rates. In fact, the volume of the mapped stockpile was estimated with an error as low
as 3%.

Alsayed and Nabawy [101] proposed a simple and cost-effective solution for stockpile
scanning that relied on a single-point LiDAR (1D LiDAR) sensor actuated by a micro
servo motor attached to a drone. This method was evaluated through simulations to
understand the impact of the various operating conditions on mapping performance.
Remarkably, the actuated 1D LiDAR system achieved an average volumetric error of 0.8%,
outperforming 2D and 3D LiDAR options while requiring less scanning speed, being lighter,
and providing substantial cost savings. In another study, Alsayed et al. [102] demonstrated
an autonomous formation control for a multi-drone system designed to map stockpiles
in confined spaces using low-cost, lightweight 1D LiDAR sensors (depth sensors). Each
drone’s scanning process adhered to the same principle depicted in Figure 7. The objective
was to compare the cost–benefit of employing multiple low-cost sensors in a multi-agent
system versus a single, advanced laser scanner (2D/3D LiDAR) on-board a single drone.
The formation control strategy was analyzed via simulations, revealing that increasing the
number of drones up to five agents enhanced the volume-estimation accuracy, yielding
results comparable to employing the more sophisticated LiDAR scanners but at a much-
reduced cost. However, for real-world applications, these methods would necessitate an
external localization system to accurately determine the position and orientation of the
drones during the mapping process. This is crucial to enable the integration of the acquired
data from the drones into a coherent and precise 3D model of the stockpile. Notably,
external localization systems, such as RTK GNSS or ultra-wideband (UWB) systems, can
provide the necessary high-precision positioning information required to ensure successful
execution of such stockpile mapping and volume-estimation missions.

It is worth highlighting that there is currently a notable lack of research on drone
applications for indoor stockpile volume estimation, despite the growing interest in em-
ploying drones for various industrial and environmental applications. In fact, the limited
number of studies on this specific topic underscores the need for further investigation and
development in this relatively underexplored area. The constraints on deploying such mis-
sions in indoor environments present unique challenges that require innovative solutions
to enable effective drone-based stockpile volume estimation. Exploring novel approaches,
algorithms, and sensor technologies could unlock the potential for widespread adoption of
drone technologies, improving efficiency and accuracy in stockpile management. Moreover,
further research in this subject is expected to simultaneously lead to substantial advance-
ments in multiple other fields, including warehouse management, inventory control, and
worker safety.
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4.5. Sensors Integrated on Rail Platforms

For indoor areas, it is a typical practice to integrate single or multiple laser scanners on
a sliding rail positioned above the stored stockpiles (Figure 10). Zhao et al. [103] employed
a 2D LiDAR scanner (Sick LMS200) that moves on a rail above the stockpile. The LiDAR
measured the X and Y directions (2D plan), while the travel distance in the Z direction
was measured by a laser range finder. The study was applied to a simple and uniform
pile shape, then a curve-fitting modeling method was implemented. The volume was
estimated with an error ranging between 0.6% to 3.8%. A similar system was developed by
Xu et al. [104], but with two LiDAR scanners instead of a single scanner. They also applied
a comparison to the GeoSLAM scanner and showed that the maximum volumetric error of
the developed system was 1%. Moreover, they argued that their developed system operated
35 times faster than the GeoSLAM scanner. Daofang Chang et al. [105] proposed a 3D
LiDAR-based approach to scan stockpiles within a storage facility where the 3D scanning
device was installed on the arm of the stacker reclaimer, shifting along the track to scan the
stockpiles’ surfaces. Although the proposed system was tested in a real setting, the accuracy
of the scanned stockpiles was not investigated. Similarly, Zhang et al. [106] employed
a vision-laser based approach to scan stockpiles within a storage facility. Cameras were
used to capture the laser line on the surface and estimate the vertical 2D measurement of
each stockpile section using projections and epipolar geometry constraints. The system
was mounted on a railway. While the estimated volume was not investigated, the vertical
depth error was deemed to be approximately 1%. All in all, while rail-based vision or
laser sensing is a wide-adopted solution for indoor stockpile volume-estimation tasks, its
primary limitation is that it is difficult to mobilize the whole system; hence, it is challenging
to use a single setup in multiple facilities. Moreover, in some dark and dusty environments,
it is harder to retrieve the sensors for periodic cleaning and maintenance.
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Figure 10. Visual illustration of a scanning payload, such as single or multiple LiDAR sensor,
mounted on a rail system above a stockpile in a warehouse, acquiring data for volume estimation and
monitoring. The rail platform enables the LiDAR sensors to traverse along the x-axis, ensuring ac-
ceptable indoor coverage of the stockpile area. This approach facilitates efficient and accurate volume
assessment in confined spaces, minimizing safety risks and streamlining the monitoring process.

4.6. Tripod-Mounted LiDAR Sensors

Similar to the practice adopted with TLS, several studies have mounted scanning
sensors on tripods to scan stockpiles from multiple points. Mahlberg et al. [107] developed
an image/LiDAR-based system for indoor stockpile volume estimation, called the SMART
(Stockpile Management and Reporting Technology) system. The system was applied to
over 30 facilities to monitor salt usage during the winter season in the USA. The system
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consisted of two 3D LiDAR sensors (Velodyne VLP-16) and one camera (GoPro Hero
9 RGB), all mounted on a tripod. To capture more data, the system was rotated manually.
If necessary, multiple scanning positions were used. To enhance coverage in some cases,
the system was mounted on the ceiling or on a mobile boom. The stockpile volumes were
estimated with a volumetric error of less than 0.1%. Notably, the study utilized the work
conducted in [108] to apply point cloud registrations, which were then used to determine
the stockpile volume. Later, Liu et al. [2] improved the data collected by the SMART system
and conducted tests within dome facilities, making use of enhanced scan matching. A
simpler platform was also employed by de Lima and Costa [109] to estimate the volume
of a cone-shaped pile. They fixed a 2D LiDAR on a tripod, and the laser scanner collected
a vertical scan to estimate the volume. They demonstrated that as the pile size (diameter
and height) increased, the estimated volume accuracy also increased, ranging from 19.6%
to 1.5% for pile diameters ranging from 432 mm to 5616 mm. However, this approach
is deemed only valid for single cone-shaped piles. In summary, tripod-mounted LiDAR
scanners have been employed to effectively estimate stockpile volumes with good accuracy.
However, moving the tripod to multiple locations within confined spaces is needed to
enhance coverage, and this, in many cases, can pose safety risks.

4.7. Summary of Indoor Solutions for Stockpile Volume Estimation

In the preceding Sections 4.4–4.6, various approaches adopted for indoor stockpile
volume estimation have been discussed. Table 4 provides a summarized overview of
these studies, highlighting their main aspects including solutions, applications, platforms,
scanning payloads, and volumetric errors.
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Table 4. Summary of research articles that provide solutions for indoor stockpile volume estimation.

Solution Application Surveyed Area
[m2] Country Platform Scanning

Payload
Reference

Volume [m3]
Volumetric
Error [%] Ground Truth Reference

Drone

Sand pile - USA Tarot 650 Sport
quadcopter

ZED Mini Stereo
camera 4–25 1.2–9.8 Known

volume [97]

Stockpiles 5320 USA DJIMatrice
100 quadrotor

3D LIDAR
(Velodyne VLP 16 Puck

Lite)
306.5 2.2 Known

volume [98]

Stockpiles
(Simulation) 1040 UK Genetic quadrotor 3D LiDAR

(Rotary) 2118 3 Known
volume [99,100]

Stockpiles
(Simulation) 2400 UK Genetic quadrotor 1D LiDAR

(Actuated) 7193–8677 1.6 Known
volume [101]

Stockpiles
(Simulation) 1200 UK Multi-agent

quadcopter
1D LiDAR

(Depth) 2422 0.2–1.5 Known
volume [102]

Rail
Platform

Small gravel
pile 0.32 Australia Rail 2D LiDAR

(Sick LMS200) 0.03 0.6–3.8 Known
volume [103]

Ore pile 2250 China Rail Two 2D LiDAR
(SICK LMS-141) 711–1573 1 GeoSLAM

scanner [104]

Bulk terminal
stockpile 1,729,000 China Stacker reclaimer 3D LiDAR - - - [105]

Bulk material
stockpile 3 China Rail Two cameras and a

leaser projector - - - [106]

Tripod-
Mounted

Salt stockpile
management

-

USA

Tripod /Boom lift Camera (GoPro Hero
9 RGB) and Two 3D
LiDAR (Velodyne

VLP-16)

1648 0.1 Bucket count [107]

-
Tripod

1438 0.0
TLS [108]

- 968 3.2

Small grain piles
0.15

Brazil Tripod 2D LiDAR
(OMD30M-R2000)

- 19.6 Known
volume

[109]
24.8 - 1.5
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5. Discussion and Remarks
5.1. Summary of Techniques

Accurate measurement of stockpile volumes is crucial in various fields and the se-
lection of a suitable survey method depends on several factors, such as the complexity
of the site, the level of measurement accuracy required, the time and cost of the survey
project, and safety considerations. Manual measuring and satellite imagery techniques,
highlighted in Section 2, can be argued to be not suitable for estimating volumes of irregular
or constantly changing stockpiles, hence are not considered in our comparisons here. On
the other hand, GNSS, drone photogrammetry, TLS, and airborne LiDAR can all be used
for such a task, with each method providing different pros and cons, hence summarized
in Table 5. Moreover, Figure 11 shows a schematic representation of the Digital Surface
Model (DSM) of a complex shape stockpile produced from each of these methods. It is
worth noting that the advantages and disadvantages listed in Table 5 are not exhaustive,
and may vary depending on the specific context in which a technique is being used for.

Table 5. Comparison of the advantages and disadvantages of the four main existing stockpiles
mapping techniques.

Techniques Advantages Disadvantages

GNSS

• Offers precise single measurement, ideal for
getting exact location data

• Equipment is widely accessible and usable in
most geographic and construction locations

• Data collection can be time-consuming due to
the large number of points needed

• It can potentially pose a higher safety risk to
surveyors due to the need for physical
presence at multiple locations

Drone
Photogrammetry

• Allows quicker data collection, saving time in
fieldwork

• There is a wide availability of supported
hardware and software making this method
highly accessible

• It is a cost-effective solution, especially for
large or inaccessible areas

• This technique requires GCPs whose
positions are estimated using GNSS, which
can add to the complexity and time needed

• The accuracy of data can vary depending on
factors like the quality of the drone, camera,
weather conditions, etc.

TLS

• Offers the best accuracy compared to other
methods, making it ideal for projects where
precision is paramount

• It can capture intricate details and complex
surfaces with high precision

• The stationary setup leads to lower positional
errors

• This is generally a more expensive approach
due to the cost of the equipment

• To ensure full coverage of the scanned area,
several scanning points are required, which
can be time-consuming and requires careful
planning

Airborne LiDAR

• It does not require GCPs to obtain accurate
data, which in one way simplifies the
data-collection process

• More effective when mapping complex
terrain, like forests or hilly regions, and
during low-light and dusty conditions, where
traditional surveying methods struggle

• A relatively expensive approach due to the
cost of equipment and operation involved

• The LiDAR system can be a heavy payload,
in some cases, that requires a larger drone or
manned aircraft, potentially increasing
operational complexities

In terms of data-acquisition speed, drone solutions such as drone photogrammetry
and airborne LiDAR are expected to require less time in the field for collecting data. In
contrast, GNSS generally requires the most time because of the many points needed to
be collected over the area of interest. Additionally, GNSS poses a higher safety risk to
surveyors compared to other methods, as surveyors need to be physically present at
multiple locations. Moreover, drone photogrammetry requires GCPs whose positions are
estimated using GNSS, which can increase the risk and time involved when placing the
GCPs in their positions. This issue is avoided in airborne LiDARs as they do not require
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GCPs to obtain accurate data. In fact, in terms of accuracy, TLS provides the best accuracy
compared to the other techniques. This stems from its method of operation, where the
scanner remains stationary and rotates slowly to create a panoramic 360◦ view of the
surroundings, forming a single comprehensive map. This method thus enables the capture
of intricate details and complex surfaces with high precision. The stationary position of the
TLS also reduces positional errors that might occur with moving systems, adding another
layer of reliability to the generated data. However, TLS is an expensive approach and
requires several scanning points to ensure a full coverage of the scanned area. Finally, an
airborne LiDAR is more advantageous compared to drone photogrammetry when mapping
complex terrain with vegetation cover, mapping during low-light or dusty conditions, and
when detecting small/narrow objects such as cables. In fact, a LiDAR is known to be more
effective compared to cameras, when accuracy is considered crucial.
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Figure 11. A visual illustrative comparison of the Digital Surface Model (DSM) generated for a
complex-shaped stockpile using different data-acquisition methods: (a) GNSS, (b) terrestrial LiDAR
(or TLS), (c) drone photogrammetry, and (d) airborne LiDAR. This illustration highlights the varying
levels of coverage obtained from each technique.

For indoor applications, laser-based techniques are the best among the different
surveying methods, for obvious reasons: they provide accurate data through low-light
and/or dusty conditions, known to be prevalent in most confined spaces. However, a laser-
based sensor may have limited view from the ground, making it hard to minimize occlusion.
This gives advantages to airborne LiDARs, due to their ability to achieve full coverage of
the area of interest, in most cases. That said, the operation of airborne LiDARs raises other
challenges, required for satisfactory operation, such as drone navigation and localization.

5.2. Photogrammetry- vs. Laser-Based Techniques in Outdoor Surveying Missions

The majority of the available research studies on stockpile volume estimation within
outdoor environments have used drone-based photogrammetry, with only a limited num-
ber of studies using a LiDAR-based approach. Despite LiDAR sensors being known for
their precision, recent advancements in photogrammetry have enabled a high level of
accuracy to be achieved. That said, cost and accessibility remain primary reasons for the
relatively lower preference for LiDAR-based approaches in outdoor missions. Note that
photogrammetry cameras are often readily available in drones, including low-cost options,
leading to a more cost-effective system. On the other hand, airborne LiDARs require larger
and more specialized drones, compared to drone photogrammetry, hence increasing the
expected system cost. Nonetheless, LiDARs can be more effective in surveying areas with
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high vegetation cover as the LiDAR pulses can penetrate the gaps between leaves and
branches reaching the ground surface, hence providing more accurate data than photogram-
metry. LiDAR sensors also perform better in low illumination and dusty environments due
to their active sensing technology, which is not affected by external lighting conditions or
airborne particles in the same way that passive sensing technologies like cameras do. All in
all, the selection of a suitable method for stockpile volume estimation in open areas depends
on several factors, such as the stockpile size, equipment availability, project requirements,
and environmental conditions. While LiDAR-based approaches may be more precise and
accurate in some situations, their higher cost and the requirement for specialized equipment
can, in many occasions, make photogrammetry a more practical choice.

5.3. Future Directions in Indoor Surveying Missions

The exploitation of the recently developed automated solutions for indoor stockpile
volume estimation presents a significant opportunity to improve efficiency, accuracy, and
safety in warehouse management, inventory control, and worker safety. Various techniques
and solutions, such as SLAM algorithms, LiDAR-based technologies, aerial inspection,
and static 3D-level sensors, have been employed to address the challenges associated with
indoor stockpile volume estimation. However, these solutions are often costly, proprietary,
or lack open-source alternatives, creating barriers for widespread adoption.

Few research studies have investigated the potential of multirotor drones for confined
space inspections, demonstrating their ability to improve occupational safety and health
measures by minimizing human intervention. Studies have explored vision-based and
LiDAR-based approaches, yielding promising results, although there remain limitations
regarding accuracy, scalability, and suitability for low-lit and/or dusty environments. While
alternative approaches such as rail and tripod-mounted LiDAR sensors have been explored,
these methods can be cumbersome and may pose safety risks when moving within confined
spaces. In fact, the integration of sensors on rail platforms and/or tripods has demonstrated
high accuracy, but also can be challenging to move easily between multiple facilities.

There is a growing need for further research and development in exploiting drone
technologies for indoor stockpile volume estimation, as current solutions are either ex-
pensive or limited in their applicability. Advancements in this area have the potential to
revolutionize warehouse management, inventory control, and worker safety by providing
cost-effective and accurate solutions for stockpile volume estimation in confined spaces. In
particular, exploring novel approaches, algorithms, and sensor technologies could unlock
the potential of drone applications, ultimately leading to substantial advancements in
multiple fields.

5.4. Prospective Developments in Aerial Stockpile Scanning for Confined Spaces

Navigating the evolving landscape of autonomous exploration within confined envi-
ronments presents unique challenges and opportunities for technological advancement.
Researchers, like Azpúrua et al. [14], have recently presented comprehensive analyses on
this topic, drawing attention to the essential facets of robotic operation in such spaces. This
study emphasized that robust and reliable map generation, precise localization, efficient
path planning, and safe navigation are critical aspects for successful real-world applica-
tions. These key components set the stage for the integration and development of novel
solutions, addressing the demand for improved accuracy, efficiency, and safety in indoor
stockpile scanning and measurement. Moreover, they highlight the potential for integrat-
ing advanced sensor technology, intelligent algorithms, and innovative designs to create
future-proof solutions that tackle the specific challenges of confined space exploration, thus
forging a path towards the future of aerial stockpile scanning.

Traditional 2D and 3D LiDAR sensors, such as SICK 2D LiDAR and Velodyne 3D
LiDAR, typically employ moving parts and motors to increase the field of view, by ad-
justing single or multiple laser points. However, such a design renders them too bulky
for mounting on small drones. On the other hand, solid-state LiDAR, the latest trend in
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LiDAR technology, offers a solution: these new scanners lack moving parts, resulting in
smaller and lighter devices. Figure 12 provides a comparison between solid-state and con-
ventional scanning LiDARs. Solid-state LiDAR sensors can be broadly classified into three
categories: flash-based LiDAR, microelectromechanical system (MEMS)-based LiDAR,
and optical phased array (OPA)-based LiDAR [110]. For example, Velodyne, a leading
LiDAR company, recently introduced VelaBIT, a static 3D LiDAR sensor, at a competitive
price of around $100 [111,112]. Weighing only 125 g and featuring a range of up to 100 m,
this sensor offers a simultaneously achievable horizontal (90◦) and vertical (70◦) field of
view, together with low power consumption. Such sensors can potentially reduce drone
size and cost constraints, expanding their applicability in 3D-LiDAR-equipped settings.
LeddarTech is another company that offers a variety of solid-state LiDAR sensors, although
their narrower field of view effectively makes them a 2D LiDAR. Despite the solid-state
LiDAR potential to revolutionize aerial mapping, they have not yet been applied to indoor
stockpile monitoring and volume estimation in any research work, and this is a future
direction of research which can be promising.
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Figure 12. A visual comparison between a conventional rotary scanning LiDAR (2D/3D LiDAR) and
solid-state LiDAR (flash LiDAR), illustrating the distinct emission patterns with multiple smaller
laser points from the scanning LiDAR and a single, large laser spot from the flash LiDAR.

Indoor localization poses a significant challenge due to the absence of GPS signals in
such environments. Techniques such as SLAM algorithms have been employed to localize
robots, including drones, in GPS-denied environments. However, featureless indoor envi-
ronments can make SLAM implementation difficult. Additionally, SLAM algorithms rely
on cameras and laser sensors, which increase the drone weight. External indoor localization
systems offer a viable alternative, allowing for accurate drone positioning and navigation
within indoor missions. These systems utilize external sensors, such as cameras, ultrasonic
sensors, or ultra-wideband (UWB) devices, installed within the environment (e.g., on walls
or ceilings, Figure 13) to determine the drone position and orientation [113]. Real-time
positioning information can be communicated to the drone for navigation and obstacle
avoidance, enabling data registration in the global frame without the need for methods like
scan matching. Notably here is the work of Kunhoth et al. [114] who conducted a survey
on various indoor positioning technologies, including Wi-Fi, Radio Frequency Identifica-
tion (RFID), visible light, Bluetooth, and UWB. Their findings suggest that UWB offers
a low-power consumption solution with centimeter-level accuracy. In fact, Marvelmind
Robotics [115] has developed an indoor navigation positioning system based on ultrasound
technology that provides precise drone location with ±2 cm accuracy. The system’s beacons
have a range of 50 m each and are dust- and water-resistant, making them suitable for harsh
environments. Similarly, Nooploop [116], a high-tech enterprise, specializes in developing
advanced indoor positioning systems that leverage UWB technology. They have effectively
harnessed this technology to facilitate indoor drone swarm shows. A testament to their
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innovation is the implementation of a streamlined setup requiring merely four beacons,
each capable of a substantial range of 1500 m, to accurately control and coordinate the
drones within the indoor environment. Hence, by employing such a system, flight paths
can be designed in advance, and tests can be repeated with the same path, ultimately
improving stockpile inventory monitoring.
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