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Abstract: Wetlands possess significant ecological value and play a crucial role in the environment.
Recent advancements in remote exploration technology have enabled a quantitative analysis of
wetlands through surveys on the type of cover present. However, the classification of complex cover
types as land cover types in wetlands remains challenging, leading to ongoing studies aimed at
addressing this issue. With the advent of high-resolution sensors in unmanned aerial vehicles (UAVs),
researchers can now obtain detailed data and utilize them for their investigations. In this paper, we
sought to establish an effective method for classifying centimeter-scale images using multispectral
and hyperspectral techniques. Since there are numerous classes of land cover types, it is important to
build and extract effective training data for each type. In addition, computer vision-based methods,
especially those that combine deep learning and machine learning, are attracting considerable
attention as high-accuracy methods. Collecting training data before classifying by cover type is an
important factor that which requires effective data sampling. To obtain accurate detection results, a
few data sampling techniques must be tested. In this study, we employed two data sampling methods
(endmember and pixel sampling) to acquire data, after which their accuracy and detection outcomes
were compared through classification using spectral angle mapper (SAM), support vector machine
(SVM), and artificial neural network (ANN) approaches. Our findings confirmed the effectiveness
of the pixel-based sampling method, demonstrating a notable difference of 38.62% compared to
the endmember sampling method. Moreover, among the classification methods employed, the
SAM technique exhibited the highest effectiveness, with approximately 10% disparity observed in
multispectral data and 7.15% in hyperspectral data compared to the other models. Our findings
provide insights into the accuracy and classification outcomes of different models based on the
sampling method employed in spectral imagery.

Keywords: hyperspectral; spectral angle mapper; support vector machine; neural net; drone;
wetland classification

1. Introduction

Wetlands are essential components of ecosystems and hold significant ecological value,
including ecological biodiversity, water quality restoration, habitat provision, and climate
regulation [1]. Given the global environmental changes caused by climate change, wetland
conservation has gained increasing importance [2,3]. Therefore, classifying the habitat
and environmental conditions of species within wetland ecosystems is 2, crucial [4]. To
achieve this, effective methods and approaches for data collection and analysis pertaining
to wetland coverage are needed.

Wetland surveys play a vital role in comprehending and conserving complex ecosys-
tems, thus contributing to the sustainable management of wetlands [5]. While traditional
surveys rely heavily on human involvement, recent advances in remote sensing (RS) have
facilitated surveys and data collection in a more cost-effective and efficient manner [6,7].
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Remote-based surveys allow for non-invasive approaches and quantitative data acqui-
sition [8,9]. Particularly, unmanned aerial vehicles (UAVs) have emerged as effective
tools for acquiring various types of remote sensing data [10]. High-resolution imagery
captured by UAVs encompasses a wide electromagnetic spectrum, including visible and
infrared light [11]. Spectral-based data acquisition has been employed in research focused
on classification and detection due to its ability to acquire biochemical and biophysical
parameters [12]. Integrating spectral data with RS-based studies enables the mapping
of large-scale target sites [13]. Mapping research utilizing high-resolution spectral data,
such as multispectral and hyperspectral data, proves valuable in monitoring wetlands
composed of diverse surface textures [14]. Furthermore, the use of UAV imagery has
expanded to various fields, including ecosystem monitoring, environmental assessment,
land use analysis, and mapping [15,16].

The utilization of high-resolution UAV imagery is an effective approach for land cover
classification; however, several factors must be considered in the classification process [17].
Given that these approaches rely on captured images, factors such as spatial resolution,
altitude, shooting time, classification techniques, and data sampling must be accounted
for during drone flights and image acquisition [18]. Among these factors, data sampling
and algorithm selection play a crucial role in the classification methods [19,20]. Currently,
statistical analysis and machine learning methods such as support vector machines (SVMs),
spectral angle mappers (SAMs), and k-nearest neighbors (KNNs) have been proven to be
effective [21–23]. Nevertheless, traditional learning methods often struggle to meet high
classification accuracy, posing limitations for analysts [24]. Therefore, recent research has
embraced methods that leverage computer vision, such as machine learning and deep
learning, which require extensive training data [25]. This approach offers the advantage of
achieving high-accuracy results by processing complex and functional data compared to
conventional learning methods [26]. Therefore, there are ongoing efforts to enhance the
efficiency and accuracy of classification through computer vision techniques, including
machine learning and deep learning [27].

A substantial amount of data is needed for effective classification when utilizing
computer vision for land cover classification. However, obtaining quantitative data can be
challenging due to the wide range of variations within each class [28]. Therefore, quantita-
tive data extraction plays a critical role as a fundamental analysis component. This study
proposes an effective classification method utilizing image cluster techniques and pixel
purity index (PPI)-based end member extraction to evaluate quantitative data composition.

Various classification methods exist for analyzing images based on the classification
criteria by establishing data sampling and reference libraries [29,30]. Among these methods,
the image cluster technique involves dividing the target site into several clusters and
assigning a cluster to each class for data sampling [31,32]. Additionally, the endmember
technique aims to extract the purest value within an image. The PPI technique calculates
the n-D scatterplot by repeatedly projecting it onto any unit vector, defining the pixel
with the most repeated projection as the endmember [33,34]. Since the spectra generated
through these two sampling techniques represent data values for significant components in
the image, a comparison between them is necessary, as they have the potential to influence
the classification outcomes. Furthermore, to evaluate the accuracy based on the training
data configuration suitable for each class, the accuracy was assessed through a supervised
classification by comparing classes.

In this study, data were acquired using unmanned aerial vehicles equipped with mul-
tispectral and hyperspectral camera sensors, thus facilitating wetland mapping. Moreover,
the data sampling method was evaluated to ensure effective wetland mapping, along with
an assessment of the classification method aligned with the chosen technique.
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2. Materials and Methods
2.1. Study Site

This study was conducted at Ansan Reed Wetland, located in Ansan-si, Korea. The
wetland is situated at 37◦16′21.32 N, 126◦50′21.64 E, with a total area of 1,037,500 m2.
Since its establishment in September 1997, the wetland has been designated as a protected
area and managed accordingly. Ansan Reed Wetland serves as a wetland park, aimed at
treating non-point pollutants and providing habitats for organisms in the surrounding
basin. Currently, the wetland supports the distribution of 290 species of vegetation and
accommodates 150 species of migratory birds [35].

For the purpose of this study, a specific area within Ansan Reed Wetland was selected
and photographed, thus capturing the present status of the ecosystem. The filming was
conducted in an area measuring 11,059 m2, which was selected to represent the complex
classes of the entire target site’s ecosystem.

2.2. UAV Flight and Data Acquisition

On 24 October 2022, a UAV survey was conducted over Ansan Reed Wetland
(Figure 1). The target site aerial imagery was acquired using DJI Matrice 300 RTK and
Matrice 600 drones (http://www.dji.com (accessed on 2 October 2022), see Table 1). For
filming, DJI Zenmuse L1 and MicaSense Redge-MX cameras were attached to the Matrice
300 RTK drone, ensuring a coordinate error of less than 1 cm through the DJI D-RTK2 (Real-
Time Kinematic) method for orthographic images, multispectral, and data collection [36,37].
The Matrice 600 drone was equipped with a Headwall Nano-Hyperspec VNIR camera
to obtain hyperspectral data [38]. The hyperspectral VNIR camera acquired DEM data
through the Velodyne LiDAR option (https://www.headwallphotonics.com/products/
vnir-400-1000nm (accessed on 2 October 2022)). During the acquisition of hyperspectral
data, Trimble R4s was utilized for post-processed kinematic (PPK) GNSS correction, thus
ensuring that the geometric accuracy aligned with that of D-RTK2.
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Figure 1. Ansan Reed Wetland, located in Ansan, South Korea. The red area represents the location
of the Ansan Reed Wetland. The image was captured using a DJI Zenmuse L1 sensor mounted on a
Matrice 300 RTK drone.

Filming was conducted at a 100 m altitude, primarily at noon to minimize the impact
of shadows. The timing was carefully selected, considering the solar altitude angle, and to
ensure effective data acquisition, an 80% longitudinal/transverse overlap was maintained.
Filming took place on clear days with minimal wind interference to optimize the results.

http://www.dji.com
https://www.headwallphotonics.com/products/vnir-400-1000nm
https://www.headwallphotonics.com/products/vnir-400-1000nm
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Table 1. Specifications of the DJI Zenmuse L1, MicaSense Rededge-MX, and Headwall Nano-
Hyperspec VNIR sensors used for UAV imaging.

Instrument L1 Redege-MX Nano-Hyperspec VNIR

Bands 3 5 270
FOV 95◦ 47.2 ◦ 50.68◦

Wavelength range (nm) - 475, 560, 668, 717,
840 nm 400–1000 nm

GSD (100 m) 2.73 cm/pixel 9.26 cm/pixel 11 cm/pixel
Supported aircraft Matrice 300 RTK Matrice 300 RTK Matrice 600

2.3. UAV Image Processing

The data acquired by the UAVs underwent various processing steps. The orthographic
image was generated by mosaicking the captured images using DJI Terra software (DJI,
Shenzhen, China). For the correction of multispectral data, real-time light measurements
were conducted using the DLS 2 sensor, and the values obtained from the Calibrated
Reflection Panel (CRP) were used to account for solar angle and lighting conditions during
image acquisition. Mosaicking and radiometric correction were performed using the
Pix4D Mapper software (Pix4D SA, Lausanne, Switzerland) [39,40]. Afterward, each
extracted band was aligned with the corresponding multispectral image using the band
stack function [41].

Hyperspectral images were acquired using the Hyperspec III sensor from Headwall
(Headwall Photonics, Inc., Bolton, MA, USA) [42]. During image processing, a correction fac-
tor was derived by utilizing a correction tarpaulin, which was pre-treated to have a reflectance
of 56%. This correction factor was applied for radiometric correction [43,44]. Geometric
correction was performed based on a digital elevation model (DEM) and GPS/IMU data
generated through LiDAR technology integrated with the Nano-Hyperspec VNIR sensor.
To reduce noise present in the spectrum, smoothing was applied using the Savitzky–Golay
filter [45,46].

2.4. Field Cover Type Investigation

Field surveys were conducted in the study target site to investigate the main land class
types. During the field survey, the field classes were recorded by directly examining the
site and referring to the Aerial image of DJI L1. The survey took place on 17 October 2022.
Ten classes were identified based on the on-site investigation, including conifers (pines),
two types of broadleaf trees (red maple and cherry trees), mud, grass (other vegetation),
sand, road (concrete), water bodies, reeds, and pergola (urethane). The land cover types
determined from the field survey were digitized using the ArcGIS Pro software (Environ-
mental Systems Research Institute, Inc., Redlands, CA, USA). These digitized data served
as reference and verification data for evaluating the accuracy of the classification models.

2.5. Classification Algorithm

The classification of classes within the study site was performed using widely used
classification models, including SAM (Spectral Angle Mapper), SVM (Support Vector
Machine), and ANN (Artificial Neural Network). SAM identifies and classifies similarities
by analyzing the interior of the vector in the n-dimensional space between the selected
pixel or reference spectrum and the spectrum of the image [47–49]. One advantage of SAM
is its ability to achieve effective classification by reducing the dimensionality of the data
and classifying the image based on the direction of the angle, regardless of vector size [50].
In SAM classification, a smaller angle indicates a higher degree of agreement with the
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reference spectrum, whereas angles greater than a set threshold are not classified. The SAM
classification process is described in Equation (1) below:

α = cos−1

 ∑nb
i=1 tiri(

∑nb
i=1 tiri

) 1
2
(

∑nb
i=1 tiri

) 1
2

 (1)

where t represents the spectrum of the pixel, r represents the reference spectrum pixel, α
represents the spectral angle between t and r, and n represents the number of bands. In this
study, classification was performed using a threshold value of 0.4 [51].

SVM is a statistics-based supervised classification learning method that aims to maxi-
mize margins by constructing reference training data in the form of margins on a hyper-
plane [52–54]. However, given that the linear separation of data has its limits, SVM maps
and separates the data in a high-dimensional feature space using various kernel meth-
ods [55]. Furthermore, SVM allows for the classification of multiple classes by conducting
pairwise classification, and the adjustment of parameters can help reduce misclassifica-
tions [56]. In this study, SVM utilized a radial basis function (RBF) kernel for pairwise
classification [57] (2).

kxixjK = exp
(
−g
∣∣∣∣∣xi − xj

∣∣|2), g > 0 (2)

Furthermore, the classification method employed various input parameters, including
the values of the gamma (γ) kernel functions, pyramid levels, penalty parameters, and
classification probability thresholds. For the SVM classification, the penalty parameter
was set to its maximum value (100) to minimize misclassifications. The gamma (γ) kernel
function value was set to 0.007, and the classification probability threshold was set to 0 to
ensure proper classification of the training data into each class [58].

Artificial neural network (ANN) is a multi-layer neural network classification tech-
nique comprising multiple layers. In this study, the ANN configuration utilized a
feedforward-based backpropagation algorithm with supervised learning, analyzing the
data using a chain structure [59,60]. Specifically, a segment-based U-Net algorithm was
employed to establish corresponding areas of interest (ROIs) and convert them into training
data. Deep learning requires the configuration of detailed parameters, including training
contributions, training rates, training end values, training iterations, and hidden layer
configurations [61]. In this paper, the parameters with the highest accuracy and reliability
for neural networks were chosen as a reference, considering previous studies. Here, the
training contribution was set to 90%, the training rate was set to 90%, the training exercise
was set to 0.1, the RMSEC (root mean square error of calibration) was set to 0.08, the hidden
layer was set to 1, and the training repetitions were set to 1000 times.

2.6. Training Data Processing
2.6.1. Pixel Sampling

The process of generating training data involves four stages. Firstly, since each image
has a different spatial resolution, resampling was performed to ensure uniform pixel size
and coordinates for both multispectral and hyperspectral data. Secondly, object image
segmentation was conducted to divide the clusters within the images. Thirdly, the unsuper-
vised classification algorithm ISO-DATA was applied to organize the training data based
on the average values within the appropriate class-defined segments. ISODATA performs
classification using pixel thresholds across the entire image and conducts class-specific
classification based on standard deviation, distance threshold, and other factors [62,63].
This approach facilitated pixel-based classification within the target site. The segmented
images were saved as shapefiles, class-specific configurations were edited using ArcGIS
Pro, and normalization was performed through masking using the ENVI 5.6 software.
Finally, pixel data for each class were extracted from the original image based on the corre-
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sponding classified image and unsupervised classification results (Table 2). The collected
pixel sampling data were then utilized as training data for subsequent classification models.
The preprocessing workflow incorporating pixel sampling is illustrated in Figure 2. The
ENVI 5.6 (Exelis Visual Information Solutions, Inc., Boulder, CO, USA) and ArcGIS Pro
software were employed for data extraction and processing.

Table 2. Number of training and validation data samples for each class.

Class Coniferous Trees Broadleaf Trees Mud Grass Sand Road Water Reed Maple Pergola

Training Data 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Validation data 200 200 200 200 200 200 200 200 200 200

Unit: Pixels.
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Figure 2. Pixel sampling workflows. (a) Identification of target areas within the image; (b) collection
of pixels belonging to each class within the target areas; (c) extraction of average spectra from
the collected pixels and setting of ROIs; (d) extraction of results based on the defined areas and
spectral information.

2.6.2. Spectral Sampling

Endmember extraction using the PPI was performed in three main stages. Firstly,
data dimensional reduction was carried out using a minimal noise fraction (MNF) trans-
formation [64]. MNF transformation helps to identify pure pixels with minimal noise and
minimizes distortion caused by noise in the pixels [65,66]. Through this process, the MNF
transformation determined the location of pure pixels, after which the PPI technique was
applied to process the data through 10,000 repetitions [67]. The extracted endmembers were
validated using the PPI technique. Six bands were selected from the five bands available in
the multispectral image, whereas forty-eight bands were selected from the two hundred and
seventy-three bands in the hyperspectral image. This endmember quantification approach
was adopted because 10 classes were identified through the field survey and the number
of multispectral images was limited, whereas there were many numerous hyperspectral
images. Pearson correlation analysis was conducted by applying it to each image to select
the band that had the highest correlation with the selected class among the endmembers
extracted using the PPI technique (Figure 3).
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Class classification between the images obtained through the selected endmember and
pixel sampling methods was performed to validate the effectiveness of the data sampling
approaches. Furthermore, SAM classification was conducted to compare the pixel sampling
data and examine the correlation and classification accuracy between the two datasets. A
comparative analysis was then conducted using the verification data.

2.7. Accuracy Assessment
2.7.1. Producing Verification Data

To construct accurate verification data for image validation, an on-site survey was
conducted in five test beds on 17 and 24 October 2022. The verification data were generated
based on the object segmentation image. High-resolution orthophotos and field verification
were used to ensure the correct classification of each pixel-based class. A random 10 m2

grid was generated within each of the five squares to establish the verification data. The
data were edited using ArcGIS Pro, and segment classification was performed using the
orthophotos. The class was then edited using the corresponding image (Figure 4).
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of the verification data construction process.

2.7.2. Evaluating Validation Data Accuracy

To assess the accuracy of each land cover classification method using UAV images,
data verification was conducted using a confusion matrix based on Ground Truth, Kappa
coefficients, and F1 scores [68]. The Kappa coefficient is used as a traditional method to
measure reliability, but it is not appropriate for an unbalanced distribution of classes, so
we further evaluated reliability using F1 scores [69,70]. The F1 score is evaluated using the
confusion-matrix-based precision and recall values [71]. The evaluation involved dividing
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the entire image into 10 × 10 square meters. A land cover map was generated using
a classifier for five random points, after which the accuracy was verified by comparing
the resulting map with the reference image. The comparison between the two images
was evaluated based on overall accuracy (OA) and reliability using the Kappa coefficient
and F1 score. This allowed for an assessment of the overall accuracy for each image and
classification method [72].

Precision =
TP

TP + FP
Recall =

TP
TP + FN

F1 Score =
2 ∗ Presicion ∗ Recall

Precision + Recall
(3)

3. Results
3.1. Classification Technique Method Results

The training data were constructed using UAV-acquired images, and the classifica-
tion was performed using SAM, SVM, and ANN (Figure 5). The resulting classification
images were compared with the verification data to evaluate the accuracy and reliabil-
ity of each classification method (Tables 3 and 4). The hyperspectral and multispectral
classification results showed that SAM achieved an accuracy of 91.906% to 80.364%, SVM
achieved 84.788% to 77.006%, and ANN achieved 84.712% to 70.750%. In hyperspectral
and multispectral images, the SAM method achieved the highest accuracy compared to
other methods. The SAM showed excellent performance in spectral image classification,
and the Kappa coefficient and F1 score were checked to compare the reliability of the
verification. In the hyperspectral case, the Kappa coefficient was 0.88 for SAM, 0.76 for
SVM, 0.77 for ANN, and the F1 score was 0.836 for SAM, 0.764 for SVM, and 0.769 for
ANN. In the multispectral case, the Kappa coefficient was 0.720 for SAM, 0.666 for SVM,
0.612 for ANN, and the F1 score was 0.719 for SAM, 0.606 for SVM, and 0.675 for ANN. We
show that SAM achieves higher verification accuracy compared to SVM and ANN in both
the multispectral and hyperspectral data. In addition, when comparing reliability through
the Kappa coefficient and F1 score, all SAM techniques confirmed a confidence of 0.7 or
more. Overall, the assessment results revealed that hyperspectral images provided higher
verification accuracy than hyperspectral images, and the SAM analysis technique was more
effective for classification purposes.

Table 3. Results of verifying classification methods (SAM, SVM, and ANN) using multispectral images.

Multispectral SAM SVM ANN

OA (%) Kappa F1 Score OA (%) Kappa F1 Score OA (%) Kappa F1 Score

1 92.96 0.87 0.859 95.38 0.89 0.678 96.62 0.93 0.773
2 93.43 0.92 0.941 80.92 0.75 0.778 70.96 0.62 0.744
3 91.44 0.85 0.817 89.25 0.83 0.695 63.27 0.51 0.725
4 64.04 0.48 0.364 74.51 0.55 0.407 75.16 0.65 0.606
5 59.95 0.48 0.613 44.97 0.31 0.470 47.74 0.35 0.527
Total (average) 80.364 0.720 0.719 77.006 0.666 0.606 70.750 0.612 0.675

Table 4. Results of verifying classification methods (SAM, SVM, and ANN) using hyperspectral images.

Hyperspectral SAM SVM ANN

OA (%) Kappa F1 Score OA (%) Kappa F1 Score OA (%) Kappa F1 Score

1 98.28 0.95 0.910 97.90 0.95 0.911 96.95 0.93 0.866
2 99.83 0.99 0.996 99.40 0.99 0.993 98.97 0.98 0.988
3 83.22 0.74 0.455 86.43 0.79 0.846 92.00 0.89 0.655
4 99.36 0.99 1.000 91.31 0.85 0.917 93.45 0.87 0.904
5 78.84 0.70 0.819 48.90 0.24 0.533 42.19 0.16 0.433
Total (average) 91.906 0.874 0.836 84.788 0.764 0.840 84.712 0.766 0.769
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Figure 5. SAM, SVM, and ANN classification via UAV images (multispectral, hyperspectral).

As a result of calculating the area according to each classification method, it was
confirmed that the average grass (19.42%) and water (15.93%) areas of the hyperspectral
and multispectral images were the largest, followed by maple (12.27%), mud (11.64%), reed
(9.78%), pine (7.94%), cherry (7.37%), and roads (12%) (Table 5). Unclassification refers to
groups that were not classified at the time of the categorization, and the in-image values
have been identified as ANN (0.86%) and SVM (1.23%) during hyperspectral division. In the
hyperspectral images, the largest class differences in ANN, SVM, and SAM were identified
as reeds (±6.58%), maple (±6.48%), and sand (±6.14%), and ANN was characterized by
differences in vegetation-related groupings such as pine (±13.96%) and grass (±7.48%).
In the case of multispectral images, there were many variances in class proportions when
classifying ANN, SVM, and SAM, and most notably, ANN had the largest difference in
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reeds (±22.62%), grass (±23.82%), maple (±21.31%), SVM sand (±20.26%), and cherry
(±12.32%) compared to other classes.

Table 5. Results of verifying the area for the classification methods (SAM, SVM, and ANN) using
hyperspectral and multispectral images.

Hyperspectral Multispectral

Class ANN SVM SAM ANN SVM SAM

Unclassified 0.858% 1.229% 0.000% 0.002% 0.002% 0.000%
Reed 11.083% 6.056% 12.635% 24.385% 2.741% 1.769%
Water 24.421% 25.889% 25.889% 4.856% 6.508% 8.012%
Road 1.417% 3.324% 1.251% 2.644% 2.832% 1.255%
Sand 7.582% 13.642% 7.502% 4.280% 18.815% 6.892%
Pine 0.000% 11.159% 13.962% 4.318% 7.857% 10.343%

Grass 27.197% 18.561% 19.719% 30.271% 14.345% 6.450%
Mud 4.266% 1.104% 4.113% 21.485% 19.425% 19.424%

Maple 13.200% 15.091% 8.609% 4.780% 5.830% 26.093%
Pergola 2.038% 1.193% 2.805% 0.581% 1.689% 12.125%
Cherry 7.938% 2.753% 3.513% 2.399% 19.955% 7.637%

3.2. Image Spectrum Comparison

Using the PPI technique, the difference between the endmember-extracted data and
the pixel-sampled data was examined for both multispectral and hyperspectral images
(Tables 6 and 7). The Pearson correlation coefficient was calculated, and several associations
were observed at a 95% significance level. Among the hyperspectral images, Class_01
exhibited the strongest association with water and mud. Class_02 was associated with
cherry, Class_06, and pine. Class_08 was associated with reed, sand, and maple. For the
multispectral images, Class_02 showed an association with pine. Class_04 was associated
with cherry, maple, pergola, reed, and sand, whereas Class_06 was associated with roads,
and Class_08 was associated with mud and water. These results indicate that roads can
be classified more accurately based on their distinct spectral characteristics. The relevant
classes between end members and pixel sampling are reeds, roads, sand, pine, grass, maple,
pergola, and cherries, and water and mud are far apart. Therefore, since pixel sampling is
more effective than endmember extraction in identifying components in multiple layers,
we show that using that methodology in mapping is efficient for classification.

Table 6. Correlation analysis results between endmember and pixel sampling data using hyperspec-
tral images.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11

Reed 0.339 0.95 0.942 0.899 0.614 0.878 0.886 0.854 0.925 0.989 0.56
Water –0.101 –0.808 –0.745 –0.882 –0.228 –0.505 –0.877 –0.862 –0.884 –0.815 –0.262
Road 0.551 0.895 0.823 0.809 0.778 0.987 0.789 0.791 0.812 0.862 0.633
Sand 0.351 0.951 0.943 0.896 0.615 0.876 0.881 0.85 0.923 0.988 0.574
Pine 0.358 0.982 0.927 0.983 0.505 0.792 0.973 0.955 0.994 0.959 0.555

Grass 0.348 0.98 0.937 0.974 0.511 0.796 0.963 0.942 0.99 0.968 0.56
Mud 0.131 –0.603 –0.674 –0.7 –0.006 –0.224 –0.721 –0.653 –0.732 –0.695 –0.08

Maple 0.299 0.967 0.938 0.937 0.542 0.831 0.924 0.897 0.958 0.99 0.526
Pergola 0.451 0.893 0.858 0.916 0.473 0.725 0.916 0.908 0.919 0.829 0.744
Cherry 0.368 0.988 0.932 0.977 0.524 0.812 0.962 0.949 0.988 0.964 0.569

Furthermore, water was not detected in the hyperspectral imagery when the classi-
fication was performed using the previously applied SAM technique with the extracted
hyperspectral endmember values. The classification using endmembers achieved an accu-
racy of 53.41% (Figure 6). Similarly, in the case of multispectral imagery, the classification
accuracy using endmembers was 41.61%. These results highlight the limitations of im-
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age classification using endmembers in both hyperspectral and multispectral datasets,
particularly when it comes to accurately identifying water areas.

Table 7. Correlation analysis results between endmember and pixel sampling data using multispec-
tral images.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Reed 0.339 0.95 0.942 0.899 0.614 0.878
Water –0.101 –0.808 –0.745 –0.882 –0.228 –0.505
Road 0.551 0.895 0.823 0.809 0.778 0.987
Sand 0.351 0.951 0.943 0.896 0.615 0.876
Pine 0.358 0.982 0.927 0.983 0.505 0.792

Grass 0.348 0.98 0.937 0.974 0.511 0.796
Mud 0.131 –0.603 –0.674 –0.7 –0.006 –0.224

Maple 0.299 0.967 0.938 0.937 0.542 0.831
Pergola 0.451 0.893 0.858 0.916 0.473 0.725
Cherry 0.368 0.988 0.932 0.977 0.524 0.812
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4. Discussion
4.1. Comparison and Evaluation of Hyperspectral and Multispectral Data

The multispectral and hyperspectral data obtained using UAVs have been used in
many studies, but data analysis using training data construction shows the need for
improvement. When constructing land cover maps using multispectral and hyperspectral
light, it is difficult to simultaneously mount two UAV sensors into one body, which shows
that there is a limit to the supply and demand of drone power and available weight.
Therefore, time resolution problems can occur when acquiring images, and dissimilarities
are identified between multispectral images and hyperspectral images, even though they
are taken on the same day [73]. In this paper, hyperspectral images were photographed
from 12:30 to 14:00, and multispectral images were photographed from 15:30 to 16:30. Both
successfully completed on the same day, but a time error was confirmed when acquiring
data using Rededge-MX. As a result, the difference in the left water system part of the
multispectral image was confirmed, and it is judged to be due to the amount of light
and angular height of the sun. Due to the aforementioned problems, the multispectral
classification was organized into stones and mud, and in this study, it was substantiated that
the road grade was composed of concrete and the rock type was similar to the road. When
verifying data through image classification, it was confirmed that five of the verification
target sites corresponding to No. 1 to No. 5 were less accurate. Each area is a verification
destination with complex components as compared to other destinations, such as roads,
autumn leaves, cherries, and grass, which indicates that categorization using hyperspectral
light is more accurate than using multispectral light with fewer classes. In particular,
the accuracy of the road was high, and in the case of autumn leaves, it is validated that
the accuracy is high where the characteristics due to red light are clear. However, an
overall high precision was recognized, but complex components, especially tree classes
where overlap is identified, are less accurate in grouping, which results in other division
algorithms being acknowledged as having the same problem [74]. Furthermore, if the
reflectance of light from the sun, such as on sand, is high, roads are pinpointed with a
similar spectrum.

4.2. Evaluation of Sampling Techniques

In this paper, we conducted a comparison of data sampling methods when classify-
ing images. Although endmember extraction was used as an effective underlying data
sampling technique in hyperspectral studies, it is difficult to obtain pure pixels of images
from classifications within a similar spectrum, confirming that only some characteristic
arrangements are possible. Similar data, such as for plants, suggest that there is a limit
to detecting a complex target spectrum [75]. The endmember technique is considered
particularly difficult to apply to multispectral images. This is evidenced by the fact that
there are forty-eight maximum selection classes for hyperspectral light but only six for
multispectral light, which varies from the absolute number. When comparing multispectral
genres, problems are identified not only in the limitations of the six classes, but also in the
degree of separation between the classes. Class 6 is highly associated with roads, whereas
classes 2, 3, and 4 are determined to have a too low class separation from plants such as
cherries, pine trees, reeds, and autumn leaves to pergolas and roads. This finding indicates
that it is not effective for the correct class separation. Although we selected 11 classes
with the same hyperspectral intensity and high association for spectral features, they were
mainly distributed in classes 2, 3, 9, and 10, especially for statistical correlations above
0.9. The components corresponding to the area of many sheaths were mainly composed
of grass, sand, reeds, and pine trees. Therefore, we discovered that sampling techniques
using endmember extraction were not effective in classifying complex land coverings. The
pixel sampling method was more effective for classification than the endmember technique,
and pixel sampling had the advantage of reducing the phenomenon of “salt and pepper
noise” [76]. Therefore, it is confirmed that pixel sampling techniques enable effective noise
reduction and spectral library construction for class types. In this paper, when the land
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cover map was produced using the final member, the OA results were confirmed to be
53.41% for hyperspectral images and 41.61% for multispectral images.

4.3. Assessment of Classification Techniques

We evaluated the classification results and methodology by building a quantitative
spectral library of images using pixel sampling. Among them, we illustrated that the SAM
classification outperformed the other classification methods in terms of classification image
analysis with an accuracy of 91.906%. Comparing the ANN, SVM, and SAM methods,
SAM indicated a difference of up to 16.08% for multispectral images and up to 7.19%
for hyperspectral images compared to ANN and SVM. With the development of many
classification techniques, the evaluation was conducted using each classification method
in the study of land cover evaluation. The authors of [76] reported an OA of 87.75% for
RF, 83.31% for CNN, and 80.29% for SVM due to mapping using the Random Forest (RF),
CNN, and SVM models. In [77], the classification of urban areas was evaluated using ANN,
SVM, ML, and SAM, and the overall accuracies obtained were 92.33%, 85.86%, 83.41%, and
46.55%, with Kappa coefficients of 0.91, 0.83, 0.80, and 0.38, respectively. The ANN method
was reported to be effective. The authors of [78] conducted plant species mapping in alpine
meadows and confirmed the accuracy of RF as 94.27%, SVM as 89.94%, ANN as 93.51%,
and SAM as 78.62%, demonstrating the effectiveness of the RF method. However, these
methods need to be simplified because they are complicated to use due to difficulties in
approaching and training a large quantity of data. Because the classification performance of
the SAM was determined in many studies and demonstrated low accuracy in most papers,
the resulting data may depend on the number of samples and data characteristics, but the
classification accuracy primarily hinges on the maximum angle threshold [79].

In this paper, we established an effective classification method by examining the
classification accuracy of the SAM, SVM, and ANN using both multispectral images and
hyperspectral images. However, the lack of field data and the difficulty of validating
the entire region limited the building of spectral libraries. To address these limitations,
additional validation data and testing are required for the quantification of different layers.
In addition, quantitative data, such as ground-based spectrometer measurements, may
contribute to more effective data acquisition. The analysis of hyperspectral images revealed
the importance of sampling because the number of bands and spectral resolution increased
as compared to multispectral images, resulting in the detection of many endmembers.
However, the difference between pixel sampling and end member extraction was realized
to be significant, and multispectral images showed more uniformity when utilizing more
hyperspectral images. As a result, the hyperspectral images have distinct spectral properties
for in-image classification, highlighting their effectiveness. Even without ground data and
reference spectra, the classification accuracy of spectral images exceeded at least 85%
regardless of the technique adopted. Our results suggest that high-resolution hyperspectral
images can be used to provide an effective approach on a larger spatial and temporal scale.

5. Conclusions

This study sought to achieve effective wetland mapping by applying various classi-
fication methods based on UAVs. Mapping wetlands accurately using multispectral and
hyperspectral images poses significant challenges. However, through the normalization of
a wetland map creation, our study validated the effectiveness of establishing a spectrum
library through pixel sampling and comparing it with endmember extraction. The accuracy
of the spectrum library was further verified by comparing it with actual field verification
data using SAM, SVM, and ANN classification. The results demonstrate the potential for
effective data mapping in wetlands. Using the SAM methodology, hyperspectral images
achieved an accuracy of 91.91%, whereas multispectral images achieved an 80.36% accuracy.
Compared to other methods, the SAM method showed the highest effect with a difference
of about 10% in multispectral data and about 7.15% in hyperspectral data. In addition,
the effectiveness of the pixel-based sampling method was confirmed, and an accuracy
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difference of up to 38.62% was confirmed compared to the final member and sampling
method. Future work should focus on evaluating the classification accuracy using multiple
target sites, incorporating ground spectrometers, and applying pixel sampling techniques
with a larger number of data samples. This study contributes to the literature by proposing
an effective data sampling and classification technique evaluation not only for wetland
mapping but also for other spectral image applications. Moreover, our findings highlight
the importance of developing effective classification methods for the accurate mapping
and monitoring of various environments.
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