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Abstract: The drone-small-cell-assisted air-ground integrated network is a promising architecture
for enabling diverse vehicle applications. This paper presents a joint resource slicing and vehicle
association framework for drone-assisted vehicular networks, which facilitates spectrum sharing
among heterogeneous base stations (BSs) and achieves dynamic resource provisioning in the presence
of network load dynamics. We formulate the network utility maximization problem as mixed-integer
nonlinear programming, considering traffic statistics, quality-of-service (QoS) constraints, varying
vehicle locations, load conditions in each cell, and interdrone interference. The original maximization
problem is transformed into a biconcave optimization problem to ensure mathematical tractability. An
alternate concave search algorithm is then designed to iteratively solve vehicle association patterns
and spectrum partitioning among heterogeneous BSs until convergence. Simulation results show that
the proposed scheme achieves a significant performance improvement in throughput and spectrum
utilization compared with two other baseline schemes.

Keywords: vehicular networks; drone; spectrum slicing; resource allocation; quality-of-service (QoS)

1. Introduction

As a typical fifth-generation (5G) and beyond scenario, vehicular networks connect
vehicles, pedestrians, mobile devices, and base stations (BSs), providing a wide range
of services, such as road safety and security, fleet, and traffic management [1]. Cellular
vehicle-to-everything (C-V2X) is seen as a viable enabler for emerging use cases in 5G
and beyond, offering low-latency, high-reliability, and high-throughput communications
for various services and supporting massively interconnected vehicles [2]. However,
increasing network capacity and accommodating various services with stringent quality-
of-service (QoS) requirements necessitate innovations in network architecture. Ultradense
deployment of BSs and roadside units can improve network capacity through network
densification. Still, this solution may lead to low cell utilization efficiency, additional
infrastructure deployment costs, and intercell interference [3]. Providing satisfactory QoS
with fixed and rigid terrestrial cellular networks, particularly on busy urban roads during
rush hours, is challenging.

Drones equipped with specialized wireless transceivers and computing modules have
the potential to form drone-based small cells (DSCs). These flying base stations (BSs) can
communicate with ground-based base stations (GBSs) and provide vehicle connectivity
services. An integrated air-ground network architecture is promising for enabling ubiqui-
tous connections, enhancing the performance of 5G and beyond vehicular networks. First,
DSCs can fly in designated areas to form three-dimensional, configurable small cells. These
small cells can be rapidly deployed to cover wireless “dead zones” for vehicular users,
enabling better network extensibility. Second, combining GBSs with DSCs can provide
broader coverage and greater capacity through a three-dimensional layered network. DSCs
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can act as airborne relays for GBSs to serve edge vehicles beyond GBS coverage. Third,
drones can monitor traffic conditions in the air (including road congestion and accidents)
and transmit this information to ground stations to be relayed to vehicular networks, which
helps drivers choose optimal routes. Last but not least, DSCs flying at high altitudes avoid
shadow fading in data transmission and increase the probability of establishing reliable
short-distance line-of-sight (LoS) links, reducing delays and improving reliability [4]. De-
ploying DSCs under GBSs facilitates spectrum reuse owing to their low transmit power
and flexible placement, relieving resource allocation pressures.

Resource allocation issues arise despite the numerous benefits of an integrated air-
ground network architecture. First, the unique GBS-to-DSC (G2D) and DSC-to-vehicle
(D2V) channels create a trade-off between effective coverage and spectrum utilization
in DSC deployment. Resource allocation and vehicle association must consider DSC’s
effective coverage impact. Second, the maneuverability of DSCs results in diverse vehicle
association patterns, complicating spectrum slicing among heterogeneous base stations.
Third, interference fluctuations in DSC deployment [5] make granular vehicle-level resource
provisioning difficult. The movement of DSCs creates rapidly changing interference con-
ditions and network topology. Fourth, DSC deployment and position adjustment should
account for road direction and traffic variation. For example, DSCs should fly along the
direction of high-speed vehicular traffic for better service coverage. Therefore, exploring
efficient spectrum resource provisioning that cooperates with DSCs to support emerging
vehicular applications is crucial.

Resource allocation issues arise despite the numerous benefits of an integrated air-
ground network architecture. First, the unique ground-base-station-to-drone-small-cell
(G2D) and drone-small-cell-to-vehicle (D2V) channels create a trade-off between effective
coverage and spectrum utilization in DSC deployment. Resource allocation and vehicle
association must consider DSC’s effective coverage. Second, the maneuverability of DSCs
results in diverse vehicle association patterns, complicating spectrum slicing among het-
erogeneous base stations. Third, interference fluctuations in DSC deployment [5] make
granular vehicle-level resource provisioning difficult. The movement of DSCs creates
rapidly changing interference conditions and network topology. Fourth, DSC deployment
should account for road direction and traffic variation for better service coverage.

1.1. Related Works

Many resource slicing methods are designed for terrestrial vehicular networks, high-
lighting service provision capability and QoS satisfaction for various services. Peng et al.
in [6] developed a joint power control and resource slicing strategy to provide QoS-
guaranteed downlink transmissions in multiaccess edge computing (MEC)–enabled vehic-
ular networks. They also proposed a multidimensional resource management framework
in [7] to maximize the number of offloaded tasks under heterogeneous QoS requirements.
In [8], a multitimescale radio access network slicing and task offloading problem is in-
vestigated to maximize resource utilization with diverse QoS guarantees for autonomous
driving tasks. Flexible wireless resource management is explored in [9], where radio access
and processing functions run in software instances based on network function virtualiza-
tion (NFV) [10]. Shen et al. in [11] proposed a network architecture that facilitates the
interplay between the digital twin and network slicing paradigms, building on holistic
network virtualization and edge intelligence. Zarandi and Tabassum in [12] investigated
the delay minimization problem with task offloading, computation, and communication
resource allocation in sliced multicell mobile edge computing (MEC) systems. They solved
offloading decision-making and resource allocation subproblems through alternating op-
timization until convergence. A reinforcement learning method is developed in [13] for
the decision making of network selection and autonomous driving in multiband vehicular
networks, with the goal of enhancing the data rate through radio resource management.
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Utilizing DSCs is crucial for effective service provisioning in vehicular networks.
Recent research has focused on device association, DSC coverage, and resource allocation.
Sun et al. in [14] examined the spectrum efficiency at end devices and explored how
DSC deployment can enhance resource utilization. Shi et al. in [15] developed a drone
ground coverage model to maximize end device coverage while adhering to the drone-
to-ground link quality constraint. However, the impact of drone flight height on resource
consumption and network coverage requires further investigation. In [16], a drone-assisted
cellular networking scheme was proposed to improve coverage performance for machine-
type communication services. Cheng et al. in [17] introduced a drone-assisted edge
computing architecture for offloading computation-intensive applications. Additionally,
a multi-DSC-assisted resource slicing problem for 5G uplink radio access networks was
studied in [18] to minimize total resource consumption.

There is a scarcity of literature on resource management in DSC-assisted vehicular
networks. Zhang et al. explored software-defined networking (SDN)-based resource
management for air-space-ground integrated vehicular networks [19], where local and
centralized controllers collaborate to manage resources. He et al. investigated the drone
relay problem [20], considering the influence of communication interruption and energy
consumption. To support more diversified IoT services in a dynamic network environment,
Wu et al. studied a space-air-ground integrated framework for efficient network slicing
and content services for vehicular networks [21]. Lyu et al. presented a service-oriented
resource slicing framework for space-air-ground integrated vehicular networks to maximize
system revenue and stabilize the time-averaged queue [22]. Additionally, Han et al. in [23]
developed a drone-aided intelligent transportation system to support low-latency vehicular
services. They studied the problem of how to minimize the average peak age of information
by optimizing multidrone deployment.

Certain issues require further investigation. For instance, some research assumes
that DSCs can provide services to vehicles without the support of GBSs while ignoring
the resource consumption that occurs during the interaction between DSCs and GBSs.
Moreover, when slicing resources among heterogeneous BSs, it is essential to take into
account the traffic features of vehicle services and the distinctive channels used by drones.

1.2. Contributions and Organization

In a scenario where multiple DSCs and GBSs coexist, we propose an air-ground inte-
grated spectrum management framework for delay-sensitive applications in 5G and beyond
vehicular networks. Our focus is on maximizing network utility under the constraint of
delay. This paper makes two main contributions.

• We construct an optimization framework for resource slicing and vehicle association,
which takes into account DSC deployment, traffic statistics, inter-DSC interference,
and QoS requirements. We formulate a network utility maximization problem using
the logarithmic function to determine spectrum slicing ratios and vehicle association
patterns. We transform the joint optimization problem into a tractable biconcave
maximization problem.

• We develop a convex search algorithm that iteratively solves the transformed problem
for vehicle association patterns and spectrum partition with reduced complexity. The
algorithm converges to a set of partial optimal solutions. Simulation results demon-
strate that the proposed solution outperforms two other resource slicing baseline
schemes regarding resource utilization and network throughput.

The follow-up content is arranged in the following sections. Section 2 presents the
system model under consideration. Section 3 offers an optimization problem formulation
and decomposition. In Section 4, the optimization problem is transformed into a tractable
biconcave problem, and an alternate algorithm is proposed to solve the transformed
problem. The section also discusses DSC deployment and companion flight policy. The
performance evaluation is presented in Section 5. Finally, Section 6 concludes the paper.
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Table 1 lists the main notations and variables, and the appendices provide the proof of the
propositions and corollaries.

Table 1. Main notations and variables.

Symbols Definition

ai,j,k Association indicator for vehicle i with the DSC at vj,k
ai,m Association indicator for vehicle i with GBS m
ci,j,k Achievable rates of vehicle i associated with the DSC at vj,k

c(n)i,j,k Achievable rate at vehicle i from the DSC at vj,k for f (n)i,j,k
ci,m Achievable rate at vehicle i from GBS m
ci,j,k,m Achievable rate at the DSC at vj,k from GBS m for vehicle i
c(min) Minimum rate for a bounded delay violation probability
di,m Euclidean distance between vehicle i and GBS m
di,j Horizontal distance between vehicle i and the DSC at vj,k

f (n)i,j,k
Amount of spectrum allocated to vehicle i (out of αnW)
from the DSC at vj,k

fi,m Amount of spectrum allocated to vehicle i from GBS m
fi,j,k,m Amount of spectrum allocated to vehicle i from GBS m
gi,m Channel gain from GBS m to vehicle i
gi,j,k Channel gain from the DSC at vj,k to vehicle i
gj,k,m Channel gain from GBS m to the DSC at vj,k
Vm/Vm Set/Num. of candidate DSC positions covered by GBS m
Ij,k/Ij,k Set/Num. of vehicles covered by the DSC at vj,k
Im/Im Set/Num. of vehicles covered by GBS m
Jm/Jm Set/Num. of plane position indexes in the coverage of GBS m
W Available amount of radio spectrum resources to the system
pm/pj,k Transmit power on GBS m/the DSC at vj,k
ri,m Spectrum efficiency at vehicle i from GBS m
r(n)i,j,k Spectrum efficiency at vehicle i from the DSC at vj,k for f (n)i,j,k
rj,k,m Spectrum efficiency at the DSC at vj,k from GBS m
Rk Effective ground coverage radius of the DSC at altitude zk
vj,k Candidate DSC position (xj, yj, zk)
α1/α2 Spectrum slicing ratio for GBS 1/GBS 2
α3 Spectrum slicing ratio for each DSC
δm Fraction of spectrum resources from αm for G2V links
δj,k,m Fraction of resources from αm allocated to the DSC at vj,k
λa Arrival rate of the delay-sensitive packet
ξLoS LoS probability threshold for D2V links
τDU Free space path-loss threshold

2. System Model

Consider a two-tier vehicular network with multiple GBSs underlaid by multiple
DSCs, as shown in Figure 1. DSCs, as air relays, deployed on demand, can forward GBSs’
traffic to target vehicles. When not covered by DSCs, a vehicle chooses to connect to a GBS.
Under the coverage of a DSC, a vehicle can choose to connect to the DSC or a GBS. Multiple
access types are permitted. Vehicles can access MEC servers via GBSs or DSCs. GBSs can
wirelessly charge hovering DSCs [24].
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D2V link

G2D link

M2V link

D2V link

G2D link

M2V link

MEC-enabled controllerMEC

GBS 1

GBS 2

Figure 1. Drone-small-cell-assisted cellular vehicular networks.

2.1. Resource Slicing Framework

The physical radio resources from GBSs and DSCs are abstracted as a centralized
virtual radio resource pool [25,26]. By collecting vehicles’ request information, a MEC-
enabled controller performs management. GBSs are divided into two groups, denoted by
M1 andM2, where GBSs in the same group share the same spectrum resources and are
not adjacent. Take an example of a two-way lane scenario shown in Figure 2. GBS 1 and
GBS 2 are two GBSs from the groupsM1 andM2, respectively. The system’s total available
radio spectrum resources are denoted as W. Without loss of generality, we consider slicing
the spectrum resources among GBS 1, GBS 2, and each DSC. Each DSC reuses spectrum
resources to support D2V communications under a distance constraint among DSCs. Then,
the spectrum resources are divided into three mutually orthogonal spectrum slices, 1, 2,
and 3, with the slicing ratios α1, α2, and α3, and are allocated to GBS 1, GBS 2, and each
DSC, satisfying

∑
n∈{1,2,3}

αn = 1. (1)

j kv j kv j kv j kv

Figure 2. Spectrum management framework.
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For instance, on the left side of Figure 2, the drone deployed at vj1,k1 uses spectrum
slices 2 and 3, of which slice 3 is shared by each drone, and slice 2 is assigned to GBS 2.
Since the drone is far from GBS 2, the interference caused by UAV using slice 2 to GBS 2 is
low, with improved resource utilization. Similarly, on the right side of Figure 2, the drone
deployed at vj4,k4 is assigned spectrum slices 1 and 3, where slice 1 comes from GBS 1.

Let vj,k = (xj, yj, zk) denote a drone deployment position. The set of drone deployment
positions under the coverage of GBS m is denoted as Vm with Vm being its cardinality (i.e.,
the number of available DSCs). The fraction of resources from αm allocated to associated
vehicles to support GBS-to-vehicle (G2V) communications is denoted as δm. The fraction
of resources from αm allocated to the DSC associated with GBS m at vj,k ∈ Vm for G2D
communications is denoted as δj,k,m (m ∈ {1, 2}). The slicing ratios satisfy

αm = δm + ∑
vj,k∈Vm

δj,k,m. (2)

Two-level spectrum reusing is considered. In addition to reusing the resources Wα3
among DSCs, we allow the DSCs not covered by a GBS to reuse the GBS’s spectrum. The
interference to GBSs caused by the DSCs can be controlled via proper deployment of DSCs.
Take Figure 2 as an example. The DSCs at vj1,k1 and vj2,k2 can reuse the spectrum resource
(α3 + α2)W, and the DSCs at vj3,k3 and vj4,k4 can reuse (α3 + α1)W.

The key to resource slicing is to determine the optimal set of slicing ratios to max-
imize the entire network utility. After slicing the spectrum resources, the controller al-
locates the slices to each BS. The resources in each slice is further partitioned among
associated vehicles.

2.2. Communication Model

As shown in Figure 3, a complex vector space is used to characterize the effect of
vehicle direction and speed on distance calculation, where ~di,m is the distance vector from
vehicle i to GBS m, and ~vi represents the velocity vector of vehicle i. During a period of
length ∆t, the distance vector of vehicle i is expressed as~vi∆t. By the addition or subtraction
of complex vectors, the Euclidean distance from vehicle i to GBS m with the vehicle velocity
vector ~vi is defined as

di,m
∆
=
∥∥∥~di,m ±~vi∆t

∥∥∥. (3)

Similarly, in the case where a vehicle is associated with a drone, as shown in Figure 4, the
horizontal distance between vehicle i and the drone at the location vj,k is defined as

di,j
∆
=
∥∥∥−→d i,j ±−→v i∆t

∥∥∥. (4)

m

t+ t tt't'+ t

i md

i m id v t

iv tiv t

i md

i m id v t

ii

Figure 3. Mobility-aware distance calculation when a vehicle is associated with GBS m (Case-1).
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Figure 4. Mobility-aware distance calculation when a vehicle is associated with a drone (Case-2).

Let gi,m denote the path loss from GBS m destined for vehicle i, which is quantified by
substituting (3) into the method described by Ye et al. [27].

With the introduction of LoS probability, we characterize the drone channel. Com-
pared with a non-LoS connection, an LoS connection has less attenuation, which improves
spectrum efficiency. By substituting (4) into the aerial channel model proposed in [14,28],
we express the LoS probability of the D2V link from a DSC at vj,k to vehicle i as

PLoS(zj, di,j) =
1

1 + e1 exp
(
−e2(arctan

(
zk
di,j

)
)− e1

) (5)

where di,j is the horizontal distance between vehicle i and vj,k, and e1 and e2 are constants
determined by the environment. Based on [14] and (4), the average path loss of the D2V
link forms the DSC at vj,k to vehicle i, which is expressed as

gi,j,k =20 log
√

z2
k + d2

i,j + (ηLoS − ηNLoS)PLoS(zk, di,j)

+ 20 log
(

4πρ

c

)
+ ηNLoS.

(6)

In (6), ηLoS (ηNLoS) is the additional loss for LoS (NLoS) links, involving the impacts of
shadowing components, c represents the speed of light, and ρ is the carrier frequency.

The vehicle set under the coverage of GBS m is denoted by Im. Based on the proposed
spectrum management framework, vehicle i ∈ I1 experiences two kinds of interference:
from transmissions of other GBSs inM1 and of DSCs under the coverage of GBSs inM2.
Let pm and pj,k represent the transmit power of GBS m and the DSC at vj,k. The spectral
efficiency at vehicle i ∈ I1 from GBS 1 is expressed as

ri,1 = log2

1 +
p1gi,1

∑
m∈M1\{1}

pmgi,m + ∑
vj,k∈V2

pj,kgi,j,k + σ2

 (7)

where σ2 is the average background noise power. Similarly, the spectrum efficiency at
vehicle i ∈ I2 from GBS 2, ri,2, can be obtained. The achievable transmission rates of vehicle
i associated with GBS m can be expressed as

ci,m = fi,mri,m (8)

where fi,m is the amount of spectrum (out of δmW) allocated to vehicle i from GBS m.
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For the DSC at vj,k ∈ V1, let f (2)i,j,k and f (3)i,j,k be the amount of spectrum allocated to vehi-
cle i out of α2W and α3W. The spectrum efficiency at vehicle i with D2V communications
include two parts in terms of f (2)i,j,k and f (3)i,j,k, expressed as

r(2)i,j,k = log2

1 +
pj,kgi,j,k

∑
m∈M1

pmgi,m + ∑
vj′ ,k′∈V1\{vj,k}

pj′ ,k′gi,j′ ,k′ + σ2

 (9)

and

r(3)i,j,k = log2

1 +
pj,kgi,j,k

∑
m∈{1,2}

∑
vj′ ,k′∈Vm\{vj,k}

pj′ ,k′gi,j′ ,k′ + σ2

. (10)

The achievable transmission rate of vehicle i associated with the DSC at vj,k ∈ V1 is

the summation of c(2)i,j,k = f (2)i,j,kr(2)i,j,k and c(3)i,j,k = f (3)i,j,kr(3)i,j,k. Similarly, denote f (1)i,j,k as the amount
of spectrum allocated to vehicle i associated with the DSC at vj,k from α1W by the DSC at
vj,k under the coverage of GBS 2 (vj,k ∈ V2). Then, similar to (9) and (10), the two parts
of spectrum efficiencies at the vehicle from the DSC under the coverage of GBS 2, i.e.,
r(1)i,j,k and r(3)i,j,k, can be obtained, and the achievable transmission rate at vehicle i associated

with the DSC at vj,k is the summation of c(1)i,j,k = f (1)i,j,kr(1)i,j,k and c(3)i,j,k = f (3)i,j,kr(3)i,j,k. If a DSC is
associated with GBS m, indication variable bj,k,m is set to 1; otherwise 0. Given bj,k,1 and
aj,k,2, the achievable transmission rates of vehicle i associated with the DSC at vj,k can be
expressed as

ci,j,k = bj,k,1c(2)i,j,k + bj,k,2c(1)i,j,k + bj,k,1c(3)i,j,k + bj,k,2c(3)i,j,k. (11)

Let (xm, ym, zm) represent the three-dimensional coordinates of GBS m. The distance

between vj,k and GBS m is calculated as dj,k,m =
√
(xj − xm)

2 + (yj − ym)
2 + (zk − zm)

2.
Since the DSC flying height is usually higher than that of a GBS, the G2D link is an LoS
connection. Denote γ, θ0, η0 as the terrestrial path-loss exponent, angle offset, and excess
path-loss offset. Denote o1 and o2 as excess path-loss scalar and angle scalar. The average
path loss from GBS m to vj,k is [29]

sj,k,m = 10γ log(dj,k,m) + o1(θ − θ0) exp
(

θ − θ0

o2

)
+ η0 (12)

where θ = arctan( |zk−zm |
dj,k,m

) represents the elevation angle between the antennas of the DSC
at vj,k and GBS m. Similar to (7), the DSC at vj,k associated with GBS 1 experiences two
kinds of interference. Then, the spectral efficiency from GBS 1 destined for the DSC at vj,k
is expressed as

rj,k,1 = log2

1 +
p1sj,k,1

∑
m∈M1\{1}

pmgi,m + ∑
vj,k∈V2

pj,kgi,j,k + σ2

. (13)

The spectral efficiency from GBS 2 destined for the DSC at vj,k can be obtained in the
same way.

Denote fi,j,k,m as the resources (out of δj,k,mW) allocated to vehicle i from GBS m. When
GBS m selects a DSC at vj,k to relay data to vehicle i, the achievable transmission rate at the
DSC at vj,k can be uniformly expressed as

ci,j,k,m = fi,j,k,mrj,k,m. (14)
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2.3. DSC Coverage Model

Consider a realistic drone coverage model. For a DSC placed at vj,k, the effec-
tive coverage mainly depends on LoS probability and the path-loss threshold in free
space [15,28], satisfying 

PLoS(zk, di,j) > ξLoS

4πρ
√

z2
k + d2

i,j

c
< τDU.

(15)

In (15), ξLoS is the LoS probability threshold for D2V links, and τDU is the free space
path-loss threshold, determined by the minimum signal-to-noise ratio for signal decoding.

In the model, flight altitude determines the effective DSC coverage. Similar to the
model in [18], the effective ground coverage radius of a DSC flying to a height of zk can be
expressed as

Rk = min

 zk

tan(e1 − 1
e2

ln 1−ξlos
e1ξlos

)
,

√(
cτDU

4πρ

)2
− z2

k

. (16)

Take Figure 5 as an example to explain the influence of the flying height zk on Rk,
where e1, e2, ξLoS, and τDU are set to 4.88, 0.43, and 89 dB and 0.5, respectively. The
relationship between height and effective coverage radius is not linear.

0 20 40 60 80 100 120 140 160 180 200
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Figure 5. Impact of flight altitude on effective coverage radius.

2.4. Traffic Model

Consider delay-sensitive traffic (e.g., rear-end collision avoidance, platooning). The
average arrival rate and data packet length are denoted as λa (packet/s) and La (bit). The
effective bandwidth theory [6,27] is used to calculate the minimum transmission rate to
guarantee that the downlink transmission delay exceeding D(max) at most probability ε is
expressed as

c(min) = − La log ε

log(1− log ε

λaD(max) )D(max)
. (17)

For downlink transmission to accommodate vehicles’ delay-sensitive requests, we can
adjust c(min) through resource allocation, providing a probabilistic guarantee for delivery
delay and reliability.
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3. Problem Formulation

In the proposed spectrum management framework, the challenging issue is to de-
termine the optimal spectrum slicing ratios and the association patterns to maximize the
aggregate network utility while satisfying the QoS requirement.

Let Ij,k = {i ∈ I|di,j ≤ Rk} be the set of vehicles located within the effective coverage
of the DSC at vj,k. If vehicle i ∈ Ij,k establishes a connection with the DSC at vj,k, the
indication variable ai,j,k is set to 1; otherwise, 0. If a DSC at vj,k connects to GBS m, bj,k,m
is set to 1; otherwise, set to 0. Once a DSC flies to GBSs’ coverage area, it automatically
connects to the GBS with the highest spectral efficiency.

A logarithmic utility function, which is concave and with diminishing marginal utility,
is applied to capture proportional fair resource division among heterogeneous BSs. Based
on (11), the network utility achieved by all vehicles associated with the DSC at vj,k is
expressed as

uj,k(Aj,k,Fj,k)

= bj,k,1 ∑
i∈Ij,k

ai,j,k log(c(2)i,j,k) + bj,k,2 ∑
i∈Ij,k

ai,j,k log(c(1)i,j,k)

+ bj,k,1 ∑
i∈Ij,k

ai,j,k log(c(3)i,j,k) + bj,k,2 ∑
i∈Ij,k

ai,j,k log(c(3)i,j,k)

(18)

where Aj,k = {ai,j,k|i ∈ Ij,k} represents the set of association patterns between vehicles and

DSCs and Fj,k = { f (n)i,j,k|i ∈ Ij,k, n ∈ {1, 2, 3}, ai,j,k = 1} is the strategy set for vehicle-level
resource allocation for D2V communications. If vehicle i connects to GBS m, the indication
variable ai,m is set to 1; otherwise, 0. The network utility achieved by all vehicles associated
with GBS m is expressed as

um(Am,Fm) = ∑
i∈Im

ai,m log(ci,m), (19)

where Am = {ai,m|i ∈ Im} and Fm = { fi,m|i ∈ Im, ai,m = 1}. Given Aj,k, the network
utility at the DSC at vj,k to relay associated vehicles’ traffic is calculated as

uj,k,m(Aj,k,Fj,k,m) = ∑
i∈Ij,k

ai,j,k log(ci,j,k,m) (20)

with Fj,k,m = { fi,j,k,m|i ∈ Ij,k, ai,j,k = 1} being the strategy set for vehicle-level resource
allocation for the relaying from the DSC at vj,k to GBS m.

Based on the logarithmic utility function, an aggregate utility maximization problem
is formulated as in P1, under the constraints of DSC deployment, transmission rates,
association patterns, and resource partitioning.

P1 : Maximize
α1,α2,α3,
Aj,k ,Am ,

Fj,k ,Fm ,Fj,k,m

∑
vj,k∈V1∪V2

uj,k(Aj,k,Fj,k)

+ ∑
m∈{1,2}

um(Am,Fm) + ∑
m∈{1,2}

∑
vj,k∈V1∪V2

uj,k,m(Aj,k,Fj,k,m)
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s.t.



ai,m

(
ci,m − c(min)

)
≥ 0, ∀i ∈ Im, ∀m ∈ {1, 2} (21a)

ai,j,k

(
ci,j,k − c(min)

)
≥ 0, ∀i ∈ Ij,k, ∀vj,k ∈ V1 ∪ V2 (21b)

ai,j,k

(
ci,j,k,m − c(min)

)
≥ 0, ∀i ∈ Ij,k, ∀vj,k ∈ V1 ∪ V2 (21c)

∑
m∈{1,2}

ai,m + ∑
m∈{1,2}

∑
vj,k∈Vm

ai,j,k = 1 (21d)

∑
i∈Ij,k

ai,j,k f (n)i,j,k − α3 = 0 (21e)

∑
i∈Im

ai,m fi,m = δmW,∀m ∈ {1, 2} (21f)

∑
i∈Ij,k

ai,j,k fi,j,k,m − δj,k,m = 0, ∀vj,k ∈ V1 ∪ V2 (21g)

ai,j,k, ai,m ∈ {0, 1}, ∀i ∈ Ij,k, ∀vj,k ∈ V1 ∪ V2 (21h)

∑
m∈{1,2}

δm + ∑
vj,k∈Vm

δj,k,m

+ α3 = 1 (21i)

αn, δm, δj,k,m ∈ [0, 1], ∀vj,k, n ∈ {1, 2, 3} (21j)

f (n)i,j,k ∈ (0, 1), ∀i ∈ Ij,k, ∀vj,k ∈ V1 ∪ V2, ∀n ∈ {1, 2, 3} (21k)

fi,m ∈ (0, 1), ∀i ∈ Im,∀m ∈ {1, 2} (21l)

fi,j,k,m ∈ (0, 1), ∀i ∈ Ij,k, ∀vj,k ∈ V1 ∪ V2 (21m)

The objective function of P1 is the summation of utilities achieved by all vehicles
(as receivers) and DSCs (as relays). Constraints (21a)–(21c) ensure that the achievable
transmission rate at each receiver is not less than c(min). Constraint (21d) ensures that each
DSC can only connect to one BS. Constraints (21e)–(21g) state the resource allocation re-
quirements for each DSC and GBS. Constraint (21i) is a combination of (1) and (2), reflecting
the resource slicing requirement. Constraints (21k)–(21m) demonstrate the requirements
on resource allocation for each vehicle.

P1 contains a nonlinear objective function and constraints, a mixed-integer nonlinear
programming problem. Each vehicle’s spectrum allocation relies on association patterns
and resource slicing, making problem solving difficult. For tractability, we first determine
the optimal fractions f (n)i,j,k and fi,m and fi,j,k,m allocated to vehicle i from the DSC at vj,k or
GBS m, given α3, δm, and δj,k,m.

4. Solution to P1

In this section, we present a problem approximation method that separates the associa-
tion schema and resource slice subproblems from Problem P1 to facilitate processing.
P1 is transformed into a biconcave optimization problem for mathematical tractabil-
ity. We then design an alternate concave search algorithm to solve vehicle association
patterns iteratively.

4.1. Problem Approximation

We simplify P1 by expressing f (n)i,j,k, fi,m, and fi,j,k,m as a function of ai,j,k to reduce the
number of decision variables.
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In P1, uj,k(Fj,k) is a function of Fj,k, indicating the aggregate utility of vehicles associ-
ated with the DSC at vj,k.

uj,k(Fj,k) = bj,k,1 ∑
i∈Ij,k

ai,j,k log( f (2)i,j,kr(2)i,j,k)

+ bj,k,2 ∑
i∈Ij,k

ai,j,k log( f (1)i,j,kr(1)i,j,k)

+ bj,k,1 ∑
i∈Ij,k

ai,j,k log( f (3)i,j,kr(3)i,j,k)

+ bj,k,2 ∑
i∈Ij,k

ai,j,k log( f (3)i,j,kr(3)i,j,k)

(22)

um(Fm) represents the aggregate utility of vehicles associated with GBS m, given by

um(Fm) = ∑
i∈Im

ai,m log( fi,mri,m). (23)

uj,k,m(Fj,k,m) denotes the utility of relaying vehicles’ traffic via the DSC at vj,k, given by

uj,k,m(Fj,k,m) = ∑
i∈Ij,k

ai,j,klog( fi,j,k,mrj,k,m). (24)

Based on (22)–(24), P1 can be reformulated as P2.

P2 : Maximize
Fj,k ,Fm ,Fj,k,m

∑
vj,k∈V1∪V2

uj,k(Fj,k) + ∑
m∈{1,2}

um(Fm)

+ ∑
m∈{1,2}

∑
vj,k∈V1∪V2

uj,k,m(Fj,k,m)

s.t. (21e), (21f), (21g), (21k), (21l), (21m).

Since Fj,k, Fm, and Fj,k,m in P2 are thee independent decision variable sets with
uncoupled constraints, P2 can be decomposed to three subproblems, P2.1, P2.2, and P2.3:

P2.1 : Maximize
Fj,k

∑
vj,k∈V1∪V2

uj,k(Fj,k)

s.t. (21e), (21k).

P2.2 : Maximize
Fm

∑
m∈{1,2}

um(Fm)

s.t. (21f), (21l).

P2.3 : Maximize
Fj,k,m

∑
vj,k∈V1∪V2

uj,k,m(Fj,k,m)

s.t. (21g), (21m).

Proposition 1. The solutions for P2.1, P2.2, and P2.3 are (25)–(27).

f (n)∗i,j,k =
ai,j,kαnW

∑i′∈Ij,k
ai′ ,j,k

∆
= f (n)∗j,k , n ∈ {1, 2, 3} (25)

f ∗i,m =
ai,mδmW

∑i′∈Im ai′ ,m

∆
= f ∗m (26)
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f ∗i,j,k,m =
ai,j,kδj,k,mW

∑i′∈Ij,k
ai′ ,j,k

∆
= f ∗j,k,m (27)

The proof of Proposition 1 is given in Appendix A.1.
Proposition 1 indicates that the optimal fractions of resources allocated to vehicles

from the associated GBSs/DSCs are equal partitioning.
From (25)–(27), the values of f (n)∗i,j,k , f ∗i,m, and f ∗i,j,k,m are determined by αm, δm, and δj,k,m,

respectively. Accordingly, we redefine uj,k(Aj,k,F ∗j,k), um(Am,F ∗m), and uj,k,m(Aj,k,F ∗j,k,m) as
uj,k(Aj,k,F ∗j,k)

∆
= uj,k(α3,Aj,k)

um(Am,F ∗m)
∆
= um(δm,Am)

uj,k,m(Aj,k,F ∗j,k,m)
∆
= uj,k,m(δj,k,m,Aj,k).

(28)

Based on (25)–(28), we reformulate P1 as P3.

P3 : Maximize
α1,α2,α3,
Aj,k ,Am

∑
vj,k∈V1∪V2

uj,k(α3,Aj,k) + ∑
m∈{1,2}

um(δm,Am)

+ ∑
m∈{1,2}

∑
vj,k∈V1∪V2

uj,k,m(δj,k,m,Aj,k)

s.t.



ai,m

(
f ∗mri,m − c(min)

)
, ∀i ∈ Im, ∀m ∈ {1, 2} (29a)

ai,j,k(bj,k,1 f (2)∗i,j,k r(2)i,j,k + bj,k,2 f (1)∗i,j,k f (1)i,j,k + bj,k,1 f (3)∗i,j,k r(3)i,j,k

+ bj,k,2 f (3)∗i,j,k r(3)i,j,k − c(min)) ≥ 0, ∀i ∈ Ij,k, ∀vj,k, ∀n
(29b)

ai,j,k

(
f ∗j,k,mrj,k,m − c(min)

)
≥ 0, ∀i ∈ Ij,k, ∀vj,k, ∀m (29c)

(21h), (21i), (21j) (29d)

As {α3,Aj,k}, {δm,Am}, and {δj,k,m,Aj,k} are coupled under (21i), P3 cannot be de-
coupled in the same way as P2. P3 is a mixed-integer combinatorial problem, which is
difficult to solve. Therefore, it is necessary to transform P3 into a tractable form.

4.2. Problem Transformation

To solve P2, we relax 0-1 variables in the sets Aj,k and Am to real-valued variables
contained in Ãj,k = {ãi,j,k|i ∈ Ij,k} and Ãm = {ãi,m|i ∈ Im}, with ãi,j,k ∈ [0, 1] and
ãi,m ∈ [0, 1]. ãi,m is ai,m with ai,j,k substituted by ãi,j,k. ãi,j,k and ãi,m can be considered as the
probability of establishing the vehicle association in each spectrum slicing period [27].

Proposition 2. The functions uj,k(α3, Ãj,k), um(δm, Ãm), and uj,k,m(δj,k,m, Ãj,k) are biconcave
on the decision variable set {α3, δm, δj,k,m} × {Ãj,k, Ãm}.

The proof of Proposition 2 is given in Appendix A.2.
With the variable relaxation, P3 is transformed to P4.

P4 : Maximize
α1,α2,α3,
Ãj,k ,Ãm

∑
vj,k∈V1∪V2

uj,k(α3, Ãj,k) + ∑
m∈{1,2}

um(δm, Ãm)

+ ∑
m∈{1,2}

∑
vj,k∈V1∪V2

uj,k,m(δj,k,m, Ãj,k)
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s.t.



ãi,m

(
f̃ ∗mri,m − c(min)

)
≥ 0, ∀i ∈ Im, ∀m ∈ {1, 2} (30a)

ãi,j,k(bj,k,1 f̃ (2)∗j,k r(2)i,j,k + bj,k,2 f̃ (1)∗j,k r(1)i,j,k + bj,k,1 f̃ (3)∗j,k r(3)i,j,k

+ bj,k,2 f̃ (3)∗j,k r(3)i,j,k − c(min)) ≥ 0, ∀i ∈ Ij,k, ∀vj,k, ∀m, ∀n
(30b)

ãi,j,k

(
f̃ ∗j,k,mrj,k,m − c(min)

)
≥ 0, ∀i ∈ Ij,k, ∀vj,k, ∀m (30c)

ãi,m, ãi,j,k ∈ [0, 1], ∀i ∈ Ij,k, ∀vj,k, ∀m (30d)

(21i), (21j) (30e)

Constraints (30a) and (30b) belong to linear inequality constraint functions, and con-
straint (30d) is an affine equality constraint function. Note that f̃ ∗m, f̃ (n)∗j,k , and f̃ ∗j,k,m are f ∗m,

f (n)∗j,k , and f ∗j,k,m with ai,m and ai,j,k substituted by ãi,m and ãi,j,k. Constraint (30a) actually
indicates that if the DSC at vj,k is associated with GBS m with ai,m = 1, the spectrum
resource allocation for the vehicle should satisfy

ai,mri,m ≥ c(min) ∑
i′∈Im

ãi′ ,m. (31)

Constraints (30b) and (30c) indicate that if ai,j,k = 1, the vehicle’s resource allocation
should satisfy

ai,j,kr(n)i,j,k ≥ c(min) ∑
i′∈Ij,k

ãi′ ,j,k (32)

and
bj,k,1ai,j,kr(2)i,j,k + bj,k,2ai,j,kr(1)i,j,k + bj,k,1ai,j,kr(3)i,j,k

+ bj,k,2ai,j,kr(3)i,j,k ≥ c(min) ∑
i′∈Ij,k

ãi′ ,j,k. (33)

Constraints (31)–(33) in P4 indicate the limit on the number of vehicles associated
with GBSs/DSCs given {α1, α2, α3}.

We next simplify P4 to P5 by substituting (30a)–(30c) with (31)–(33), respectively, to
make P4 tractable.

P5 : Maximize
α1,α2,α3,
Ãj,k ,Ãm

∑
vj,k∈V1∪V2

uj,k(α3, Ãj,k) + ∑
m∈{1,2}

um(δm, Ãm)

+ ∑
m∈{1,2}

∑
vj,k∈V1∪V2

uj,k,m(δj,k,m, Ãj,k)

s.t. (31), (32), (33), (21i), (21j).

Compared with constraint (30a) in P4, constraint (31) in P5 provides the lowest upper
bound on the number of vehicles that can be associated with GBS m. Similarly, compared
with constraints (30b) and (30c) in P4, constraints (32) and (33) in P5 provide the lowest
upper bound on the number of vehicles that can be associated with the DSC at vj,k.

4.3. Algorithm Design

P5 is a biconcave maximization problem due to the biconcave objective function
and the set of biconvex constraint functions for the biconvex decision variable set
{α3, δm, δj,k,m} × {Ãj,k, Ãm}. We first summarize the concavity property of P5.

Corollary 1. The objective function of P4 is a biconcave function on the variable set
{α3, δm, δj,k,m} × {Ãj,k, Ãm}, and P4 is a biconcave optimization problem.

The proof of Corollary 1 is given in Appendix A.3.
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Corollary 2. Algorithm 1 can converge to a set of optimal solutions {α∗3 , δ∗m, δ∗j,k,m} × {Ã
∗
j,k, Ã∗m}.

The proof of Corollary 2 is given in Appendix A.4.

Algorithm 1: Alternate_search_algorithm

Input : ϑ; candidate set for {α1, α2, α3}.
Output : Optimal spectrum slicing ratios {α∗1 , α∗2 , α∗3} with Θ∗m = {δ∗m, δ∗j1,k1,m,

δ∗j2,k2,m, . . . , } split from α∗m (m ∈ {1, 2}); optimal association pattern set

Ã∗.
1 t← 0; u(t) ← 0; u(t+1) ← 0;
2 while ||u(t+1) − u(t)|| ≥ ϑ do
3 Initialize candidate values for Θm and Θj,k,m given α

(t)
m (m ∈ {1, 2}) and Ã(t);

4 Θ(t)
1 and Θ(t)

2 ← solving P3 given Ã(t) and {α(t)1 , α
(t)
2 , α

(t)
3 }.

5 Ã† ← solving P3 given α
(t)
3 , Θ(t)

1 , and Θ(t)
2 ;

6 Obtain F † given Ã†, α
(t)
3 , Θ(t)

1 , and Θ(t)
2 ;

7 if no solutions for P3 then
8 Reinitialize until no solutions found; break;
9 else

10 Ã(t+1) ← Ã†;
11 α†

3, Θ†
1, and Θ†

2 ← solving P3 given Ã(t+1);
12 Obtain F † given Ã(t+1), α†

3, Θ†
1, and Θ†

2;
13 if no solutions for P3 then
14 Reinitialize until no solutions found; break;
15 else
16 α

(t+1)
3 ← α†

3;

17 Θ(t+1)
1 and Θ(t+1)

2 ← Θ†
1 and Θ†

2;
18 F (t+1) ← F †;

19 Obtain u(t+1) with α
(t+1)
3 , Θ(t+1)

1 , Θ(t+1)
2 , Ã(t+1), and F (t+1) at the tth

iteration;
20 end
21 t← t + 1;
22 end
23 end

By exploring the biconcavity, we develop an alternate search algorithm to solve P5,
summarized in Algorithm 1. The main logic is to iteratively solve optimal association
patterns {Ã∗j,k, Ã∗m} and optimal spectrum slicing ratios {α∗3 , δ∗m, δ∗j,k,m} to maximize the ob-

jective function. In the (t+ 1)th iteration, given a spectrum slicing ratio set, {α(t)3 , δ
(t)
m , δ

(t)
j,k,m},

and an association pattern set, {Ã(t)
j,k , Ã(t)

m }, from the tth iteration, P5 is solved to find a

better association pattern set, {Ã†
j,k, Ã†

m} with {Fj,k,Fm,Fj,k,m}. To control computational

complexity, we reduce the space of candidate slicing ratios. Let u(t) denote the maximum
objective function value with {Ã(t)

j,k , Ã(t)
m } at the beginning of the tth iteration. If the dif-

ference between u(t+1) and u(t) is less than the threshold ϑ, the iteration stops, and the
algorithm converges to a set of optimal solutions, {α∗3 , δ∗m, δ∗j,k,m} and {Ã∗j,k, Ã∗m}; other-
wise, start the next iteration until it converges. As stated in Corollary 2, the algorithm
can converge.
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5. Performance Evaluation

Extensive simulations are carried out to verify the effectiveness of the proposed
solution. All the simulations are carried out using MATLAB and Python and run on a
computer with an Intel Core i3 processor and 8 GB RAM. Consider a scenario with two
adjacent GBSs and multiple DSCs. Each GBS’s height and coverage radius are set to
10 and 800 m. The DSC flying height range on each x-y plane coordinate is [0, 200 m]
with an adjacent height interval of 10 m, and the horizontal movement range on the x-y
coordinate plane is set to [−1600 m,1600 m]. The DSC’s effective coverage at different
heights is determined by (16). The number of DSCs and DSCs’ flight altitude determine the
drone coverage ratio. Each GBS (DSC) has the same downlink transmit power of 46 dBm
(24 dBm). Each lane’s vehicle density range is set to [0.05, 0.5] v/m, where the minimum
vehicle distance is 5 m. The average rate λa of packet arrivals is 4 packet/s. The packet
length (La) is 1048 bit. The packet deadline bound D(max) and deadline bound violation
probability ε are 0.001 s and 10−3. Table 2 lists other important parameters.

Table 2. Parameter settings.

Parameters Values

GBS altitude m (zm) 10 m
Coverage radius of each GBS (Rm) 800 m
Transmit power of GBS m (pm) 46 dBm
Transmit power of the DSC at vj,k (pj,k) 24 dBm
Urban environment parameter (e1/e2) 4.88/0.43
Excess path-loss scalar/angle scalar(o1/o2) −23.29/4.14
Additional loss for LoS/NLoS links (ηLoS/ηNLoS) 0.1/21
Terrestrial path-loss exponent (γ) 3.04
Angle offset (θ0) 3.61
Excess path-loss offset (η0) 20.7
Carrier frequency ( f ) 3.5 GHz
LoS probability threshold for D2V links (ξLoS) 0.5
Free space path-loss threshold (τDU) 89 dB
Packet arrival rate (λa) 4 pkt/s
Packet length (La) 1048 bit
Packet delay bound (D(max)) 0.001 s
Delay bound violation probability (ε) 10−3

Stop criterion (ϑ) 0.01

The proposed scheme is categorized as versions I and II. The former is a full-featured
version with flight altitude adaptation as in [18], while the latter does not allow DSCs to
reuse GBSs’ spectrum resources.

For comparison, we provide two baseline schemes:

• Maximization-SINR (max-SINR) [14], in which the DSC deployment with flight
altitude adaptation aims to maximize the aggregate spectrum efficiency;

• Maximization-DSC-coverage (max-Cov) [15], in which each DSC always maintains
the height that maximizes the effective coverage.

Each baseline is further categorized as versions I and II. The former uses the same dy-
namic DSC deployment as the proposed scheme, while the latter is with static deployment.

5.1. Impact of Available Spectrum Resources

The first simulation examines network throughput, presented as the system’s aggre-
gate transmission rate. The average vehicle density is set to 0.1 vehicles/meter (v/m).
Figure 6 compares the throughputs achieved by different approaches where two DSCs are
deployed. As more resources are allocated, the amount provisioned per vehicle increases,
leading to higher transmission rates. The throughput of the proposed scheme rises more
rapidly than other schemes.
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Figure 6. Impact of spectrum resources on different schemes.

Additionally, dynamic DSC deployment outperforms static deployment. Specifically,
the proposed scheme’s minimum spectrum resource requirement is 5 MHz, while at least
7 and 8 MHz are needed by the max-SINR and max-Cov schemes, respectively. Owing
to efficient spectrum reuse and slicing, the proposed scheme’s network throughput is on
average over 30% higher than the max-SINR scheme and over 45% higher on average than
the max-Cov scheme.

In Figure 7, the starting point on the left represents the lower bound of resources
required by different strategies under QoS constraints. As more DSCs are added, more
vehicles can connect to DSCs, and overall spectrum utilization increases. Resource par-
titioning depends largely on DSC deployment and vehicle distribution. The proposed
scheme achieves higher throughput than baselines given the same resource budget. The
results demonstrate the proposed scheme’s ability to improve network throughput through
dynamic resource allocation. The gains are achieved by maximizing spectrum reuse and
slicing efficiency under QoS requirements.
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Figure 7. Impact of spectrum resources and the number of DSCs: (a) proposed scheme I, (b) max-SINR
scheme I, (c) max-Cov scheme I.

5.2. Impact of Vehicle Density

In the following simulation, the amount of available spectrum resources is 20 MHz.
Figure 8 shows the impact of average vehicle density on the minimum spectrum resource
consumption for different methods. Increasing vehicle density leads to greater demand
for spectrum resources. The proposed scheme’s minimum spectrum consumption is on
average over 15% lower than the max-SINR scheme and over 25% lower on average than
the max-Cov scheme, with a slower growth trend as vehicle density rises.

In Figure 9, increasing the number of DSCs can significantly improve spectrum uti-
lization and throughput. The proposed method can more effectively leverage DSCs for
spectrum reuse and partitioning. From Figure 10, the resource slicing ratios are adjusted
accordingly as the average vehicle density grows from 0.05 to 0.5 v/m. A higher vehicle
density makes spectrum resources more scarce, prompting more vehicles to connect to DSCs
and increasing the resource portion allocated to DSCs. The proposed intelligent resource
management is efficient, especially in dense vehicular scenarios. The dynamic spectrum slic-
ing balances the resource allocation between GBSs and DSCs based on real-time demand.

The cooperation of drones enables the network to accommodate more vehicle access.
Nonetheless, connected vehicles are a dynamic environment. The management of UAV
deployment, resource allocation, and vehicle association must be brought into a unified
framework to play the role of different platforms.
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Figure 8. Impact of vehicle density on different schemes.
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Figure 9. Impact of vehicle density and the number of DSCs on throughput: (a) proposed scheme I,
(b) max-SNR scheme I, (c) max-Cov scheme I.
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Figure 10. Impact of vehicle density on spectrum slicing ratios: (a) proposed scheme I, (b) max-SNR
scheme I, (c) max-Cov scheme I.

6. Conclusions

In this paper, we have proposed a spectrum management framework for drone-
assisted vehicular networks. The goal is to maximize network utility subject to QoS
constraints. The network utility maximization problem is formulated to determine vehicle–
DSC association patterns and spectrum partitioning among heterogeneous BSs. The
optimization problem is further transformed into a tractable biconcave form, followed
by an alternate search algorithm to obtain optimal spectrum slicing ratios and associa-
tion patterns. Simulation results demonstrate that the proposed method has advantages
in throughput and spectrum utilization. The proposed framework is scalable and has
the potential to be used to support content distribution in air-ground integrated vehic-
ular networks. Our ongoing work will design a distributed machine-learning-based re-
source slicing method to adapt to large-scale vehicular network scenarios where multiple
services coexist.
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Appendix A.

Appendix A.1. Proof of Proposition 1

Since DSCs reuse the slice W2, and each vehicle can only connect to one BS, P2.1 can
be decoupled into (V1 + V2) items, each for one DSC. According to (22), each item has four
parts. For the first part, we construct the subproblem P3.1.1.

P3.1.1 : Maximize bj,k,1 ∑
i∈Ij,k

ai,j,k log( f (2)i,j,kr(2)i,j,k)

s.t.


∑

i∈Ij,k

ai,j,k f (2)i,j,k − α2 = 0 (A1a)

f (2)i,j,k ∈ (0, 1), ∀i ∈ Ij,k (A1b)

The objective function of P3.1.1 can be further derived as

bj,k,1 ∑
i∈Ij,k

ai,j,k log( f (2)i,j,kr(2)i,j,k)

= bj,k,1 log ∏
i∈Ij,k

(
r(2)i,j,k

)ai,j,k
+ bj,k,1 log ∏

i∈Ij,k

(
f (2)i,j,k

)ai,j,k
(A2)

In (A2), r(2)i,j,k can be seen as a constant independent of f (2)i,j,k. Therefore, P3.1.1 is
equivalent to

P3.1.2 : Maximize
Fj,k

∏
i∈Ij,k

(
f (2)i,j,k

)ai,j,k
, s.t. (A1a), (A1b).

Since the geometric average is not larger than the arithmetic average, we have

∑
i∈Ij,k

ai,j,k

√
∏

i∈Ij,k

(
f (2)i,j,k

)ai,j,k ≤
∑i∈Ij,k

(
f (2)i,j,k

)ai,j,k

∑i∈Ij,k
ai,j,k

. (A3)

Under (A1a) and (A1b), the optimal resource allocation for vehicle i associated with
the DSC at vj,k is obtained by (27).

The remaining proofs for (26) and (27) are similar, which are omitted here.

Appendix A.2. Proof of Proposition 2

Substituting (25) into bj,k,1 ∑
i∈Ij,k

ãi,j,k log( f (2)∗j,k r(2)i,j,k), we have

bj,k,1 ∑
i∈Ij,k

ãi,j,k log( f (2)∗j,k r(2)i,j,k) = bj,k,1 ∑
i∈Ij,k

ãi,j,k log(Wαnr(n)i,j,k)

− bj,k,1 ∑
i∈Ij,k

ãi,j,k log

 ∑
i′∈Ij,k

ãi′ ,j,k

.
(A4)

By stating an equation for the coefficients using the indices il and il′ , we express the
Hessian matrix of (A4) regarding Ãj,k as

Hil ,il′ =

∂2(bj,k,1 ∑
i∈Ij,k

ãi,j,k log( f (2)∗j,k r(2)i,j,k))

∂ãil ,j,k∂ãil′ ,j,k
= −

qj,k

∑i∈Ij,k
ãi,j,k

. (A5)
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For any nonzero vector s = [s1, s2, . . . , sIj,k ] ∈ RIj,k , in the case of q∗j,k = 1, we have

sTHil ,il′ s = −
qj,k ∑i∈Ij,k

s2
i

∑i∈Ij,k
ãi,j,k

≤ 0. (A6)

Since the Hessian matrix is negative definite, bj,k,1 ∑
i∈Ij,k

ãi,j,k log( f (2)∗j,k r(2)i,j,k) is a concave

function with respect to Ãj,k for any given α3, and the reverse is also true.

Substituting (27) into bj,k,1 ∑
i∈Ij,k

ãi,j,k log( f (2)∗j,k r(2)i,j,k), we have

bj,k,1 ∑
i∈Ij,k

ãi,j,k log( f (2)∗j,k r(2)i,j,k)

= bj,k,m ∑
i∈Ij,k

ãi,j,k log
(

Wδj,k,mrj,k,m

)

− bj,k,m ∑
i∈Ij,k

ãi,j,k log

 ∑
vj,k∈Vm

bj,k,m ∑
i′∈Ij,k

ãi′ ,j,k


(A7)

The element in the Hessian matrix of uj,k,m(δj,k,m, Ãi,j,k) with respect to Ãi,j,k is
expressed as

Hil ,il′ =
∂2uj,k,m(δj,k,m,Aj,k)

∂ãil ,j,k∂ãil′ ,j,k
= −

aj,k,m

∑
vj,k∈Vm

aj,k,m ∑
i∈Ij,k

ãi,j,k
. (A8)

In the case of vj,k ∈ Vm and aj,k,m = 1, we have

sTHil ,il′ s = −
∑i∈Ij,k

s2
i

∑
vj,k∈Vm

∑
i∈Ij,k

ãi,j,k.
(A9)

Since the matrix is negative definite, bj,k,1 ∑
i∈Ij,k

ãi,j,k log( f (2)∗j,k r(2)i,j,k) is a concave function

in terms of Ãj,k for any given δj,k,m, and the reverse is also true.
The proof for um(Ãm) is similar, which is omitted here.

Appendix A.3. Proof of Corollary 1

The objective function of P5 is a non-negative linear combination of a set of biconcave
functions, which also belongs to a biconcave function on the variable set {α3, δm, δj,k,m} ×
{Ãj,k, Ãm} [30].

Appendix A.4. Proof of Corollary 2

{α3, δm, δj,k,m} × {Ãj,k, Ãm} are closed sets, and the objective function of P4 is con-
tinuous on its domain. To verify the uniqueness of F (t+1) and Ã(t+1) at the end of the
t-th iteration, we refer to the proof of Corollary 1 that, given {α3, δm, δj,k,m}, the objective
function of P4 is a concave function of {Ãj,k, Ãm}. Conversely, given Ã, the objective func-
tion is also concave in terms of Θ. Therefore, Algorithm 1 can converge to {α∗3 , δ∗m, δ∗j,k,m}
and {Ã∗j,k, Ã∗m}.
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