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Abstract: Rubber tree is one of the essential tropical economic crops, and rubber tree powdery mildew
(PM) is the most damaging disease to the growth of rubber trees. Accurate and timely detection
of PM is the key to preventing the large-scale spread of PM. Recently, unmanned aerial vehicle
(UAV) remote sensing technology has been widely used in the field of agroforestry. The objective
of this study was to establish a method for identifying rubber trees infected or uninfected by PM
using UAV-based multispectral images. We resampled the original multispectral image with 3.4 cm
spatial resolution to multispectral images with different spatial resolutions (7 cm, 14 cm, and 30 cm)
using the nearest neighbor method, extracted 22 vegetation index features and 40 texture features to
construct the initial feature space, and then used the SPA, ReliefF, and Boruta–SHAP algorithms to
optimize the feature space. Finally, a rubber tree PM monitoring model was constructed based on
the optimized features as input combined with KNN, RF, and SVM algorithms. The results show
that the simulation of images with different spatial resolutions indicates that, with resolutions higher
than 7 cm, a promising classification result (>90%) is achieved in all feature sets and three optimized
feature subsets, in which the 3.4 cm resolution is the highest and better than 7 cm, 14 cm, and 30 cm.
Meanwhile, the best classification accuracy was achieved by combining the Boruta–SHAP optimized
feature subset and SVM model, which were 98.16%, 96.32%, 95.71%, and 88.34% at 3.4 cm, 7 cm, 14 cm,
and 30 cm resolutions, respectively. Compared with SPA–SVM and ReliefF–SVM, the classification
accuracy was improved by 6.14%, 5.52%, 12.89%, and 9.2% and 1.84%, 0.61%, 1.23%, and 6.13%,
respectively. This study’s results will guide rubber tree plantation management and PM monitoring.

Keywords: powdery mildew of rubber tree; unmanned aerial vehicle (UAV); different spatial resolutions;
feature selection; machine learning

1. Introduction

The natural rubber produced by the rubber tree is known as one of the four major
industrial raw materials, along with steel, coal, and oil, and is the only renewable resource
among them. Rubber trees are widely planted in the tropical areas of Asia, Africa, Oceania,
and Latin America [1], among which China has planted more than 11,000 km2 of rubber
trees [2]. Powdery mildew (PM) is the main infectious disease of rubber trees, caused
by Oidium heveae B.A (OH) Steinmann, and it has been widely distributed in all rubber-
growing countries since the disease was first detected in Java, Indonesia, in 1918 [3]. PM
can reduce the photosynthesis of rubber tree leaves and slow down the growth rate of
rubber trees, and when the infection is severe, it causes secondary leaf drop on rubber trees,
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leading to a delayed harvesting period and reduced natural rubber yield by up to 45% [4,5].
Some studies have shown that the rate of natural rubber yield loss is highly correlated
with the severity of PM [6]. Current traditional detection methods for PM in rubber trees
are based on visual diagnosis and polymerase chain reaction (PCR) diagnosis. However,
visual diagnosis is inefficient and time-consuming, and although PCR is the most reliable
detection method, it requires specialized equipment and personnel [7,8]. The shortcomings
of these methods make it difficult to guide rubber tree disease management accurately, so a
rapid and economical method to detect the disease is urgently needed.

Remote sensing technology has provided an important technical solution for large-
area, rapid, and accurate monitoring of crop pests and diseases. Santoso et al. [9] explored
the possibility of using QuickBird satellite imagery to detect basal stem rot disease. Zhang
et al. [10] used the PlanetScope satellite to acquire multi-temporal, high-resolution remote
sensing images to monitor the occurrence and development of pine wilt disease. However,
satellite optical images are often affected by bad weather such as clouds, rain, and fog
during the imaging process, making it difficult to acquire usable remote sensing images
in a timely manner. Compared with satellite platforms, unmanned aerial vehicle (UAV)
platforms have been widely used for crop disease monitoring with the advantages of low
cost and short revisit cycles [11]. Pádua et al. [12] used the crop height model (CHM) to
segment individual canopies on UAV multispectral images for multi-temporal analysis
of chestnut ink disease and nutrient deficiency in chestnut trees by extracting vegetation
indices and spectral bands. Yang et al. [13] constructed the hail vegetation index (HGVI)
and ratio vegetation index (RVI) to identify cotton hail damage based on the red band and
near-infrared band of UAV multispectral images, respectively. The results showed that
both HGVI and RVI were more than 90% accurate, and kappa coefficients were above 0.85
at different sampling fields. In general, vegetation index (VI) features are more sensitive to
internal physiological changes in leaves caused by diseases, while texture features (TF) are
sensitive to external morphological changes in leaves [14]. Therefore, many studies have
also improved the ability to represent diseases by combining spectral and texture features.

In recent years, the scale problem has become a hotspot of remote sensing research,
and the selection of appropriate spatial resolution images for agricultural monitoring can
improve the crop monitoring area and reduce the cost of operation. Ye et al. [15] analyzed
the effect of classification of banana Fusarium wilt at different spatial resolutions (0.5 m,
1 m, 2 m, 5 m, and 10 m resolution), and the results showed that good identification
accuracy of Fusarium wilt was obtained when the resolution was higher than 2 m. As the
resolution decreased, the identification accuracy of Fusarium wilt showed a decreasing
trend. Wei et al. [16] analyzed the effect on wheat lodging identification at different spatial
resolutions (1.05 cm, 2.09 cm, and 3.26 cm), and found that the classification accuracy
could be effectively improved by selecting appropriate spatial resolutions and classification
models. Meanwhile, an appropriate feature optimization method can not only achieve
the purpose of data reduction and improve the accuracy of the model, but also ensure the
stability, robustness, and high generalization ability of the model. Zhao et al. [17] selected
15 potential vegetation indices based on UAV multispectral images and used the minimal
redundancy maximal relevance (MRMR) algorithm to select three sensitive spectral features
for the construction of an areca yellow leaf disease classification model, ensuring the
maximum relevance of the feature while removing the advantage of redundant features. Ma
et al. [18] used analysis of variance (ANOVA) and successive projection algorithm (SPA) to
extract sensitive vegetation index features and texture features of forest trees with different
damage levels to improve the generalization ability of the Erannis jacobsoni Djak severity
model. In addition, the appropriate choice of data analysis method is very important, as
it directly affects the reliability and accuracy of the results. Narmilan et al. [19] examined
white leaf disease in sugarcane using four ML algorithms: XGBoost (XGB), Random Forest
(RF), Decision Tree (DT), and K-Nearest Neighbors (KNN). The results showed that the
XGB, RF, and KNN models all achieved an overall accuracy (OA) of more than 94% in
detecting white leaf disease. Rodríguez et al. [20] proposed a UAV-based multispectral
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image assessment and detection method for potato late blight, evaluating the performance
of five machine learning algorithms: RF (OA = 84.2%), Gradient Boosting Classifier (GBC)
(OA = 77.7%), SVM (OA = 86.9%), LSVM (OA = 87.5%), and KNN (OA = 80.6%).

The above studies show that UAV remote sensing technology provides a fast and
effective way to monitor crop pests and diseases. In this study, we used UAV multispectral
images and accurate ground truth data as data sources, and different feature selection
methods (SPA, ReliefF, and Boruta–SHAP) to extract sensitive spectral and texture features
at different image spatial resolutions (3.4 cm, 7 cm, 14 cm, and 30 cm) combined with KNN,
SVM, and RF algorithms to construct PM monitoring models. Our research objectives are
(1) to evaluate the effects of different image spatial resolutions on the classification accuracy
of rubber tree PM, (2) to explore the best classification method for UAV multispectral
images, and (3) to build a rubber tree PM monitoring model in different spatial resolution
images using suitable feature selection methods and classification methods. The results
will provide guidance for rubber tree PM management.

2. Materials and Methods
2.1. Study Area

PM occurs mainly in spring when rubber trees are in the leaf-extraction stage and OH
infects the living host cells of young leaves or buds, resulting in defoliation of young leaves
and discoloration and curling of the margins of old leaves [21], as shown in Figure 1. At
the beginning, when the young leaves are infected with the disease, radial silvery-white
mycelium appears on the leaf surface or leaf back. With the development of the disease, a
layer of white powdery material appears on the spots, forming white powdery spots of
various sizes. When the disease turns serious, the front and back of the diseased leaf are
covered with white powder, and the leaf displays crinkled deformation and yellowing, and
can easily fall off.
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Figure 1. The symptoms of rubber tree powdery mildew.

The experiment was performed from 25 to 27 April 2022 at the rubber forest study
area of the Chinese Academy of Tropical Agricultural Sciences in Danzhou City, Hainan
Province (109◦28′30′′ E, 19◦32′40′′ N), as shown in Figure 2. The total area of the study area
was about 14,720 m2, with 648 rubber trees planted in 26 rows with a spacing of 3 m and
a row spacing of 7.3 m. The height of the trees was about 12–15 m, and the rubber tree
species was RY73397.
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Figure 2. Location of the study area.

2.2. Data Acquisition and Processing
2.2.1. UAV Multispectral Image Acquisition

Multispectral image data was acquired by a DJI Phantom 4 multispectral (P4M) drone
with a real-time kinematic (RTK) module attached to it. The multispectral imaging system
consists of one visible (RGB) camera and five multispectral cameras (blue, green, red, red
edge, and near-infrared bands). The main parameters are listed in Table 1.

Table 1. Main parameters of the DJI Phantom 4 multispectral drone.

Characteristic Name P4 Multispectral

Weight 1487 g
Sensor Six 1/2.9′′ CMOS, including one RGB sensor and five monochrome sensors
Lenses FOV (Field of View): 62.7◦; Focal Length: 5.74 mm; Aperture: f/2.2

Spectral wavelengths Blue (450 nm ± 16 nm); Green (560 nm ± 16 nm);
Red (650 nm ± 16 nm); Red edge (730 nm ± 16 nm); NIR (840 nm ± 26 nm)

Max Image Size 1600 × 1300 (4:3.25)
RTK GNSS GPS; GLONASS; BeiDou; Galileo

Positioning Accuracy Vertical 1.5 cm + 1 ppm (RMS); Horizontal 1 cm + 1 ppm (RMS)

The flight at the site of the study area was conducted between 12:00 p.m. and 13:00 p.m.
on 25 April 2022, with clear and cloudless weather. In mapping, the setting of UAV flight
parameters is critical in obtaining stable image data. DJI GS Pro software was used for
route planning, and the UAV flight plan parameters were set to a flight height of 60 m, a
flight speed of 4.2 m/s, 80% frontal overlap rate, and 70% side overlap rate. Multispectral
images were acquired by taking photos at equal time intervals, and the total duration of
the mission was 8 min and 22 s. The resolution of the multispectral image acquired was
3.4 cm/pixel. Figure 3a shows the flight route of the UAV aerial photography mission
performed in the study area, Figure 3b shows the DJI Phantom 4 multispectral (P4M) used
to acquire multispectral images, and Figure 3c shows the diffuse reflectance board for
radiometric calibration.



Drones 2023, 7, 533 5 of 20

Drones 2023, 7, x FOR PEER REVIEW 5 of 20 
 

Spectral wavelengths Blue(450 nm ± 16 nm); Green(560 nm ± 16 nm); Red (650 nm ± 16 nm); Red edge(730 
nm ± 16 nm); NIR(840 nm ± 26 nm) 

Max Image Size 1600 × 1300 (4:3.25) 
RTK GNSS GPS; GLONASS; BeiDou; Galileo 

Positioning Accuracy Vertical 1.5 cm + 1 ppm (RMS); Horizontal 1 cm + 1 ppm (RMS) 

 
Figure 3. (a) Flight route (green line) and parameters, (b) DJI Phantom 4 multispectral (P4M), (c) 
Diffuse reflectance board (right). 

2.2.2. Ground Truth Data Collection 
Ground observation data was collected on 25–26 April 2022. To ensure the reliability 

of the observed data, a combination of telescopic high branch shears, mechanical rising 
ladder, and visual observations by UAV was used for ground observation, as shown in 
Figure 4a–c. Specifically, firstly, experts visually inspected the trees by drones, then col-
lected leaves for identification with high branch shears and a mechanical rising ladder, 
and finally recorded the locations of the canopy that showed either healthy or PM symp-
toms by a handheld D-RTK2 high-precision GNSS mobile station, which provides highly 
accurate positioning (horizontal precision of 0.01 m). 

In this paper, the classification criterion used is the percentage of infected PM leaf 
area to the total leaf area of the canopy. If the percentage of infected PM leaf area to the 
total leaf area of the canopy was less than 5%, the canopy was considered healthy, other-
wise it was considered diseased (with a canopy consisting of a diameter of 30–50 cm con-
taining 30–40 leaves). Finally, we labeled 526 canopy samples from 153 rubber trees, in-
cluding 271 healthy samples and 255 diseased samples. Then, these sample data were di-
vided into a training set (75%) and a validation set (25%). 

 
Figure 4. (a) Telescopic high branch shears, (b) mechanical rising ladder, (c) P4M, (d) rubber plan-
tation. 

Figure 3. (a) Flight route (green line) and parameters, (b) DJI Phantom 4 multispectral (P4M),
(c) Diffuse reflectance board (right).

2.2.2. Ground Truth Data Collection

Ground observation data was collected on 25–26 April 2022. To ensure the reliability of
the observed data, a combination of telescopic high branch shears, mechanical rising ladder,
and visual observations by UAV was used for ground observation, as shown in Figure 4a–c.
Specifically, firstly, experts visually inspected the trees by drones, then collected leaves for
identification with high branch shears and a mechanical rising ladder, and finally recorded
the locations of the canopy that showed either healthy or PM symptoms by a handheld
D-RTK2 high-precision GNSS mobile station, which provides highly accurate positioning
(horizontal precision of 0.01 m).
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In this paper, the classification criterion used is the percentage of infected PM leaf area
to the total leaf area of the canopy. If the percentage of infected PM leaf area to the total
leaf area of the canopy was less than 5%, the canopy was considered healthy, otherwise it
was considered diseased (with a canopy consisting of a diameter of 30–50 cm containing
30–40 leaves). Finally, we labeled 526 canopy samples from 153 rubber trees, including
271 healthy samples and 255 diseased samples. Then, these sample data were divided into
a training set (75%) and a validation set (25%).
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2.2.3. Data Preprocessing

A total of 1200 multispectral images were acquired by DJI Phantom 4 multispectral
(P4M). Two-dimensional multispectral reconstruction was performed using DJI Terra
software (version 3.3.4; DJI Inc., Shenzhen, China), including image stitching, geometric
correction, and radiometric correction. The radiometric correction allows the conversion of
each pixel value (defined as Digital Number (DN)) into radiance, which is the amount of
radiation coming from the surface affected by solar radiation [22]. Specifically, we collected
the calibration images before the flight using two standard reflectance panels with the
reflectance of 0.25 and 0.5, as shown in Figure 3c. Afterward, the calibration parameters
of the calibration images were extracted using the new radiometric calibration tool in DJI
Terra software, the calibration parameters were used to pre-process the DN values of each
image during the 2D multispectral reconstruction, and the corrected multispectral image
data were finally generated. Meanwhile, in order to evaluate the effect of classification
accuracy of images with different spatial resolutions, we chose to resample the original
multispectral image of 3.4 cm and use the nearest neighbor resampling algorithm to
generate multispectral images with resolutions of 7 cm, 14 cm, and 30 cm. This method is
widely used because of its fast implementation and simplicity [23], and the value of the
output pixel is determined by the center of the nearest pixel on the input grid, which is
more suitable for classification tasks. It has been widely used in the field of UAV-based
crop monitoring for multiple scale crop simulations, such as wheat yellow rust [14], banana
wilt [15], and citrus greening disease [24].

2.3. Feature Extraction of Multispectral Images
2.3.1. Extraction of Vegetation Index (VI) and Texture Features (TF)

Vegetation indices have been widely used in UAV remote sensing disease monitoring.
The infection of rubber tree leaves with PM leads to internal physiological and biochemical
changes, such as suppression of photosynthesis, reduction of chlorophyll content, and
decrease of water content [25]. In this study, we selected 22 vegetation indices related to
crop diseases from the crop disease monitoring literature as candidate spectral features, as
shown in Table 2. Rubber trees infected with PM also have changes in external morphology,
such as the appearance of powdery mildew patches on the front or back of leaves, leaves
turning yellow, wilt, and other symptoms. Gray-Level Co-Occurrence Matrix (GLCM) [26],
introduced by Haralick for texture feature extraction, is a common method to describe
texture by the study of spatial correlation properties of gray levels. In this study, we selected
eight commonly used TFs as candidate texture features, including Mean (Mea), Variance
(Var), Homogeneity (Hom), Contrast (Con), Dissimilarity (Dis), Entropy (Ent), Second
Moment (Sec), and Correlation (Cor). The GLCM tool in ENVI 5.3 software was utilized to
extract the GLCM values for five bands (40 texture features in total) in the multispectral
image, and specifically by extracting the average GLCM texture values for four offsets
([0, 1], [1, 1], [0, 1], [1, −1]) in the image through the 3 × 3 pixel sliding window.

Table 2. Candidate vegetation indices extracted from UAV multispectral images.

Abbreviation Vegetation Index Formula Reference

ARI Anth Reflectance Index (1/g) − (1/r) [27]
CCCI Canopy Chlorophyll Contents Index ((nir − re)/(nir + re))/((nir − r)/(nir + r)) [28]
CLSI Cercospora Leaf Spot Index (re − g)/(re + g) − re [28]

DVIRE Difference Vegetation Index—RedEdge nir − re [29]
GDVI Green Difference Vegetation Index nir − g [28]

GI Greenness Index g/r [30]
GNDVI Green Normalized Difference Vegetation Index (nir − g)/(nir + g) [29]

GVI Green Vegetation Index (g − re)/(g + re) [29]
MSR Modified Simple Ratio (nir/b − 1)/(+1) [31]

NDVI Normalized Difference Vegetation Index (nir − r)/(nir + r) [32]
NormRRE Normalized Red–RE re/(nir + re + g) [29]

NPCI Normalized Pigment Chlorophyll Index (re − b)/(re + b) [29]
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Table 2. Cont.

Abbreviation Vegetation Index Formula Reference

NRI Nitrogen Reflectance Index (g − r)/(g + r) [33]
OSAVI Optimal Soil-Adjusted Vegetation Index (nir − r)/(nir + r + 0.16) [30]

PPR Plant Pigment Ratio (g − b)/(g + b) [34]
PSRI Plant Senescence Reflectance Index (r − g)/nir [35]

RBNDVI Red-Blue Normalized Difference Vegetation Index (nir − (r + b))/(nir + (r + b)) [36]
RGR Red–Green Ratio r/g [37]
RRI RedEdge–Red Ratio Index re/r [37]
RVI Ratio Vegetation Index nir/r [38]

TCARI Transformed Chlorophyll Absorption Reflectance Index 3 × ((nir − r) − 0.2 × (nir − g) × (nir/r)) [39]
WI Woebbecke Index (g − b)/(re − b) [40]

2.3.2. Feature Selection

A total of 22 vegetation index features and 40 texture features were extracted from the
multispectral images as candidate features for constructing the rubber tree PM classifica-
tion model. Due to the large number of candidate features, it was necessary to perform
correlation analysis and feature selection on the selected VIs and TFs features to remove
redundant features. The successive projections algorithm (SPA) [41] is a forward selection
algorithm, where the principle of selecting variables is first to select an initial variable
and then add a new variable with the lowest information redundancy at each iteration.
It reduces the fitting complexity in the model building process and speeds up the fitting
operation by ensuring the minimum covariance between the selected features. The main
principle of the ReliefF algorithm [42] is to randomly select a sample R from the training
sample set each time and then to find out k-nearest neighbor samples from the sample set
of the same type of R. After that, k-nearest neighbor samples are found from the sample set
that are not of the same type, multiple sample points are constantly randomly selected for
updating the feature weights to obtain the feature weight ordering, and finally the effective
features are selected by setting the threshold value.

Boruta–SHAP is a wrapper feature selection method that combines the Boruta feature
selection algorithm with Shapley values [43]. SHAP values show the importance of each
feature in the model prediction, as shown in Equation (1).

∅i = ∑S⊆N{i}
|S|(n−|S|−1)!

n!
[v(S ∪ {i})− v(S)] (1)

where ∅i denotes the contribution or importance of the ith feature, N is the set of all
features, S is the subset of N with feature i, and v(S) is the prediction result of S.

The Boruta–SHAP algorithm creates “shadow features” for each feature and shuffles
the values of the shadow features, then calculates the SHAP values of both the features
and the shadow features by the base model. Meanwhile, the maximum SHAP value of
the shadow features is used as the threshold value; if the SHAP value of the feature is
higher than this threshold value, it is considered as “important” and kept, while below the
threshold value it is considered as “unimportant” and deleted. This process is repeated
until the importance is assigned to all features.

2.4. Identification Model of Rubber Tree Powdery Mildew

Three classifier methods of KNN (K-Nearest Neighbors), SVM (Support Vector Ma-
chines), and RF (Random forest) were used in this study to construct the rubber tree PM
monitoring model.

KNN is a non-parametric, supervised learning classifier, which uses proximity to
make classifications or predictions about the grouping of an individual data point [44].
Narmilan et al. [19] used the KNN algorithm for white leaf disease detection in sugarcane
fields. Oide et al. [45] used the KNN algorithm for pine wilt detection. In this study, the
optimal parameters of leaf_size, n_neighbors, distance metric P, and the weights of the
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nearest neighbor samples of each sample were derived using 10-fold cross-validation and
grid search methods, and the system defaults were used for the other parameters.

RF is an algorithm based on decision trees and a self-service resampling method [46,47].
The principle of RF is to build multiple decision trees and fuse them to get a more accurate
and stable model, which is a combination of the bagging idea and random selection
features. In this study, min_samples_leaf and min_samples_split were set to 4, the optimal
parameters of max_depth and n_estimators were found by 10-fold cross-validation and
grid search method, and the default values of the system were used for other parameters.

The SVM algorithm is based on optimal hyperplanes to classify data points with
minimum error separation. These hyperplanes are used to convert features from low to
high dimensions by kernel functions. The SVM algorithm has been widely used for crop
disease detection [48,49]. In this study, the radial basis function was chosen as the kernel
function and 10-fold cross-validation and grid search method were used to find the optimal
parameters of the penalty factor C. The default values of the system were used for the other
parameters. The specific parameters of the three classification methods are in Table A1 in
Appendix A.

2.5. Accuracy Assessment

In this study, to comprehensively evaluate the performance of the model, we con-
structed the confusion matrix (Equation (2)) with true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN), after which we calculated the model evalua-
tion parameters such as overall accuracy (OA) (Equation (3)) and Kappa Coefficient (KC)
(Equation (4)). This work was carried out in a Windows 10 operating system. The model
construction was performed with Python programming language and the scikit-learn ma-
chine learning library. The data analysis was performed with SPSS27 and Matlab2022a.

Confusion Matrix =

{
TP FP
FN TN

}
(2)

OA(%) =
TN + TP

TN + TP + FN + FP
× 100 (3)

Kappa_coefficient =
OA− β

1− β
(4)

β =
(TP + FP)× (TP + FN) + (FN + TN)× (FP + TN)

(TP + TN + FP + FN)2 × 100 (5)

3. Results
3.1. Correlation Analysis of Spectral Features and Texture Features

In order to determine the relationship of spectral and textural features extracted from
UAV multispectral images with PM, the feature parameters (22 VIs and 40 TFs) were
correlated with PM, as shown in Figures 5 and 6. For vegetation index features, there
are 13 features with absolute values of correlation coefficients (|R|) greater than 0.3, of
which 10 features are greater than 0.5 (specifically, |R|DVIRE = 0.697, |R|GDVI = 0.686,
and |R|TCARI = 0.635), which indicates that these spectral features are useful for rubber
tree PM monitoring. For texture features, there are 21 features with absolute values of
correlation coefficients greater than 0.3, and three of them are greater than 0.5 (specifically,
|R|Blue-MEA = 0.773, |R|NIR-MEA = 0.637, and |R|RE-MEA = 0.635), which indicates
that these texture features are also useful for rubber tree PM monitoring, with the specific
correlation coefficients shown in Tables 3 and 4.
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Table 3. Specific values and significance levels of correlation coefficients for spectral features.

Spectral Features Correlation Coefficients Spectral Features Correlation Coefficients

ARI 0.104 * NPCI 0.195 **
CCCI −0.308 ** NRI −0.135 **
CLSI 0.104 * OSAVI −0.617 **

DVIRE −0.697 ** PPR 0.463 **
GDVI −0.686 ** PSRI −0.287 **

GI −0.144 ** RBNDVI −0.346 **
GNDVI −0.523 ** RGR 0.126 **

GVI 0.554 ** RRI −0.500 **
MSR 0.055 RVI −0.545 **

NDVI −0.506 ** TCARI 0.635 **
NormRRE 0.285 ** WI 0.539 **

Note: ** is significantly correlated at the p < 0.01 level; * is significantly correlated at the p < 0.05 level.
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Table 4. Specific values and significance levels of correlation coefficients for texture features.

Texture Features
Correlation Coefficients

Blue Green Red RE NIR

Mea −0.773 ** −0.065 0.059 −0.515 ** −0.637 **
Var −0.363 ** 0.424 ** 0.204 ** 0.351 ** 0.091 *

Hom 0.400 ** −0.434 ** −0.253 ** −0.442 ** −0.251 **
Con −0.329 ** 0.410 ** 0.206 ** 0.355 ** 0.142 **
Dis −0.381 ** 0.442 ** 0.241 ** 0.422 ** 0.201 **
Ent −0.445 ** 0.395 ** 0.253 ** 0.393 ** 0.167 **
Sec 0.436 ** −0.392 ** −0.244 ** −0.388 ** −0.160 **
Cor −0.254 ** 0.047 0.015 0.049 0.02

Note: ** is significantly correlated at the p < 0.01 level; * is significantly correlated at the p < 0.05 level.
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3.2. Feature Selection at Different Resolutions
3.2.1. Feature Selection Based on the SPA

The SPA was used for feature selection in four different resolution scenes, and the
variation of the root mean square error (RMSE) of the SPA is shown in Figure 7. The orange
line represents the 3.4 cm resolution feature set, the blue line represents the 7 cm resolution
feature set, the red line represents the 14 cm resolution feature set, and the black line
represents the 30 cm resolution feature set. When the resolution was 3.4 cm, 7 cm, 14 cm,
and 30 cm, the number of features selected by the SPA was 14, 17, 9, and 8, respectively, and
the corresponding RMSE was 0.169, 0.177, 0.233, and 0.282, respectively; thus, the RMSE
increases with the increase of resolution.
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3.2.2. Feature Selection Based on the ReliefF Algorithm

The ReliefF algorithm was used for feature selection to evaluate the importance of each
feature, as shown in Figure 8. The feature variables with weights greater than 0.05 were
selected as ReliefF feature subsets for datasets with spatial resolutions of 3.4 cm, 7 cm, and
14 cm, and the number of selected features was 23, 18, and 14, respectively. Meanwhile, for
datasets with a resolution of 30 cm, considering that most of the features have low weight
values, the weight thresholds were set individually, feature variables with weights greater
than 0.03 were selected as ReliefF feature subsets, and the number of selected features
was 8.
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3.2.3. Feature Selection Based on the Boruta–SHAP Algorithm

The Boruta–SHAP algorithm was used for feature selection, as shown in Figure 9.
These features were ranked in order of importance from top to bottom, where green features
were selected, blue features were “shadow features”, and red features were removed. When
the resolution was 3.4 cm, 7 cm, 14 cm, and 30 cm, the number of features selected by
Boruta–SHAP was 44, 43, 40, and 34, respectively, and 18, 19, 22, and 34 features were
removed, respectively. The specific feature variables are shown in Table 5.
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Table 5. Features selected by SPA, Boruta–SHAP, and ReliefF at different resolutions.

Methods Resolution Number Features

SPA

3.4 cm 14 CLSI, GDVI, MSR, NPCI, OSAVI, PPR, PSRI, RGR, RVI, Green-MEA,
NIR-MEA, Red-MEA, Red-DIS, RedEdge-MEA

7 cm 17 CLSI, DVIRE, GDVI, GI, GNDVI, MSR, NDVI, NPCI, NRI, OSAVI, PPR,
RGR, RRI, RVI, WI, NIR-MEA, RedEdge-MEA

14 cm 9 CLSI, GDVI, GI, NRI, OSAVI, RGR, RRI, RVI, WI
30 cm 8 GI, RGR, RVI, TCARI, Blue-MEA, NIR-MEA, Red-MEA, RedEdge-HOM

Boruta–SHAP

3.4 cm 44

ARI, CCCI, CLSI, DVIRE, GDVI, GI, GNDVI, GVI, MSR, NDVI, NPCI, NRI,
OSAVI, PPR, PSRI, RBNDVI, RGR, RRI, RVI, TCARI, WI, Blue-MEA,

Blue-VAR, Blue-HOM, Blue-CON, Blue-DIS, Blue-ENT, Blue-SEC,
Green-MEA, Green-VAR, Green-HOM, Green-CON, Green-DIS, Green-ENT,

Green-SEC, NIR-MEA, Red-MEA, RedEdge-MEA, RedEdge-VAR,
RedEdge-HOM, RedEdge-CON, RedEdge-DIS, RedEdge-ENT,

RedEdge-SEC

7 cm 43

ARI, CLSI, DVIRE, GDVI, GI, GNDVI, GVI, MSR, NDVI, NPCI, NRI, OSAVI,
PPR, PSRI, RBNDVI, RGR, RRI, RVI, TCARI, WI, Blue-MEA, Blue-VAR,

Blue-HOM, Blue-CON, Blue-DIS, Blue-ENT, Blue-SEC, Green-MEA,
Green-VAR, Green-HOM, Green-CON, Green-DIS, Green-ENT, Green-SEC,

NIR-MEA, Red-MEA, RedEdge-MEA, RedEdge-VAR, RedEdge-HOM,
RedEdge-CON, RedEdge-DIS, RedEdge-ENT, RedEdge-SEC

14 cm 40

ARI, CLSI, DVIRE, GDVI, GI, GNDVI, GVI, MSR, NDVI, NPCI, NRI, OSAVI,
PPR, PSRI, RBNDVI, RGR, RRI, RVI, TCARI, WI, Blue-MEA, Blue-VAR,

Blue-HOM, Blue-CON, Blue-DIS, Blue-ENT, Blue-SEC, Green-MEA,
Green-VAR, Green-HOM, Green-CON, Green-DIS, Green-ENT, Green-SEC,

NIR-MEA, Red-MEA, Red-HOM, RedEdge-MEA, RedEdge-HOM,
RedEdge-DIS

30 cm 28

DVIRE, GDVI, GI, GNDVI, GVI, MSR, NDVI, NPCI, NRI, OSAVI, PPR, PSRI,
RGR, RRI, RVI, TCARI, WI, Blue-MEA, Blue-VAR, Blue-HOM, Blue-CON,

Blue-DIS, Blue-ENT, Blue-SEC, Green-MEA, Green-HOM, NIR-MEA,
RedEdge-MEA

ReliefF

3.5 cm 23
DVIRE, GDVI, GI, GNDVI, GVI, MSR, NPCI, NRI, OSAVI, PPR, PSRI, RGR,
RRI, RVI, TCARI, WI, Blue-DIS, Blue-ENT, Blue-HOM, Blue-MEA, Blue-SEC,

NIR-MEA, RedEdge-MEA

7 cm 18 DVIRE, GDVI, GVI, OSAVI, PPR, RRI, TCARI, WI, Blue-ENT, Blue-HOM,
Blue-MEA, Blue-SEC, RedEdge-MEA, NIR-MEA

14 cm 14
DVIRE, GDVI, GVI, MSR, NPCI, OSAVI, PPR, RRI, RVI, TCARI, WI,
Blue-DIS, Blue-ENT, Blue-HOM, Blue-MEA, Blue-SEC, NIR-MEA,

RedEdge-MEA
30 cm 8 PPR, WI, GDVI, TCARI, DVIRE, Blue-MEA, NIR-MEA, RedEdge-MEA

3.3. Construction of Rubber Tree Powdery Mildew Identification Model

The feature sets selected by SPA, ReliefF, and Boruta–SHAP at different resolutions
were input into KNN, SVM, and RF algorithms, respectively, to construct the rubber tree
powdery mildew monitoring model, and the results of the training and validation sets are
shown in Tables 6 and 7. The accuracy of the three models in the training set is higher than
that of the validation set in general. For the single model in the training set, the accuracy
of KNN, SVM, and RF were 88.4~96.6%, 87.1~98.4%, and 93.7~99.5% at four different
resolutions, respectively; RF showed the best classification, followed by the SVM model,
while the KNN model was the worst.
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Table 6. Comparison of the classification effects of KNN, SVM, and RF models with different feature
selection algorithms at different resolutions (training set).

Methods Resolution
Number of

Features
KNN SVM RF

OA (%) Kappa OA (%) Kappa OA (%) Kappa

All feature

3.4 cm 62 96.1 0.920 98.4 0.968 99.2 0.984
7 cm 62 93.7 0.873 97.6 0.952 99.2 0.984

14 cm 62 92.6 0.851 97.9 0.958 98.7 0.973
30 cm 62 87.6 0.749 92.9 0.857 97.4 0.947

SPA

3.4 cm 14 92.9 0.856 92.6 0.851 98.7 0.973
7 cm 17 93.9 0.877 91.3 0.826 97.9 0.958

14 cm 9 88.4 0.764 88.6 0.771 93.7 0.872
30 cm 8 88.9 0.777 88.1 0.761 94.7 0.894

ReliefF

3.5 cm 23 96.0 0.920 98.2 0.963 99.2 0.984
7 cm 18 95.5 0.909 98.4 0.968 98.9 0.979

14 cm 14 92.9 0.856 95.8 0.915 97.1 0.942
30 cm 8 88.4 0.768 87.1 0.742 94.5 0.889

Boruta–SHAP

3.4 cm 44 96.6 0.931 98.4 0.968 99.5 0.989
7 cm 43 93.4 0.867 98.2 0.963 99.2 0.984

14 cm 40 91.8 0.835 97.6 0.952 98.4 0.968
30 cm 28 89.7 0.792 91.6 0.830 96.3 0.926

Table 7. Comparison of the classification effects of KNN, SVM, and RF models with different feature
selection algorithms at different resolutions (validation set).

Methods Resolution
Number of

Features
KNN SVM RF

OA (%) Kappa OA (%) Kappa OA (%) Kappa

All feature

3.4 cm 62 93.3 0.865 96.9 0.938 95.7 0.914
7 cm 62 90.2 0.804 96.3 0.926 95.7 0.914
14 cm 62 88.9 0.779 93.8 0.877 92.6 0.853
30 cm 62 76.6 0.534 87.1 0.743 87.7 0.755

SPA

3.4 cm 14 92.1 0.841 92.1 0.841 95.7 0.914
7 cm 17 88.9 0.779 90.8 0.816 94.5 0.889
14 cm 9 77.3 0.547 82.8 0.656 85.9 0.717
30 cm 8 74.2 0.485 79.1 0.582 78.5 0.571

ReliefF

3.5 cm 23 93.8 0.877 96.3 0.926 95.7 0.914
7 cm 18 92.6 0.853 95.7 0.914 95.7 0.914
14 cm 14 87.7 0.755 94.5 0.889 92.6 0.853
30 cm 8 81.6 0.632 82.2 0.645 84.1 0.682

Boruta–
SHAP

3.4 cm 44 95.1 0.902 98.2 0.963 96.3 0.926
7 cm 43 92.6 0.853 96.3 0.926 95.1 0.902
14 cm 40 87.7 0.755 95.7 0.914 92.6 0.853
30 cm 28 77.3 0.546 88.3 0.767 86.5 0.731

For a single model on the validation set, the classification accuracies of KNN, SVM, and
RF at the four different resolutions were 73.2% to 93.3%, 79.1% to 98.2%, and 78.5% to 96.3%,
respectively, and the SVM model in general had better classification than the KNN and RF
classifiers. With 3.4 cm resolution, the feature set selected by the SPA had classification
accuracies of 92.1%, 92.1%, and 95.7% in the KNN, SVM, and RF models, respectively,
which keeps high classification accuracy on the basis of feature reduction. The feature
set selected by the ReliefF algorithm had classification accuracies of 93.8%, 96.3%, and
95.7% in the KNN, SVM, and RF models, respectively, which is an improvement in overall
accuracy compared to the SPA feature set. The feature set selected by the Boruta–SHAP
algorithm was more robust, with classification accuracies of 95.1%, 98.2%, and 96.3% in
the KNN, SVM, and RF models, respectively, with higher overall classification accuracies
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compared to the SPA and ReliefF algorithms. Meanwhile, with the SVM model as the
benchmark, the classification accuracy of Boruta–SHAP–SVM reached 98.16%, 96.32%,
95.71%, and 88.34% at 3.4 cm, 7 cm, 14 cm, and 30 cm resolutions, respectively, and the
classification accuracy was improved compared with SPA–SVM and ReliefF–SVM by 6.14%,
5.52%, 12.89%, and 9.2% and 1.84%, 0.61%, 1.23%, and 6.13%, respectively.

3.4. Rubber Tree Powdery Mildew Mapping

In this study, we used SPA, ReliefF, and Boruta–SHAP algorithms to select sensitive
features as input to construct a classification model for rubber tree PM monitoring at
different resolutions. From the analysis in Section 3.3, it can be seen that the SVM model
with Boruta–SHAP-algorithm-selected features as input had the best overall performance
at different resolutions, so the model was used for spatial distribution mapping of rubber
tree PM. As shown in Figure 10, the results of PM pixel classification based on the SVM
model at different resolutions (where orange indicates diseased areas and green indicates
healthy areas), the rubber tree PM infection area is larger and the disease is more serious in
the northwest direction of the study area. Meanwhile, comparing the recognition results,
we also found that the classification results at different resolutions were basically the same.
However, as the resolution decreases, the background areas such as tree branches, shadows,
and canopy plants are confused with each other and result in incorrect classification.
Despite this phenomenon, the constructed monitoring model for rubber tree PM identifies
disease areas well at different resolutions.
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4. Discussion

We found that the best monitoring accuracy was achieved for images with a spatial
resolution of 3.4 cm in comparing remote sensing images with different resolutions. Mean-
while, when the images have a spatial resolution greater than 14 cm, good monitoring
accuracy for rubber tree PM is achieved. The high spatial resolution of the UAV images
depends on the flight altitude, but a lower flight altitude will slow down the monitoring
efficiency of the UAV. For example, in the monitoring range of this study area, the flight
altitude and the number of photos for acquiring 3.4 cm, 7 cm, 14 cm, and 30 cm resolutions
are 60 m, 125 m, 260 m, 500 m and 208, 62, 16, and 4 photos, respectively, which indicates
that choosing the appropriate flight altitude can substantially improve the efficiency of
rubber tree PM identification with a certain monitoring accuracy guaranteed.

Feature selection is a critical step in model construction, and smart selection of features
can reduce training time and improve accuracy [50]. To the best of our knowledge, most
existing studies rely on empirical direct selection of spectral features or texture features
to monitor crops [51], and these features have a large degree of redundancy. In this study,
redundant features with a high correlation were removed using SPA, ReliefF, and Boruta–
SHAP algorithms. For the SPA, each selected feature is related to the previous one in
the process of selecting features, but the initial features are selected by random selection,
so that the selected features may have more redundant information. For example, for
SPA-selected features at 3.4 cm resolution in Figures 5 and 6, the correlation between MSR
and NPCI was 0.92, and the correlation between OSAVI and GDVI was 0.97. The ReliefF
algorithm only considers feature relevance and does not analyze redundancy, and it needs
to set the threshold manually for feature selection. The Boruta–SHAP algorithm enhances
the explanatory ability of important features by adding SHAP values and reduces the
number of features by selecting features which do not affect the performance of the model.
Although the final selected features have redundancy and a higher number of features,
the constructed model is more robust. Meanwhile, this study used KNN, SVM, and RF
algorithms to construct models to compare the performance in four feature sets (all feature
set, SPA feature set, ReliefF feature set, and Boruta–SHAP feature set) as shown in Table 7;
the results show that compared with KNN and RF models, SVM models achieved 98.16%,
96.32%, 95.71%, and 88.34% of the highest classification accuracy, respectively, which also
indicates that the SVM model has better generalization ability.

Although the above scheme achieved relatively well-classified results, there were
misclassifications, and the misclassified samples were mostly near the soil edge and shaded
ground. This may be due to the intensive planting of rubber trees; there is a large height
difference between the lower canopy and the upper canopy in rubber trees, so the shading
of different canopies can easily cause the mixing of healthy and shaded areas, and with
the lower resolution, this phenomenon will be exacerbated. As shown in Figure 11, the
gray-blue box shows the misclassification due to the mixed pixels of shade and canopy, and
the orange box shows the misclassification as the resolution reduction further exacerbates
the mixed pixels.
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This study demonstrated that UAV-based multispectral images are well suited for
rubber tree powdery mildew monitoring. Meanwhile the simulation at different scales
also well achieved accuracy of detection. However, as the resolution decreases, the mixed
pixel effect becomes more and more serious, leading to the decrease of monitoring accuracy.
In the future, we will fly the UAV at different altitudes to acquire images with different
spatial resolutions instead of simulating the image resolution. In addition, because this
study used single-date multispectral images, which is a limitation in determining changes
in spectral and textural parameters caused by rubber tree powdery mildew, multi-temporal
monitoring of the full period of rubber tree powdery mildew development should be
studied in the future. In addition, crop disease monitoring depends heavily on appropriate
platforms and sensors, so in the future we will integrate other sensors (hyperspectral,
thermal infrared, etc.) for remote sensing monitoring of rubber tree powdery mildew.

5. Conclusions

Rubber tree is one of the important tropical economic crops, and PM is the most
damaging disease affecting the growth of rubber trees. In this study, we combined the
effects of resolution (3.4 cm, 7 cm, 14 cm, 30 cm), feature selection (SPA, ReliefF, Boruta–
SHAP), and classification models (KNN, SVM, RF) on monitoring PM in rubber trees.
The results show that the resolution has a great influence on the identification of rubber
tree PM, and the classification accuracy is high (>90%) with a spatial resolution greater
than 14 cm. Compared with SPA and ReliefF algorithms, the Boruta–SHAP algorithm has
better performance in optimizing feature sets with different resolutions, which reduces data
dimensionality and improves data processing efficiency with a higher guarantee of high
accuracy. Compared with KNN and RF models, the SVM model has a higher monitoring
accuracy and generalization ability. Meanwhile, the highest overall recognition accuracy
(98.16%) was achieved for rubber tree PM with the features of the Boruta–SHAP algorithm
selection and the SVM model. This research provides technical support and reference for
the rapid and nondestructive monitoring of rubber tree PM.
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Appendix A

Table A1. The specific parameters of the three classification methods.

Type KNN SVM RF

All feature

3.4 cm
leaf_size = 10, n_neighbors = 9, P = 1,

weights = ‘uniform’

C = 147, gamma = 1/62,

kernel = ‘rbf’

max_depth = 10,

n_estimators = 400

7 cm
leaf_size = 10, n_neighbors = 13, P = 1,

weights = ‘distance’

C = 186, gamma = 1/62,

kernel = ‘rbf’

max_depth = 10,

n_estimators = 400

14 cm
leaf_size = 10, n_neighbors = 7, P = 1,

weights = ‘distance’

C = 182, gamma = 1/62,

kernel = ‘rbf’

max_depth = 10,

n_estimators = 400

30 cm
leaf_size = 10, n_neighbors = 15, P = 1,

weights = ‘distance’

C = 187, gamma = 1/62,

kernel = ‘rbf’

max_depth = 14,

n_estimators = 1000

SPA

3.4 cm
leaf_size = 10, n_neighbors = 5, P = 1,

weights = ‘distance’

C = 177, gamma = 1/14,

kernel = ‘rbf’

max_depth = 14,

n_estimators = 600

7 cm
leaf_size = 10, n_neighbors = 13, P = 1,

weights = ‘distance’

C = 188, gamma = 1/17,

kernel = ‘rbf’

max_depth = 8,

n_estimators = 1000

14 cm
leaf_size = 10, n_neighbors = 7, P = 1,

weights = ‘distance’

C = 197, gamma = 1/9,

kernel = ‘rbf’

max_depth = 6,

n_estimators = 600

30 cm
leaf_size = 10, n_neighbors = 11, P = 1,

weights = ‘distance’

C = 131, gamma = 1/8,

kernel = ‘rbf’

max_depth = 14,

n_estimators= 1000

ReliefF

3.4 cm
leaf_size = 10, n_neighbors = 5, P = 1,

weights = ‘distance’

C = 185, gamma = 1/23,

kernel = ‘rbf’

max_depth = 8,

n_estimators = 400

7 cm
leaf_size = 10, n_neighbors = 5, P = 1,

weights = ‘uniform’

C = 179, gamma = 1/18,

kernel = ‘rbf’

max_depth = 14,

n_estimators = 400

14 cm
leaf_size = 10, n_neighbors = 5, P = 1,

weights = ‘uniform’

C = 194, gamma = 1/14,

kernel = ‘rbf’

max_depth = 8,

n_estimators = 600

30 cm
leaf_size = 10, n_neighbors = 5, P = 1,

weights = ‘distance’

C = 112, gamma = 1/8,

kernel = ‘rbf’

max_depth = 10,

n_estimators = 400

Boruta–SHAP

3.4 cm
leaf_size = 10, n_neighbors = 5, P = 1,

weights = ‘uniform’

C = 105, gamma = 1/44,

kernel = ‘rbf’

max_depth = 12,

n_estimators = 1000

7 cm
leaf_size = 10, n_neighbors = 11, P = 1,

weights = ‘distance’

C = 127, gamma = 1/43,

kernel = ‘rbf’

max_depth = 12,

n_estimators = 400

14 cm
leaf_size = 10, n_neighbors = 9, P = 1,

weights = ‘uniform’

C = 162, gamma = 1/40,

kernel = ‘rbf’

max_depth = 12,

n_estimators = 800

30 cm
leaf_size = 10, n_neighbors = 11, P = 2,

weights = ‘distance’

C = 199, gamma = 1/28,

kernel = ‘rbf’

max_depth = 8,

n_estimators = 400
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