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Abstract: Airborne laser scanning (ALS) and terrestrial laser scanning (TLS) are two ways to obtain
forest three-dimensional (3D) spatial information. Due to canopy occlusion and the features of
different scanning methods, some of the forest point clouds acquired by a single scanning platform
may be missing, resulting in an inaccurate estimation of forest structure parameters. Hence, the
registration of ALS and TLS point clouds is an alternative for improving the estimation accuracy of
forest structure parameters. Currently, forest point cloud registration is mainly conducted based on
individual tree attributes (e.g., location, diameter at breast height, and tree height), but the registration
is affected by individual tree segmentation and is inefficient. In this study, we proposed a method to
automatically fuse ALS and TLS point clouds by using feature points of canopy gap shapes. First, the
ALS and TLS canopy gap boundary vectors were extracted by the canopy point cloud density model,
and the turning or feature points were obtained from the canopy gap vectors using the weighted
effective area (WEA) algorithm. The feature points were then aligned, the transformation parameters
were solved using the coherent point drift (CPD) algorithm, and the TLS point clouds were further
aligned using the recovery transformation matrix and refined by utilizing the iterative closest point
(ICP) algorithm. Finally, individual tree segmentations were performed to estimate tree parameters
using the TLS and fusion point clouds, respectively. The results show that the proposed method
achieved more accurate registration of ALS and TLS point clouds in four plots, with the average
distance residuals of coarse and fine registration of 194.83 cm and 2.14 cm being much smaller
compared with those from the widely used crown feature point-based method. Using the fused point
cloud data led to more accurate estimates of tree height than using the TLS point cloud data alone.
Thus, the proposed method has the potential to improve the registration of ALS and TLS point cloud
data and the accuracy of tree height estimation.

Keywords: point cloud registration; canopy gap; terrestrial laser scanning; airborne laser scanning;
tree height

1. Introduction

Forests are the mainstay of terrestrial ecosystems, accounting for 90% of terrestrial
biomass and 86% of global vegetation carbon stocks, and play an important role in main-
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taining the stability of the ecological environment and mitigating the effects of global
warming [1–4]. Forests consist of individual trees, and tree and stand parameters are thus
important variables in forest resource inventories. Forest resource inventories have evolved
from traditional field surveys to sample plot-based inventories combined with various
remote sensing techniques [5,6]. In recent years, there has been substantial research in the
area of using light detection and ranging (LiDAR), an active remote sensing technology, to
obtain three-dimensional (3D) structural information of forests by quickly and accurately
estimating tree and stand forest structural parameters (tree height, diameter at breast
height (DBH), crown width, leaf area, biomass, etc.) [7–9]. However, there have been some
big challenges in improving the estimation accuracy of tree and stand parameters using
LiDAR data.

Terrestrial laser scanning (TLS) and airborne laser scanning (ALS) are commonly
used in forest resource investigations [10]. TLS uses a bottom-up scanning approach and
can be used to obtain detailed trunk and understory structure information for accurately
estimating individual tree and plot level parameters, such as tree location, DBH, volume,
and biomass. Using TLS, however, it is difficult to obtain complete information about
tree top canopies due to the influence of branches, foliage, and shading [11,12]. ALS, with
its top-down scanning approach, can be used to generate 3D spatial structures of tree
canopies and more accurately estimate tree heights than TLS and traditional field surveys,
but it is difficult to obtain information about lower layer canopies, such as tree trunks and
shrubs [13–15]. Moreover, due to the limitations of scanning view angle and distance, point
cloud data acquired by both TLS and ALS is partially missing, especially in forested areas
with high canopy closure. To combine the advantages of TLS and ALS and improve the
accuracy of estimating forest parameters, there is a strong need to register these two kinds
of point cloud data from TLS and ALS [16–18].

TLS point cloud data often provides relative coordinates, while ALS point cloud data
carrying a positioning orientation system offers geographic coordinates. This difference
leads to a challenge for the registration of the point cloud data from TLS and ALS. At present,
point cloud data registration is usually performed using methods based on geometric
features (e.g., point, line, and plane) [19–22]. In urban areas, obvious geometric feature
primitives such as boundaries and corner points of buildings are usually extracted and
regarded as key points [23,24]. For example, Cheng et al. achieved automatic registration
of TLS and ALS point cloud data using building outline features [25]. Li et al. achieved
semi-automatic registration of TLS and ALS point cloud data using building corners and
matching boundaries [26]. However, due to the complexity and irregularity of forests,
it is difficult to obtain fine geometric features. Using artificial markers is one solution
for the registration of TLS and ALS point cloud data in forested areas, but placing the
markers is time-consuming, and the markers are often hardly detectable in dense forests.
Some TLS instruments integrate external devices such as a global positioning system (GPS)
receiver and an inertial measurement unit [27]. However, these external devices are often
not applicable for registering point cloud data due to the remote locations of plots and the
occlusion of forest canopies, especially in dense forests [28]. Hence, for the registration of
point cloud data in forest environments, tree locations and tree attributes are used to realize
automatic registration of point cloud data [15,29–31]. Hauglin et al. used the normalized
values of DBH and tree height to register ALS and TLS point cloud data [32]. First, tree
position and DBH are extracted from TLS data. Tree position and tree height are obtained
from ALS data. Given an ALS range, the corresponding TLS is then searched for, and
the individual tree location distance and the normalized eigenvalues of DBH and tree
height are used for evaluation. This method usually has low registration accuracy and
requires manual adjustment of the search range. Polewski et al. used tree locations as
the registration primitive to measure the similarity by calculating horizontal and vertical
distance features between trees. The positions of trees are detected in the backpack laser
scanning (BLS) point clouds and ALS point clouds, and the similarity between them is
mapped to the weighted binary graph. Finally, a best-matching method is found to realize
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the fusion of ALS and BLS point cloud data in forested areas [14]. Guan et al. proposed a
novel framework to automatically fuse multiplatform LiDAR data based on tree location,
which assumes that the spatial distribution of trees in each forest is different. A triangulated
irregular network is constructed using Delaunay triangulation based on tree locations, and
the corresponding tree pairs are found using a voting strategy based on the similarity of
triangles [33]. It is difficult to extract accurate and reliable feature point pairs due to the
complexity of forests and different scanning angles.

Most of the existing registration methods require segmentation of individual trees and
obtaining information on tree locations, DBH, and height parameters as additional features
to evaluate the similarity, which is time-consuming. In addition, in natural broadleaf
forests with interlocking canopies, it is difficult to obtain accurate individual tree segmen-
tations [34] and tree and stand parameters. As a result, although the registration methods
based on the tree attributes, to some extent, work, the registration results of TLS and ALS point
cloud data are prone to errors [35]. Thus, there is a strong need to improve the registration of
TLS and ALS point cloud data. Dai et al. proposed a method of extracting crown feature
points through canopy density analysis to fuse ALS and TLS point cloud data in forested
areas. Low vegetation points in TLS and ALS data are initially removed, the point clouds
of tree crowns are retained, and the mean shift algorithm is used to cluster canopy point
clouds. Then, TLS canopy point clouds are subsampled according to the ALS crown point
cloud height histogram. Ultimately, the mean shift algorithm is again used to extract the
feature points of ALS and TLS crown point clouds as the registration primitive to fuse ALS
and TLS point cloud data [36]. This method has high registration accuracy, but it requires
manually matching TLS and ALS tree crowns.

In this paper, we propose a novel automatic registration approach for TLS and ALS
point cloud data based on the shape characteristics of canopy gaps. This method is simple
and effective, and it greatly reduces the computation intensity for feature point extraction
and the estimation of individual tree attributes. Additionally, this method can integrate
ALS and TLS point cloud data in forested areas quickly and effectively. The canopy point
cloud density model is first used to extract canopy gap boundary vectors. The weighted
effective area (WEA) algorithm is then adopted to obtain the canopy gap shape feature
points. Finally, the TLS and ALS feature points are aligned by utilizing the coherent point
drift (CPD) algorithm to solve the transformation parameters. A coarse and fine registration
are performed by applying transformation parameters to the TLS point cloud and using
the iterative closest point (ICP) algorithm, respectively. Individual tree segmentation and
parameter estimation are conducted using TLS point cloud data alone and fused point
cloud data, respectively. The accuracy of individual tree parameter estimation is compared
at different complexities of stand structures and conditions using field measurements as a
reference to verify the proposed method.

2. Materials and Methods
2.1. Study Area

This study was conducted at the Lutou Experimental Forest Farm of the Central South
University of Forestry and Technology, located in Pingjiang County, Hunan Province, China
(Figure 1a), with coordinates of 113◦51′ E to 113◦58′ E and 28◦31′ N to 28◦38′ N. The study
area has an area of 53.08 km2 and an elevation range of 124 to 1273 m. The elevation is
high in the south and low in the north, and the topography is mainly characterized by
low and medium mountains. The study area is located in a subtropical monsoon climate
zone with an average annual temperature of 15 ◦C, an average air humidity of 82%, and
an average annual precipitation of 1624.8 mm. The percentage of forest cover is over 95%.
This is an area characterized by subtropical evergreen broad-leaved forests with the main
tree species of oak, Schama, hemp, Chinese fir, pine, bamboo, camphor, etc. The natural
vegetation is lush. The forest types and stand structures are complex, including coniferous
plantations, broad-leaved forests, coniferous and broad-leaved mixed forests, bamboo
forests, shrubbery, and so on.
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Figure 1. (a) The study area and its location in Hunan Province of China; and (b) the diagrams of
the complexity degree of stand structures and conditions for (plot 1)—simple stand; (plot 2) and
(plot 3)—less complex stands; and (plot 4)—complex stand (within each of the plots, each color
indicates an individual tree).

2.2. Data
2.2.1. Plot Data

Considering tree species and stand features including developmental stage, planting
distance, understory vegetation, and the number of tree species in the stand [37], and based
on the actual judgment of the in situ investigation, four plots were selected based on the
complexity degree of stand structures and conditions and classified into three categories:
plot 1—“simple stand”, plot 2 and plot 3—“less complex stand”, and plot 4—“complex
stand”, as shown in Figure 1b. The fixed size of the plot was 20 m × 20 m. The plots were
surveyed in January 2021. There were 35, 61, 92, and 43 trees in the four plots, respectively,
totaling 243 trees. The trees in the plots were checked for each tree, parameters such as tree
DBH and tree height were recorded (Table 1), and individual tree locations were obtained
by Real Time Kinematic (RTK).
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Table 1. Characteristics of four forest plots selected in this study (SD: standard deviation).

Plot ID Dominant Tree Species Number of Trees DBH ± SD (cm) Height ± SD (m)

1 Chinese fir 35 13.18 ± 3.24 8.83 ± 1.72
2 Chinese fir 61 11.33 ± 2.31 7.80 ± 1.39
3 Chinese fir 92 9.78 ± 1.94 6.37 ± 1.06
4 Natural broad-leaf forest 43 19.07 ± 12.0 9.08 ± 3.48

2.2.2. ALS Point Cloud Data and Pre-Processing

ALS point cloud data were collected at the end of December 2020 using a Hornet
BB4 model UAV (https://www.huace.cn/, accessed on 8 August 2023) and a RIEGL VUX-
1LR scanner (https://www.riegl.com/, accessed on 8 August 2023). The UAV flew at an
altitude of approximately 250 m above ground and at a speed of 6 m/s. To increase the point
cloud density, a tic-tac-toe flight pattern was used to increase the route overlap. Control
points were set, and the true geographic coordinates of point clouds were obtained by
post-differential processing. The scanning was carried out with a viewing angle of 330◦, a
frequency of 300 kHz, and a ranging accuracy of 10 mm. The average density of point clouds
was greater than 100 pts/m2. The ALS data pre-processing included noise elimination,
ground point classification, and digital elevation model (DEM) generation. Noise points
such as bird flock points and low points were removed using LiDAR360 software (https://
www.lidar360.com/, accessed on 8 August 2023). To classify the point cloud data accurately
and efficiently, an improved progressive triangulated irregular network densification
filtering algorithm was used [38]. The DEM was obtained by interpolating the ground
points through a Delaunay triangular irregular net with a resolution of 0.3 m × 0.3 m.

2.2.3. TLS Point Cloud Data and Pre-Processing

TLS point cloud data were collected in mid-January 2021 using a Faro Focus3D X330
terrestrial 3D laser scanner (https://www.faro.com/, accessed on 8 August 2023). The
scanner has a wavelength of 905 nm and a field of view of 360◦ and 305◦ in the horizontal
and vertical directions, respectively. The measurement system error was approximately 2 mm
at 25 m. The beam diameter at the exit was 3.8 mm, the beam divergence was 0.16 mrad, and
the laser beam operated in 0.009◦ increments both horizontally and vertically. The scanning
positions of each plot were set up at its four corners: northeast, southeast, southwest, and
northwest. Depending on the plots, different numbers of scans were taken within the
plot to ensure the integrity of the data. Multiple target spheres were reasonably placed
within each of the plots so that at least three identical spheres could be seen by two adjacent
stations. The amount of TLS point cloud data was very large. To improve the computational
efficiency, the minimum point spacing method was used to extract the thinning before the
same pre-processing as the ALS point cloud so that the distance between the points in the
point cloud in 3D space was not less than the set threshold value.

2.3. Point Cloud Registration

Point cloud data registration is the process of establishing the linkage between ALS
point clouds and TLS point clouds by finding the matching points and then solving the
transformation parameters from TLS to ALS point clouds. In this paper, a method based on
the characteristics of canopy gap shape boundaries was proposed and used to fuse ALS
and TLS point clouds in forested areas. This method consists of three steps: (1) generation
of canopy gap boundary vectors from ALS and TLS point clouds; (2) acquisition of feature
or key points of the canopy gap vectors using the WEA; and (3) transformation and data
fusion of point clouds using the CPD method and the ICP algorithm. Figure 2 is the flow
chart of the proposed method.

https://www.huace.cn/
https://www.riegl.com/
https://www.lidar360.com/
https://www.lidar360.com/
https://www.faro.com/
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Figure 2. The flow chart of the proposed method to register the ALS and TLS point clouds in the
forested area.

In this method, canopy gap boundary vectors are first obtained through canopy point
cloud models. Based on the canopy gap vectors, a set of key points is then searched for and
extracted using the WEA algorithm [39]. The correspondence between the ALS point clouds
and the TLS point clouds is found, and the transformation parameters from the geographic
coordinates of the ALS point clouds to the relative coordinates of the TLS point clouds are
derived. Finally, the transformation parameters are applied to the TLS point clouds, which
is called coarse registration, and the transformed TLS point clouds are aligned with the
ALS point clouds using the CPD methods [40] and the ICP algorithm, which is called fine
registration [41].

(1) Canopy gap generation

Canopy gaps are empty areas or polygons in forest canopy layers caused by the natural
aging of trees, natural disasters, and man-made logging [42,43], which can be expressed as
the areas under the vertical projection of the gaps between tree canopies. At present, LiDAR
data canopy gap identification methods are mainly based on canopy height models (CHM)
and point clouds, respectively. Canopy gap identification based on the CHM includes the
threshold method, the pixel-by-pixel method, and the object-oriented method [43–45]. Point
cloud-based canopy gap recognition includes the voxel method [46] and clustering [47]. In
this study, canopy gaps were extracted directly from the perspective of the forest canopy,
and the workflow consists of three steps (Figure 3): (1) canopy point cloud separation and
canopy point cloud density model generation; (2) binary image conversion and canopy gap
boundary vector generation; and (3) canopy gap size screening.
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Figure 3. Workflow of canopy gap generation.

The pretreated LiDAR point clouds are classified into ground points and nonground
points. For both ALS and TLS data, the heights of the nonground points above ground
were calculated using DEM. The nonground points above a certain height threshold were
selected as the canopy points to generate the canopy point cloud density model. In the
experiment, 4 m was used for plots 1–3 and 7 m for plot 4. The canopy point cloud density
is the number of canopy points projected on a plane per unit area. The canopy point cloud
density model generated is used to extract the canopy gap boundary vectors, and the
canopy point clouds are projected onto the planes normalized by ground points. A square
of 0.3 m × 0.3 m is utilized as the target unit, and the number of point clouds in each target
unit is counted as the pixel value to generate the canopy point cloud density model. The
generated density model is transformed into a binary image by setting image pixel values
greater than or equal to one as 1 and otherwise as 0. The canopy gaps are extracted from the
converted binary images, raster-to-vector processing is performed to obtain the canopy gap
boundary vectors, and the number of image pixels in each canopy gap vector is counted.
To distinguish between branch gaps and canopy gaps in a forest stand, an area consisting
of a minimum of nine image pixels is regarded as a canopy gap. The minimum number of
pixels is determined in this experiment by taking into account the type of plot and the size
of the target unit. The canopy gaps with fewer than 9 pixels are eliminated. The canopy gap
boundary vectors contain only plane coordinate information and no elevation information.
The elevation values of the turning points of the canopy gaps are obtained using DEM. The
turning points are used as potential feature points.

(2) Feature point acquisition

The feature points are the most basic feature primitives in point clouds, which repre-
sent the distribution characteristics of the point clouds in space and do not change due to
the change in the coordinate system. All turning points of each canopy gap from ALS and
TLS point cloud data constitute its set of key points. Given a canopy gap, the transformation
parameters of the coordinates of the corresponding key points between ALS and TLS point
clouds are obtained and regarded as the linkage between the point clouds, so that the
correspondence between the point clouds can be quickly obtained. This method avoids the
operation and computation of massive amounts of data. The number and accuracy of the
feature points directly affect the efficiency and results of point cloud data registration. To
improve accuracy, the turning points are refined using the bottom-up WEA algorithm [40].
The algorithm assesses the canopy gap’s turning points by evaluating their importance.
Three adjacent turning points form a triangle, and its WEA area represents the importance
of the middle turning point (Figure 4).
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In Figure 4, triangle ABC has A as its vertex and BC as its base; X is the length of
the base BC; H is the length of the vertical line AD from vertex A to base BC; and L is the
distance from vertex A to the middle point E of the base. Usually, its area is calculated using
S (Equation (1)) but using this area will lead to two turning points, that is, the two vertices
belonging to two triangles, respectively, with a very tall triangle and a very flat triangle
having the same area and having the same significance. In this study, the algorithm used to
calculate the area considers the shape characteristics of the triangle, making the importance
of each vertex more scientific. Three weight factors, namely flatness, skew, and convexity,
are utilized to describe the shape features of the triangle. The WEA is calculated using
Equation (2), where WFlat, WSkew, and WConvex are the functions of flatness, skew, and
convex, respectively. The parameters H and X are used to calculate flatness; the ratio of H
to L is employed to measure the skewness of the triangle, and convexity is represented by
the direction of its vertex order relative to the predefined vertex order.

S = 0.5× X×H, (1)

WEA = WFlat ×WSkew ×WConvex × S, (2)

WFlat =

(
4Marctan(H/(KS× X))/π+ N

M + N

)KH
, (3)

WSkew =

(
SM + H/L

SM + 1

)SK
, (4)

WConvex =

{
C, convex
1, concave

, (5)

where C is a normal number. Parameter M > 0, N ≥ 0, (maximum range of control weight),
KS > 0, KH ≥ 1, SM ≥ 0, and SK ≥ 1. The algorithm first calculates the area of the triangle
formed by every three adjacent vertices using parameters X, H, and L, with the middle
point as the vertex and the line of the two end points as the bottom edge. The WEA of the
triangle is then calculated. If the WEA is less than the threshold value of 0.5, temporarily
remove it and re-calculate the WEA for its adjacent vertices. The calculation process is
repeated until the WEA of the triangle formed by every three adjacent vertices of the
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retained points is greater than the threshold value, and the turning point is selected as the
key or feature point. The algorithm results in one set of key points for the ALS canopy gap
and another set of key points for the TLS canopy gap for registration (Figure 5).
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(3) Point cloud transformation

Coarse registration is the process of finding the correspondence between the two sets
of key points from the ALS and TLS point clouds and the transformation parameters and
applying the parameters to the TLS point cloud. Based on the sets of key points, the CPD
algorithm is used to obtain the transformation relationship between ALS and TLS canopy
gap feature points [40]. The algorithm considers the alignment of two sets of key points
as a probability density estimation problem, applies the transformation parameters by
maximizing the likelihood to the center of mass of the Gaussian mixture model (GMM)
as a whole, and continuously iterates to finally align the two sets of key points. The
transformation of the GMM centroid position is defined as T(Y)= YRT+t, where R is the
rotation matrix and t is the translation vector. The set of TLS key points is regarded as a
Gaussian mixture model, and the set of ALS key points is regarded as the points generated
by the Gaussian mixture model. The posterior probability of the GMM probability density
function is calculated using Bayesian theory as the corresponding probabilities of the
sets of TLS and ALS key points, so that the problem of registration becomes the problem
of likelihood function parameter assignment. The CPD algorithm uses the Expectation–
Maximization (EM) algorithm to maximize the likelihood function and obtain the rigid
transformation parameters [48]. The EM algorithm is divided into an E-step and an M-step.
The E-step calculates the corresponding probability and expectation of the sets of TLS
and ALS key points, and the M-step recalculates the new parameters by maximizing the
expectations and continuously iterates to achieve the alignment of maximum likelihood
estimation.

The algorithm principle is as follows:
XN×D = {xn|n= 1, 2, · · · , N} and YM×D = {ym|n= 1, 2, · · · , M} are ALS and TLS,

respectively, used to extract feature points from a window, and M and N are the number of
points in dimension D.
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To initialize:

R = I, t = 0, 0 ≤ ω ≤ 1, σ2 =
1

DNM∑N
n=1 ∑M

m=1‖xn − ym‖
2. (6)

The EM algorithm iterates until it converges. E-step: calculate P,

Pmn =
exp−

1
2σ2 ‖xn−(Rym+t)‖2

∑M
k=1 exp−

1
2σ2 ‖xn−(Ryk+t)‖2

+ (2πσ2)
D/2 ω

1−ω
M
N

. (7)

M-step: solving R, t, and σ2 by maximizing the expectation. Compute the A matrix:

NP = 1TP1,µx =
1

NP
XTPT1,µy =

1
NP

YTP1, (8)

A =
(

X− 1µT
X

)T
PT
(

Y −1µT
Y

)
. (9)

Compute the singular value decomposition of A:

A = USVT, (10)

R = UCVT, t = µx − µy, C = d
(

1, 1, 1 . . . , 1,det
(

UVT
))

, (11)

σ2 =
1

NPD

(
tr
((

X −1µT
X

)T
d
(

PT1
)(

X −1µT
X

))
−tr
(

ATR
))

. (12)

Transform point clouds:
T(Y) = YRT+t, (13)

where 1 is the column vector of 1, P is a matrix for M × N representing all combined
probabilities of TLS and ALS points, and each element Pmn is equal to the value of the
equation P(m|xn).

The EM algorithm converges when the maximum number of iterations of 200 is
reached or when the difference in the log-likelihood function between two consecutive
iterations is less than a threshold of 1 × 10−5.

Based on the completed CPD alignment, the ICP algorithm is used to finely align
the coarsely aligned TLS point clouds to improve the alignment accuracy of the point
clouds. This algorithm calculates the transformation parameters between the point clouds
by finding the nearest point pairs in the two sets of key points to minimize the error
function. After finishing the fine alignment, the two-point clouds are aligned in the ALS
absolute geographic coordinate system.

2.4. Individual Tree Segmentation Method

The TLS and fused point cloud data were normalized before individual tree segmen-
tation to remove the effect of terrain. In this study, we used the comparative shortest
path algorithm based on ecological theory to separate individual tree point clouds and
extract individual tree parameters [49]. In this method, identifying tree trunks is first
carried out; that is, each tree trunk is identified by fitting the point clouds at DBH height
by the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
or circular detection method [50]. Trees tend to use the shortest path to optimize resource
allocation in the process of water and nutrient transmission. Therefore, the shortest path
distance of each point of a tree is normalized according to the size of the DBH, and the
shortest path after normalization is compared to determine the point of the tree that is
closer to its root. The algorithm has been integrated into the LiDAR360 software. The DBH
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and tree height of both the registered point clouds and TLS point clouds were extracted
automatically by the LiDAR360 software.

2.5. Accuracy Evaluation
2.5.1. Accuracy Evaluation of Registration Results

The performance of the method in terms of registration was evaluated according to
the distance residual by comparing the alignment results of the algorithm with manually
selected feature points. Given the point pi in the source point cloud, the registration error
can be calculated by the following equation:

di =
∥∥∥T
(

pi; θ
m1
)
− T

(
pi; θ

m2
)∥∥∥, (14)

where θm1 is the transformation parameter obtained by using the algorithm to extract
feature points, and θm2 is the transformation parameter obtained by manually selecting
feature points. Two hundred points are randomly selected to calculate the coarse and fine
registration distance residuals from the TLS point clouds.

2.5.2. Tree Parameter Estimation Accuracy

The most commonly used determination coefficients, R2, Root Mean Square Error
(RMSE), and relative RMSE (rRMSE), were used to evaluate the accuracy of individual tree
parameter estimates by LiDAR. R2 was used to measure the degree of correlation between
related variables. The larger the value, the higher the explanatory degree of the independent
variable and dependent variable. RMSE can reflect the sensitivity and extremes between
field measurements and estimates, with larger values indicating larger differences between
the observed and estimated values. The calculation equation is as follows:

R2 = 1−∑m
i=1(ŷi − yi)

2

∑m
i=1

(
yi −

-
y
)2 , (15)

RMSE =

√
1
m∑m

i=1(ŷi − yi)
2, (16)

rRMSE =
RMSE

-
y

, (17)

where ŷi and yi denote the estimated and measured values, respectively, and
-
y denotes the

measured mean value of the sample data, and m is the number of samples.

3. Results
3.1. Registration Results

The registration results of four plots are presented, including the plot global registra-
tion and profile results (Figure 6).

A quantitative evaluation of the registration accuracy of the proposed method is
performed using the evaluation criteria described in Section 2.5.1. Figure 6a shows the
global registration results for four plots. ALS and TLS ground points are fully overlapping,
and there is no stratification in Figure 6b. The experimental results demonstrate that the
proposed registration method can perform the registration of ALS and TLS point clouds
successfully.



Drones 2023, 7, 524 12 of 18Drones 2023, 7, x FOR PEER REVIEW 12 of 18 
 

 
Figure 6. Results after fine registration. (a) A global view of the results. (b) Profile of the results. Figure 6. Results after fine registration. (a) A global view of the results. (b) Profile of the results.



Drones 2023, 7, 524 13 of 18

Table 2 lists the distance residuals of the aligned point clouds after CPD coarse reg-
istration and ICP fine registration. The average distance residual of coarse registration is
194.83 cm, which implies that the CPD method-derived canopy gap shape feature points
provide a good initial alignment for the ALS and TLS point cloud registration. After the
ICP fine registration, the average distance residual is 2.14 cm, which indicates that the
proposed registration method has the great potential of accurately registering and fusing
the ALS and TLS point cloud data.

Table 2. Registration distance residuals of the proposed method for four plots.

Plot ID
CPD Average Distance Residual (cm) CPD + ICP Average Distance Residual (cm)

Min Max Ave. Min Max Ave.

1 94.28 105.62 100.10 0.92 3.11 1.60
2 332.05 365.06 348.55 0.71 2.07 1.35
3 260.54 285.43 275.02 0.26 2.57 1.20
4 51.78 59.73 55.65 0.53 11.00 4.40

194.83 2.14

3.2. Tree Parameter Estimation Results

In Table 3, linear regressions of the estimated values of tree parameters against the
measured values were conducted for each plot. When the TLS point cloud data were used
alone, the R2 values of the DBH estimates with the measurements for four plots were high,
and there were also no obvious differences in the R2 values among the plots. However, the
relative RMSE (rRMSE) value of plot four—complex stand—is much larger than those of
plots one, two, and three. Overall, the rRMSE values of estimating DBH using TLS point
cloud data are smaller than 10%, which indicates that using TLS point cloud data alone can
lead to accurate estimates of tree DBH.

Table 3. Assessment of individual tree parameter estimation accuracy.

Plot
DBH (cm) H (m)

TLS TLS Fused Point Cloud
R2 RMSE rRMSE R2 RMSE rRMSE R2 RMSE rRMSE

1 0.97 0.55 4.17% 0.84 0.68 7.70% 0.92 0.47 5.32%
2 0.98 0.32 2.82% 0.76 0.68 8.72% 0.91 0.40 5.12%
3 0.98 0.24 2.45% 0.72 0.55 8.63% 0.89 0.35 5.49%
4 0.98 1.53 8.02% 0.59 2.2 24.23% 0.74 1.75 19.27%

When the TLS point cloud data were used alone, results that were similar to those
of DBH were obtained for the estimation of tree height (Table 3 and Figure 7). However,
there is an obvious trend: as the complexity of the stand structures and conditions increases
from plot one—a simple stand—to plots two and three—less complex stands—and to plot
four—a complex stand—the R2 values of the tree height estimates with the measurements
decrease and the rRMSE values increase. Compared with those of DBH estimates, given the
complexity of stand structure and condition, the R2 value of tree height estimates against
its observations is smaller and its rRMSE is greater. This implies that using TLS point cloud
data alone, estimating tree height is more difficult than estimating DBH.

When the ALS and TLS point cloud data were fused and used for estimating tree height
(Table 3 and Figure 7), given a plot, that is, the complexity of stand structure and condition,
the R2 value of tree height estimates against its observations is obviously increased, and its
rRMSE decreases compared with those using the TLS point cloud data alone. Moreover,
the trend of the estimation accuracy decreasing with the increasing complexity of stand
structure and condition from plot one—simple stand—to plots two and three—less complex
stand—and to plot four—complex stand—is obviously noticed. The rRMSE values smaller
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than 6% for plot one—a simple stand—and for plots two and three—a less complex stand—
indicate that the tree heights of the simple and less complex stands can be very accurately
estimated using the fused point cloud data. However, it is still difficult to estimate the tree
heights of the complex stand using the fused point cloud data due to its high rRMSE value
of 19.27%.
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4. Discussion
4.1. Comparison of the Proposed Method with Other Approaches for Registration Accuracy

The proposed registration method is compared with the crown feature points-based
method [36], in which ALS and TLS point cloud fusion was implemented by extracting
crown feature points through canopy density analysis. The mean shift method was used to
obtain crown feature points from ALS and TLS data. A subsample of TLS data is needed to
align the ALS and TLS point distributions before the TLS feature point extraction. For more
details of the extraction method of tree crown feature points, the reader can refer to the
study of Dai and Yang [36]. The registration distance residuals for the method are shown
in Table 4.

Table 4. Registration distance residuals of the point cloud data for four plots using the crown feature
points method.

Plot ID
CPD Average Distance Residual (cm) CPD + ICP Average Distance Residual (cm)

Min Max Ave. Min Max Ave.

1 668.89 721.09 693.93 0.50 3.35 1.64
2 113.72 135.07 123.26 0.87 3.36 1.77
3 449.67 484.33 470.79 0.91 2.15 1.63
4 381.86 436.20 406.85 0.55 8.86 4.82

423.71 2.47

The average distance residual of the coarse registration from the CPD method is
423.71 cm, and the average distance residual for the final registration results is 2.47 cm.
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Comparing the results in Tables 2 and 4, it was found that the proposed method outperforms
the crown feature points method for all four plots.

Compared with the crown feature point method, the proposed method has certain
advantages in feature point extraction. Firstly, the feature point extraction steps of the
proposed method are simpler. The crown feature point-based method needs the use of the
mean shift method twice and a subsample of TLS point cloud data since there are differences
in the point densities of the ALS and TLS crowns. These differences can be neglected in the
proposed method. Secondly, the crown feature point-based method requires finding the
correspondence between ALS and TLS crowns manually before subsampling TLS crowns.
Manual involvement is not needed in the proposed method. Finally, the proposed method
is more efficient because of the low computational intensity of obtaining the feature points.

4.2. Comparison of the Proposed Method with Other Approaches for Registration Performance

Generally, the feature points in LiDAR point clouds of forested areas are local features
and characterized by a massive three-dimensional volume of data, and a large amount
of computation is thus needed in the registration of point clouds and estimation of tree
parameters. This is especially true for TLS point clouds. The computation time for searching
for tree correspondence based on graph matching can be expressed as O(n4) [30]. In the
crown feature points method, the time of computation can be expressed as O(Tn2) (T is
the number of iterations) [36]. In the registration methods based on the canopy shapes, in
which the correspondence between the key points of TLS and ALS point clouds is searched
for to achieve point cloud registration according to the matching strategy of the distance
between the corresponding key points, the computation time is accounted for as O(n2) [51].
In the proposed method, the time of computation is described as O(nlog(n)). Compared
with that of the proposed method, the number of point clouds involved in the computation
of the registration method based on the crown feature points is large, and the computation
intensity is much higher. In the proposed method, the amounts of the key points included
in two sets of the turning points of the canopy gap boundary vectors are smaller, and the
computation intensity is much lower. Therefore, the method proposed in this paper only
needs the search of the turning points of the canopy gap vectors, avoids the high intensity
of computation due to the massive point cloud data involved in the registration of ALS
and TLS point clouds, and greatly improves the efficiency of extracting the feature points.

4.3. Limitations

In this paper, we only tested the feasibility and accuracy of the proposed canopy gap
shape feature-based method for registration and fusion of ALS and TLS point clouds, and
we did not explore the parameter settings under different forest stand types and point
cloud densities, including the height thresholds for canopy point cloud separation, the
size of target cells, the resolution of the canopy point cloud density model, the thresholds
for image pixel values in the binarization process, and the thresholds of the WEA. The
height thresholds for canopy-point cloud separation vary depending on different study
areas and sample sites. Large target units will result in a small number of canopy gaps and
a great number of missing canopy gaps. A small target will cause the gaps that exist within
the individual tree canopies and are identified as the canopy gaps. The binarized image
pixel threshold will affect the shape of canopy gaps, and the WEA threshold will have an
influence on the results of extracting the canopy gap turning or feature points. Overall,
these parameter settings will affect the results of extracting the shape feature points of
canopy gaps and thus have an impact on the accuracy of registering the point cloud data.

5. Conclusions

A method of point cloud registration based on the shape characteristics of canopy
gaps was proposed in this paper, and automatic registration of TLS and ALS point cloud
data was conducted using the selected four plots with different complexity levels of stand
structures and conditions. The proposed method was compared with the method of fusing
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point clouds by crown feature points. The following conclusions can be drawn: (1) the
canopy gap shape-based method proposed in this study performed better for fusing TLS
and ALS point cloud data than the existing crown feature-based method; and (2) fusing
ALS and TLS point clouds improved the estimation accuracy of tree height in terms of the
R2 and rRMSE values between the estimated and observed values compared with using
TLS point cloud data alone. The accuracy improvement became more significant as the
stand structures and conditions became more complex. In conclusion, the method of point
cloud registration enhances the efficiency and automation of feature point extraction and
registration accuracy, which is beneficial for better quantification of forest structure and
monitoring and researching forest ecosystems.
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