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Abstract: This paper investigates the joint task allocation and resource optimization problem in an
integrated radar and communication multi-UAV (IRCU) system. Specifically, we assign reconnais-
sance UAVs and communication UAVs to perform the detection, tracking and communication tasks
under the resource, priority and timing constraints by optimizing task allocation, power as well as
channel bandwidth. Due to complex coupling among task allocation and resource optimization, the
considered problem is proved to be non-convex. To solve the considered problem, we present a
loop iterative optimization (LIO) algorithm to obtain the optimal solution. In fact, the mentioned
problem is decomposed into three sub-problems, such as task allocation, power optimization and
channel bandwidth optimization. At the same time, these three problems are solved by the divide-
and-conquer algorithm, the successive convex approximation (SCA) algorithm and the improved
particle swarm optimization (PSO) algorithm, respectively. Finally, numerical simulations demon-
strate that the proposed LIO algorithm consumes fewer iterations or achieves higher maximum joint
performance than other baseline schemes for solving the considered problem.

Keywords: IRCU system; task allocation; power; channel bandwidth; LIO algorithm

1. Introduction

Due to their flexible on-demand deployment, high mobility [1] and free trajectory
design [2], unmanned aerial vehicles (UAVs) are considered to be an important component
for the future battlefield, providing both ubiquitous communication and radar sensing
capabilities [3]. For emergency situations, such as disaster relief or on the battlefield, UAVs
can not only detect and track enemy targets to avoid the potential attack [4], but also
provide instant communication to the command center [5].

Although the advantages of a single UAV for detection or tracking [6,7] have been
demonstrated, its capabilities are generally limited by resource and quantity constraints,
and it may not be able to meet the communication requirements [8]. Additionally, in single-
site positioning, multiple distance measurements of the same target by a single UAV may
lead to large cumulative errors [9]. Moreover, UAV-assisted IoT systems are proven worthy
of integration in the next generation of wireless protocols, but there are issues of signal
quality loss and spectrum constraints in real-world implementation [10–12]. And these
problems can potentially be overcome by a multi-UAV system. Recently, many scholars
have applied multi-UAVs to perform complex tasks, for example, in the literature [13–19].
In [13], the authors proposed a method for cooperative multi-UAV reconnaissance task
planning in a denied environment based on an improved synthetic heuristic algorithm,
which was used to solve the problem that the traditional intelligent algorithm could not
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meet the requirements for cooperative multi-UAV reconnaissance task planning due to
slow convergence and the tendency to fall into local optima. The authors of [14] proposed
an improved K-means clustering analysis algorithm to solve the problem of too many
reconnaissance targets for UAV applications in the battlefield environment. In [15], an
UAV, an unmanned surface vehicle (USA) and an autonomous underwater vehicle (AUV)
were combined to implement a search-and-track (SAT) mission for an underwater target,
and strategies based on random simulation experiments and asynchronous planning were
developed to design the cooperative path planning algorithm in the search track phases.
To solve the problem of poor timeliness and large communication volume in the traditional
contract network protocol (CNP) when dealing with the dynamic multi-UAV cooperative
reconnaissance task assignment problem, an improved contract network protocol was
proposed in [16]. To address the problem of a high tracking success rate that is difficult to
be satisfied by a single UAV, a deep reinforcement learning (DRL) algorithm was designed
to allow UAVs to make intelligent flight action decisions to track the moving air target
in [17]. To solve the problem of the poor solution accuracy when using the GA algorithm for
large-scale task assignment of UAVs, a new algorithm combining reinforcement learning
and GA algorithm was proposed in [18]. The authors in [19] presented a new approach
to route planning for joint search and track missions by coordinated UAVs. From the
above literature, it is clear that they only consider multi-UAVs performing reconnaissance
and tracking tasks on the battlefield using radar, and do not consider communication
tasks where the UAVs gather targets’ information and transmit the information to the
command center. However, the deployment of a large number of UAVs, some providing
communication services and others performing radar sensing, will not only introduce
co-channel interference between the communication and radar systems, but also increase
the resource consumption.

To deal with these above problems, an integrated radar and communication (IRC) [20–26]
can be considered as a potential solution. In IRC, most of the hardware and signal pro-
cessing is shared between communication and radar due to the sharing of a common
transmission signal. As a result, the use of the payload and resources can be minimized.
To enable communication links by controlling the transmit beamforming, a dual-function
system with joint radar and communication platforms was developed in [20]. The authors
in [21] proposed the use of a single transmitter with multiple antennas to communicate with
downlink cellular users and simultaneously detect the targets. To trade off the performance
between radar and communication, the authors in [22] proposed an IRC MIMO system,
which minimized the downlink multi-user interference under a constant modulus con-
straint and a similarity constraint on the referenced radar signals. To ensure the downlink
communication performance of the IRC system, the authors in [23] developed a beam
pattern to enhance the radar sensing performance. To overcome the typical drawbacks
of radar processing, the authors designed an OFDM system for simultaneous radar and
communication operations in [24]. The authors in [25] proposed a novel multibeam frame-
work that allows seamless integration of communication and sensing. In [26], closed-form
solutions for optimizing the coefficients in the analogue antenna arrays were developed ,
which generated a multibeam for joint communication and radio sensing.

By taking advantage of multi-UAVs and IRC systems, it is possible to improve the per-
formance of communication and radar sensing with reduced resource consumption. There
has been little work aimed at using the IRC multi-UAV (IRCU) system to perform complex
tasks [27–30]. In [27], the authors studied the cooperative UAV sensing in multi-UAV
networks, specifically, UAVs equipped with sensors, communication, and computational
units to sense the environment by performing surveillance and computational tasks. The
authors in [28] proposed a cyber-twin-based distributed tracking algorithm to solve the
problem pf realizing low-overhead UAV swarm cooperation to track multi-targets in a
distributed architecture. The authors in [29,30] proposed a novel multi-UAV cooperative
sensing and communication scheme with overlapped sensing task allocation by taking full
advantage of multi-UAV sensing and communication.
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However, the above literature basically considers sensors to sense the environment
rather than using radar to detect and track targets. Therefore, a number of important issues
need to be addressed, such as task allocation, transmission power allocated to each UAV,
channel bandwidth allocated to each sub-channel for each communication task. In this
paper, we study an IRCU system, where multiple UAVs are employed to cooperatively
detect and track the targets and simultaneously transmit the collected information to the
command center.

Therefore, the purpose of this paper is to study a joint task allocation and resource op-
timization problem in the IRCU system under the resource, priority and timing constraints.
The main contributions are summed up as follow:

• We consider a joint task allocation and resource optimization problem in the IRCU
system under the resource, priority and timing constraints by jointly optimizing task
allocation, power as well as channel bandwidth, and formulate the considered problem.

• Considering the mentioned complex non-convex problem, we propose an LIO algo-
rithm, which obtains the optimal solution in a loop iterative manner.

• The considered problem is actually decomposed into three sub-problems, such as task
allocation, power optimization and channel bandwidth optimization. At the same
time, these three problems are solved by the divide-and-conquer algorithm, the SCA
algorithm and the improved PSO algorithm, respectively.

• Simulation results demonstrate that the LIO algorithm consumes fewer iterations or
gains higher maximum joint performance than other baseline schemes for solving the
considered problem.

The rest of this paper is organized as follows. Section 2 depicts the joint task allocation
and resource optimization problem in the IRCU system under the resource, priority and
timing constraints with its mathematical formulation. In Section 3, we decompose the
considered problem into three sub-problems, and propose an LIO algorithm for solving the
corresponding problem in a loop iterative manner. Section 4 conducts several simulations
and comparisons to verify the feasibility and effectiveness of the proposed algorithm. This
paper is concluded in Section 5.

2. System Model and Problem Formulation

The main parameters of this paper is shown in Table 1.

Table 1. Simulation parameter settings.

Variables Explanation

N The number of tasks
N1 The number of communication tasks
Nt The number of task types
M The number of UAVs
N The task set
M The UAV set
H The hovering altitude of the large flying platform

Ttotal The total time
Ptotal The total power
Btotal The total channel bandwidth

i The task index
j The task type
si The task type to which the i-th task belongs

Pr,i The importance level of task i
Td,i The deadline time of task i
Tc,i The dwell time of task i
Ti The return time of task i
Ri The designated distance of task i
pi The consumption power of task i
Bi The channel bandwidth of task i
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Table 1. Cont.

Variables Explanation

f (si) a 0–1 decision function
S The task type matrix
P The task consumption power vector
B The channel bandwidth vector
F The task allocation matrix
Q The observation noise covariance
tSI The scheduling interval
Ri,j The task performance of task i that belongs to task type j

Pmin,j The minimum task performance of task type j
Pmin The mainimum power
Pmax The maximum power
Bmin The mainimum channel bandwidth
Bmax The maximum channel bandwidth
pfa The false alarm probability of the receiver
h0 The channel gain of the line-of-sight channel
N0 The power spectral density of noise
Ph The power consumed by each UAV while hovering
γ The minimum task scheduling success rate
wj The weight coefficient of the j-th task type

2.1. System Model

As shown in Figure 1, we consider an IRCU system where the reconnaissance UAVs
detect and track the targets, and then the communication relay UAVs trasmit their collected
information to their corresponding communication nodes. There exists N tasks, the set of
which is denoted byN = {1, 2, . . . , N}. The set of M UAVs, denoted byM = {1, 2, . . . , M},
consists of reconnaissance UAVs and communication relay UAVs, which are all grouped
together on a large flying platform. In this system, we make some assumptions as follows:
(1) The platform is hovering at X0 = [0, 0, H]; (2) The different types of UAVs all take off
from the platform and fly to the designated task site to perform tasks; (3) Since the topic
of this paper focuses on the process on the process of UAV task execution, the resource
consumption of platform hovering and UAV flying to the task location is ignored; (4) The
UAVs in this platform are assigned to perform the detection, tracking and communication
tasks independently, i.e., each UAV only selects one task, and the corresponding type of
UAVs is needed to perform the corresponding task of the IRCU system, e.g., reconnaissance
UAVs perform detection and tracking tasks, and so on; (5) The UAV arrives at the desig-
nated task site, hovers and performs its task; (6) The time interval between two consecutive
scheduling of the same task is defined as the return time. Note that these tasks are not
executed in a specific sequence. Thus, we consider the task scheduling problem of the
IRCU system that is aiming at the scheduling of UAVs.

We define Nt as the number of task types, where Nt is equal to 3 and the task types are
detection, tracking and communication, respectively. Let S = [si]1×N be a task type marix
where si denotes the type of task to which the i-th task belongs. We assume that the i-th
task of the integrated UAV task scheduling is defined as Ti = {Pr,i, Td,i, Tc,i, Ti, Ri}, where
Pr,i is the importance level of the i-th task; Td,i is the deadline time of the i-th task; Tc,i and
Ti are the dwell time and the return time of the i-th task; Ri is the designated distance of
the i-th task. Define P = [p1, p2, . . . , pN ] and B = [B1, B2, . . . , BN1] be the task consumption
power vector and the channel bandwidth vector, respectively, where N1 is the number of
communication tasks. Note that a scheduling interval TSI is the maximum return time
among N tasks.
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Figure 1. An IRCU system.

2.2. Task Model

The task analysis of the IRCU system includes three main components: detection,
tracking and communication.

2.2.1. Detection

Assume that Swerling type I target is considered. If the i-th task is the detection task
and the radar of each UAV transmits a pulse, the detection probability of single pulse
transmitted by the reconnaissance UAV is [31]

pd,i = (1+µd,i)
√

pfa (1)

where pfa is the false alarm probability of the receiver; µd,i is the return signal-to-noise ratio
(SNR) of the radar receiver. When pfa is a constant, pd,i is only determined by µd,i.

For ease of calculation, we define

Ri,1 = pd,i (2)

which satisfies
Ri,1 ≥ Pmin,1 (3)

where Pmin,1 is the minimum probability that the i-th task is successfully scheduled.
Referring to [32], µd,i is written as

µd,i =
pi ArσdTc,i

4πkBLsTeR4
i θ

(4)

where pi is the average transmitter power of the radar of the reconnaissance UAV when
performing task i; Ar denotes the effective receiving antenna area; σd represents the radar
cross section of the target; Ls is the system loss; kB denotes Boltzmann parameter; Te
represents the system temperature; Ri denotes the designated distance of radar detection
when performing task i; θ represents the research angle. Let

α =
Arσd

4πkBLsTeθ
(5)

we can rewrite (5) compactly as follows

µd,i =
αpiTc,i

R4
i

(6)
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2.2.2. Tracking

If the i-th task is the tracking task, the observation noise covariance Q of the radar in
performing target tracking can be expressed as

Q =

[
σ2

ϕ 0
0 σ2

φ

]
=

[
σϕ(Ti)

2 0
0 σφ(µt,i)

2

]
(7)

where σ2
ϕ is the distance measurement error value, which is mainly associated with Ti; σ2

φ

denotes the angular measurement error value, which is mainly associated with µt,i. And
the mathematical expression of the angular measurement error is [33]

σφi = θdB/(Km
√

2µt,i) (8)

where θdB is the width of the radar antenna beam; Km is a constant; µt,i is the radar echo
signal-to-noise ratio of task i, which is defined as [33]

µt,i =
piσtLrTc,i

R4
i

(9)

where pi is the radar transmitting power of the reconnaissance UAV when performing task
i; σt is the tracked target cross-sectional area; Lr is the radar constant of the reconnaissance
UAV; Ri is the designated distance of radar tracking when performing task i.

When the reconnaissance UAV is tracking a target, the target tracking accuracy is
related to the observation noise covariance Q. Since Ti is given, the target tracking accuracy
is mainly related to µt,i. Thus, the IRCU system takes the angular error value as the tracking
accuracy and the radar echo signal-to-noise ratio as a metric. Then, the target tracking
accuracy is written as

Ri,2 = µt,i (10)

which satisfies
Ri,2 ≥ Pmin,2 (11)

where Pmin,2 is the minimum radar echo signal-to-noise ratio.

2.2.3. Communication

If the i-th task is the communication task, the communication relay UAV of the IRCU
system communicates directly with the communication node on the ground. Assume
that the channel between the communication relay UAV and the communication node
is a line-of-sight (LOS) channel under U2U communication [34]. Thus, according to the
theorem of Shannon, the transmission rate in the LOS channel model can be calculated
by [35]

Rt = Bi log2(1 +
pih0

N0Bi
) (12)

where pi denotes the singal transmission power when the communication relay UAV
performs task i; h0 is the channel gain of the LOS channel; N0 denotes the power spectral
density of noise; Bi is the channel bandwidth when peforming task i.

Then, we have
Ri,3 = Rt (13)

To ensure proper communication performance, the transmission data rate of commu-
nication should be no less than the minimum transmission data rate Pmin,3 required for
communication transmission, then

Ri,3 ≥ Pmin,3 (14)
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2.3. Constraints
2.3.1. Task Constraint

Define f (si) be a 0–1 decision function, and 1 means the i-task is successfully scheduled,
otherwise it is unscheduled. Then,

f (si) =

{
1, i f si = j and Ri,j ≥ Pmin,j, ∀i, j
0, else

(15)

2.3.2. Time Constraint

Define TTotal be the total time, and the time consumed by the IRCU system to perform
tasks is

Ts =
N

∑
i=1

f (si)βiTc,i (16)

where βi is the number of times that the i-th task is scheduled in the scheduling interval.
And it satisfies

Ts ≤ TTotal (17)

2.3.3. Return Time Constraint

The return time of each task satisfies

Ti ≤ Ti,max = TSI ≤ Ts (18)

2.3.4. Power Constraint

Assume that only the energy consumption of the UAV during tasks and flight is
considered. Define ETotal be the total energy of the system, and Ph is the power consumed
by each UAV when hovering, then

pmin ≤ pi ≤ pmax (19)

N

∑
i=1

f (si)(pi + Ph) ≤ Ptotal (20)

2.3.5. Bandwidth Constraint

Assume that the communication relay UAV performs communication task i, the
bandwidth channel satisfies

Bmin ≤ Bi ≤ Bmax (21)

N

∑
i=1

f (si)Bi ≤ Btotal (22)

2.4. Problem Formation

Considering the system resources, the number of scheduled tasks and the multi-
functional constraints in the IRCU system, the joint performance of all successfully sched-
uled tasks of the IRCU system can be defined as

U(S, P, B) =
N

∑
i=1

Nt

∑
j=1

wjRi,j f (si) (23)

where wj is the weight coefficient of the j-th type of task.
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Thus, the problem of maximizing the joint performance of all successfully scheduled
tasks in the IRCU system is formulated as

P : max
S,P,B

U(S, P, B) (24)

s.t. (3), (11), (14), (15), (17)–(22) (25)
N

∑
i=1

f (si) ≥ Nγ (26)

where γ is the minimum task scheduling success rate.

3. Algorithm Analysis

In this section, the problem of the maximum joint performance of all successfully
scheduled tasks in the IRCU system is solved by an LIO algorithm in a loop iterative
manner. Since problem P is non-convex, we decompose the original problem into three
sub-problems solved by the divide-and-conquer algorithm, the SCA algorithm and the
improved PSO algorithm, respectively. For details, please refer to the analysis of the
algorithm below.

3.1. Task Allocation

When the task-consuming power vector P and the channel bandwidth vector B are
fixed, P is rewritten as

P1 : max
S

U(S) (27)

s.t. (3), (11), (14), (15), (17), (18), (26) (28)

According to the task priority of each task, the set of task types is calculated. For
example, when the number of tasks N = 3, if the priority of 3 tasks Pr,1, Pr,2, and Pr,3 are 2.1,
1.4, and 3.1 (Pr,2 < Pr,1 < Pr,3), respectively, then the order of execution of the tasks is 2,1,3.

Then, define F = [ f (si)]1×N be the task allocation matrix. Thus, problem P1 is
converted to

P1′ : max
F

U(F) (29)

s.t. (15), (17) ∼ (18), (26) (30)

Therefore, we intend to use a divide-and-conquer algorithm to solve this
sub-problem [36].

3.2. Power

When the task allocation matrix F and the channel bandwidth vector B are fixed, P is
rewritten as

P2 : max
P

U(P) (31)

s.t. (3), (11), (14), (19), (20) (32)

Theorem 1. U(P) is non-convex.

Proof. Please see Appendix A.

Since U(P) is non-convex, problem P2 is the non-convex problem. To solve the
problem, SCA algorithm is adopted to achieve a sub-optimal solution of P2. Note that
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the key idea of SCA algorithm is to approximate the non-convex function to the convex
function in an iterative manner [37]. For ease of calculation, (23) is written as

U(P) =
N

∑
i=1

Nt

∑
j=1

wjRi,j(pi) f (si) (33)

In fact, (33) can be globally lower-bounded by its first-order Taylor expansion with
respect to pi at any point [38]. Let pk

i be the power consumed by task i at the k-th iteration,
and the lower bound of Ri,j is

R̂i,j(pi, pk
i ) = Ri,j(pk

i ) +∇Ri,j(pk
i )(pi − pk

i ) (34)

where Ri,j(pk
i ) and ∇Ri,j(pk

i ) are the k-th task performance and the first-order derivative of
Ri,j(pk

i ) with respect to pk
i .

Therefore, problem P2 is approximated as the following problem

P2′ : max
P

N

∑
i=1

Nt

∑
j=1

wjR̂i,j f (si) (35)

s.t. R̂i,j ≥ Pmin,j (36)

(19), (20) (37)

With convex (35)–(37), P2′ is convex. Furthermore, we can adopt the standard convex
optimization techniques, such as CVX solver [11], to iteratively solve this problem. It is
worth noting that the optimal solution obtained from P2′ is a lower bound of P2.

3.3. Channel Bandwidth

When the task allocation matrix F and the task-consuming power vector P are fixed,
P is rewritten as

P3 : max
B

U(B) (38)

s.t. (14), (21), (22) (39)

Problem P3 is a NP-hard problem. Since there are linear constraints and a nonlinear
objective function, then P3 is not an integer programming problem. Thus, we intend to use
an intelligent algorithm to solve this sub-problem, such as PSO, GA, etc, and apply PSO to
solving it.

Since PSO algorithm is prone to converge to local optimization, the sub-problem
introduces the improved PSO [39]. Define x = [x1, x2, . . . , xN1] and v = [v1, v2, . . . , vN1] to
be the position vector and the velocity vector. Note that the channel bandwidth vector B is
equal to x. Then, when the m-th particle is at the k-th iteration, we have{

vm(k + 1) = c1vm(k) + c2(Xm
l (k)− x(k)) + c3(Xg(k)− x(k))

xm(k + 1) = xm(k) + vm(k + 1)
(40)

where c1, c2 and c3 are learning factors; Xm
l (k) is the historical best position of particle m at

the k-th iteration; Xg(k) is the historical best position of the particle population at the k-th
iteration.

Then, to improve convergence speed and avoid algorithm falling into local optimiza-
tion, (28) is rewritten as

vm(k + 1) = λ[c1vm(k) + c2(Xm
l (k)− x(k)) + c3(Xg(k)− x(k))] (41)
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where λ = 1
|8−ε−

√
ε2−2ε|

, and ε =
√

c2
1 + c2

2 + c2
3. And the improved PSO is detailed in

Algorithm 1.

Algorithm 1 Improved PSO Algorithm
Input: Maximum number of iterations Nk, F, P
Output: B∗

1: Initialize the iterative index k = 1;
2: Initialize x(k) and v(k);
3: According to (40) and (41), calculate the historical best positions of individuals and

group, respectively;
4: while k ≤ Nk do
5: Update x(k) and v(k) with a boundary treatment;
6: According to (40) and (41), calculate and update the historical best positions of

individuals and group, respectively;
7: Obtain B(k) = x(k);
8: if |U(B(k))−U(B(k− 1))| ≤ ε then
9: Stop, obtain B∗;

10: else
11: Set k = k + 1, and back to step 5;
12: end if
13: end while

Therefore, the joint optimization of task allocation, power and channel bandwidth
is detailed in Algorithm 2. And the mainstream flowchart for Algorithm 2 is shown in
Figure 2.

Algorithm 2 Loop Iterative Optimization Algorithm

Input: Nmax, P1, B1.
Output: F∗, P∗, B∗ or U∗.
1: Initialize the iterative index n = 1;
2: repeat
3: Solve P1′ to obtain Fn,∗ by using the divide-and-conquer method for the given Pn and

Bn;
4: Initialize iterative index h = 1;
5: repeat
6: Solve P2 to obtain Pn,∗ by using SCA algorithm and CVX solver for the updated Fn,∗

and Bn, respectively;
7: if ‖Ph,∗ − Ph−1,∗‖ ≤ δ and h < Nmax1 then
8: Pn,∗ = Ph,∗;
9: break;

10: end if
11: Update the iterative index h = h + 1;
12: until
13: repeat
14: Solve P3 to obtain Bn,∗ by using Algorithm 1 for the updated Fn,∗ and Pn,∗;
15: Update the iterative index n = n + 1;
16: Calculate U(Fn, Pn, Bn);
17: until n ≥ Nmax or
|U(Fn, Pn, Bn)−U(Fn−1, Pn−1, Bn−1)| ≤ δ;

18: Output: Optimal U∗ or F∗, P∗, B∗.
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Figure 2. The mainstream flowchart for Algorithm 2.

3.4. Analysis on Convergence and Computational Complexity

In Theorem 2, the convergence of Algorithm 2 is further proved.

Theorem 2. Algorithm 2 is guaranteed to converge to the sub-optimal solution of P .

Proof. Please see Appendix B.

Moreover, the computational complexity of the proposed algorithm depends mainly
on the resolution of three decomposed sub-problems. Let N be the number of tasks, N1
denote the number of the communication tasks, K3 denote the number of iterations of
Algorithm 1, Np represent the number of particle in Algorithm 1. Define K1 and K2 be the
number of iterations of the outer and SCA in Algorithm 2, respectively.

For these three sub-problems, the computational complexity of the divide-and-conquer
algorithm, the SCA algorithm and the improved PSO algorithm are written as, respectively,

C1 = N (42)

C2 = K2(n1)
3 (43)

C3 = K3NpN1 (44)

where n1 is the number of updated variables in each iteration.
Then, the computational complexity of Algorithm 2 is

Ct = K1(C1 + C2 + C3) (45)

Therefore, the total computational complexity of the proposed algorithm is calculated
as O(K1(N + K2(n1)

3 + K3NpN1).

4. Simulation Analysis

In this section, several simulations will be conducted to verify the proposed algorithm
in the joint task allocation and resource optimization problem of the IRCU system.

To validate the effectiveness of the proposed algorithm, we compared the proposed
algorithm with other baseline schemes, intelligent algorithms and Q-learning algorithm,
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and applied them to the joint task allocation and resource optimization problem. The simu-
lations were conducted in Pycharm Community’s 2019.1.1 x64 version of the programming
environment on an Intel Core PC with 8GB memory. The joint task performance that the
IRCU earn by successfully completing N tasks is considered to be a performance metric for
evaluating this system.

We consider the IRCU system, where multi-UAVs and targets as well as communica-
tion nodes are randomly distributed within a two dimensional area of 20× 20 km2. Then,
The main parameter settings in this paper can be seen in Table 2, which can be referred
to [33,40].

Table 2. Simulation parameter settings.

Parameter Value

Total time Ttotal = 600 s
Total power Ptotal = 2000 W

Total channel bandwidth Btotal = 1000 Hz
Number of tasks N = 10
Number of UAVs M = 20

Hovering altitude of the platform in the IRCU system H = 500 m
False alarm probability pfa = 0.0015

Effective receiving antenna area for phased-array radars Ar = 0.0173 dB ·m2

Detecting target cross area σd = 1 m2

Tracking target cross area σt =1 m2

Radar constant Lr = 1.6× 1010

Channel gain of LOS h0 = −20 dBm/Hz
Noise power spectral density n0 = −169 dBm

The minimum power Pmin = 100 W
The maximum power Pmax = 200 W
UAV hovering power Ph = 50 W

The minimum bandwidth Bmin = 100 Hz
The maximum bandwidth Bmax = 300 Hz

The minimum task scheduling success rate γ = 0.6
Weight coefficients w1 = 0.1, w2 = 0.6, w3 = 0.3

Error accuracy of LIO algorithm δ = 10−5

Learing factors of LIO algorithm c1 = c2 = c3 = 2

Then, we conduct simulation experiments for algorithm comparisons, i.e., the pro-
posed algorithm and five baselines:

• Equal power and Improved PSO (PPSO): Powers of all tasks are equal, then other
algorithms are the same for solving the remaining sub-problems.

• Equal channel bandwidth and SCA (BSCA): Channel bandwidths of all communication
tasks are equal, then similar to the first scheme, other algorithms are also the same for
solving the remaining sub-problems.

• SCA and PSO [41] (SCAP): Channel bandwidths of all communication tasks are
obtained by PSO and its parameter settings can be found in [41], then the same
algorithms are applied to solving the remaining sub-problems.

• SCA and GA [42] (SCAG): Channel bandwidths of all communication tasks are ob-
tained by GA and its parameter settings can be found in [42], then the same algorithms
are applied to solving the remaining sub-problems.

• SCA and Q-learning [43] (SCAQ): Channel bandwidths of all communication tasks
are obtained by Q-learning and its parameter settings can be found in [43], then the
same algorithms are applied to solving the remaining sub-problems.

Based on the above algorithms, various simulations were conducted by assigning
reconnaissance UAVs and communication relay UAVs of the IRCU system to perform three
types of tasks, i.e., the detection, tracking and communication tasks in a 20 km × 20 km
combat scenario. It is important to note that, as an integrated multi-UAV system, there is
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sharing of resources, as well as resource constraints when performing multiple tasks. This
requires consideration of how to schedule the various UAVs of the IRCU system so that
the minimum task number requirements and the maximum system task performance are
reached. And the task information can be seen in Table 3.

Table 3. Information of 10 tasks.

Task Task Priority Dwell Time (s) Task Distance (km)

Detection task 1.1 3 10
Communication task 1.9 4 -

Tracking task 2.3 8 2.5
Communication task 2.5 5 -

Detection task 2.9 2 19
Tracking task 3.2 7 3.5
Tracking task 3.8 6 4.5

Communication task 4.6 4 -
Detection task 5.2 5 11

Communication task 6.0 3 -

4.1. Case

In case 1, we tested the joint performance of the IRCU system under wj, Pmax, Bmax
and N when using LIO algorithm, which can be seen in Figures 3–6.

Figure 3 depicts an illustration of the joint performance of LIO algorithm with different
w1, w2 and w3 applied to solving the considered problem. From Figure 3, we can observe
that as n increases, these three curves first increase rapidly, then grow slowly and keep
plateauing. By comparing the three curves with different w1, w2 and w3, we note that
the maximum joint performances of the three curves do not differ significantly, while the
number of iterations required to reach the maximum joint performance for the three curves
is not the same. Specially, by following the order of the legend from top to bottom in the
diagram, the maximum joint performance of the three curves is 116.73, 116.65 and 116.71,
respectively; the number of iterations of LIO with w1 = 0.1, w2 = 0.6 and w3 = 0.3 is
34, which is lowest than that of LIO with w1 = 0.2, w2 = 0.4 and w3 = 0.4 and LIO with
w1 = 0.3, w2 = 0.5 and w3 = 0.2; the number of iterations of LIO with w1 = 0.3, w2 = 0.5
and w3 = 0.2 is superior to that of LIO with w1 = 0.2, w2 = 0.4 and w3 = 0.4, and their
iterations are 90 and 45, respectively.

0 20 40 60 80 100
Number of iterations (n)

114.0

114.5

115.0

115.5

116.0

116.5

Jo
in

t p
er

fo
rm

an
ce

 (U
)

LIO,w1 = 0.1,w2 = 0.6,w3 = 0.3
LIO,w1 = 0.2,w2 = 0.4,w3 = 0.4
LIO,w1 = 0.3,w2 = 0.5,w3 = 0.2

Figure 3. LIO algorithm with different w1, w2 and w3.

Figure 4 depicts an illustration of the joint performance of LIO algorithm with different
Pmax applied to solving the considered problem. In Figure 4, we can observe that as n
increases, these three curves first increase rapidly, then grow slowly and keep plateau-
ing. By comparing the three curves with different Pmax, we note that the maximum joint
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performance of LIO with Pmax = 200 W is higher than that of LIO with Pmax = 150 W
and Pmax = 220 W, and the maximum joint performance of LIO with Pmax = 220 W is
the lowest.
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Figure 4. LIO algorithm with different Pmax.
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Figure 5. LIO algorithm with different Bmax.
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Figure 6. LIO algorithm with different N.

Figure 5 depicts an illustration of the joint performance of LIO algorithm with different
Bmax applied to solving the considered problem. We can observe from Figure 5 that similar
to the situation in Figures 3 and 4, these three curves also grow rapidly and then slowly
to a plateau with the increment of n. Moreover, by comparing the three curves with
different Bmax, we note that the maximum joint performances of the three curves do not
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differ significantly, while the number of iterations required to reach the maximum joint
performance for the three curves is not the same. Specially, by following the order of the
legend from top to bottom in the diagram, the maximum joint performance of the three
curves is 116.73, 116.73 and 116.69, respectively; the number of iterations of LIO with
Bmax = 300 Hz is 34, which is close to that of LIO with Bmax = 150 Hz; the number of
iterations of LIO with Bmax = 200 Hz is the lowest, and its iterations is 85.

Figure 6 depicts an illustration of the joint performance of LIO algorithm with different
N applied to solving the considered problem. We can observe from Figure 6 that with the
increment of N, the joint performance increases slowly at first, and then rapidly increases
when N > 7. Moreover, their joint performance does not differ much when N is 5, 6 and 7,
respectively, which is similar to the case when N is 8 and 9. However, when N is 7 and 8,
respectively, their joint performance is greatly different, which is also similar to the case
when N is 9 and 10. And the reason behind this phenomenon is that the joint performance is
calculated with respect to task number, weight coefficients and task scheduling success rate.

In case 2, PPSO algorithm, BSCA algorithm, SCAP algorithm, SCAG algorithm and
SCAQ algorithm are both used for solving the considered problem. We compared them
with LIO algorithm by obtaining the joint performance under the same system, and their
joint performance changes with n in Figure 7.
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Figure 7. Comparison between different algorithms under the IRCU system.

Figure 7 depicts a comparison chart between these six algorithms applied to solving
the considered problem under different numbers of tasks. When N = 10, we can observe
that as n increases, the curve of LIO first increases rapidly, then grows slowly and remains
stable when n is approximately 34. And the maximum joint performance of LIO is roughly
116.73. Similar to the curve of LIO, the curve of PPSO also grows rapidly and then slowly
to a plateau when n > 165. But, the maximum joint performance of PPSO is inferior
to that of LIO, which is roughly 100.77. Moreover, the curves of SCAP and SCAG keep
growing slowly and remain steady when n > 235 and n > 95, respectively. Compared to
the curve of LIO, the curves of SCAP and SCAG take more iterations to obtain the same
maximum joint performance. Moreover, the curves of BSCA and SCAQ keep plateauing
consistently, and their joint performance is 115.78 and 116.69, respectively. Meanwhile, the
joint performance of BSCA and SCAQ is larger than that of LIO when n < 15 and n < 32,
however, after n > 15 and n > 32, the situation is reversed. From Figure 7, we note that
similar to the case when N = 10, the increasing trends of the curves when N = 8 also
tend to be the same, except that the joint performance is lower due to the small number of
tasks. The reason behind this phenomenon is that the curves of PPSO, BSCA and SCAQ do
not take the optimal solution, while the curves of SCAP and SCAG converge more slowly
compared to that of LIO.
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4.2. Analysis

Comparing the situations of Figures 3–6, we note that wj and Bmax have little impact
on the maximum performance of LIO, while Pmax and N have a significant impact on
the maximum performance of LIO. The specific reasons for these cases are as follows:
when N = 10, Pmax = 200 W and Bmax = 300 Hz, different weight coefficients affect the
proportion of each task’s performance in the joint performance, but weight coefficients
do not change greatly, resulting in little change in the joint performance; when N = 10,
Pmax = 200 W, w1 = 0.1, w2 = 0.6 and w3 = 0.3, different maximum channel bandwidths
only affect the communication task, and the proportion of communication task performance
in joint performance is also affected by w3; when N = 10, Bmax = 300 Hz, w1 = 0.1,
w2 = 0.6 and w3 = 0.3, different maximum powers affect the overall tasks, leading to great
change in the joint performance; when Pmax = 200 W, Bmax = 300 Hz, w1 = 0.1, w2 = 0.6
and w3 = 0.3, different task numbers affect the overall tasks, resource allocation and task
scheduling success rate, resulting in great change in the joint performance.

Comprehensively considering the situations of Figure 7, we note that the iteration
number of LIO is fewer than that of PPSO, SCAP and SCAG, and the maximum joint
performance of LIO is higher than that of other baseline schemes, except for SCAP and
SCAG. The reason is that PPSO, BSCA and SCAQ do not take the optimal power or optimal
channel bandwidth, resulting in low joint performance. Meanwhile, compared to LIO,
SCAP and SCAG need more iterations in obtaining the optimal channel bandwidth, and the
overall number of iterations required in obtaining the same maximum joint performance is
also higher.

5. Conclusions

In this paper, the joint task allocation and resource optimization problem in the IRCU
system was described and formulated, and reconnaissance UAVs and communciation UAVs
were considered cooperatively accomplishing the detection, tracking and communication
tasks of the system under the resource, priority and timing constraints by optimizing task
allocation, power as well as channel bandwidth. After that, in order to solve the complex
non-convex problem, we proposed an LIO algorithm to obtain the optimal solution. In fact,
the considered problem was decomposed into three sub-problems, which solved by the
corresponding algorithm. Finally, simulation results verified that LIO algorithm consumes
fewer iterations or gains higher maximum joint performance than other baseline schemes
for solving the considered problem.

Nevertheless, there still exist challenges when applying LIO algorithm to processing
the joint optimization problems, e.g., appropriate parameter settings, falling into local
optimum when using the traditional intelligent algorithm, etc. In future work, we will
concentrate on these problems and study the complex dynamic scenarios in an integrated
multi-UAV system.
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Appendix A

From Equations (2), (10) and (13), Ri,1, Ri,2 and Ri,3 can be sequentially written as

Ri,1 = (1+
pi ArσdTc,i

4πkB LsTeR4
i θ

)
√

pfa (A1)

Ri,2 =
piσtLrTc,i

R4
i

(A2)

Ri,3 = Bi log2(1 +
pih0

N0Bi
) (A3)

Define α1 =
ArσdTc,i

4πkBLsTeR4
i θ

, α2 =
piσtLrTc,i

R4
i

and α3 = pih0
N0Bi

, and pi,1, pi,2 and pi,3 are

converted to

Ri,1 = p
1

1+α1 pi
fa (A4)

Ri,2 = α2 pi (A5)

Ri,3 = Bi log2(1 + α3 pi) (A6)

Then, taking the second derivative for Ri,1, Ri,2 and Ri,3, respectively, we obtain

R′′i,1 = [
2α2

1 ln(pfa)

(1 + α1 pi)3 +
α2

1(ln(pfa))
2

(1 + α1 pi)4 ]p
1

1+α1 pi
fa (A7)

R′′i,2 = 0 (A8)

R′′i,3 = −
Biα

2
3

(1 + α3 pi)2 ln 2
(A9)

According to (A7)–(A9), R′′i,1 > 0, R′′i,2 ≥ 0, and R′′i,3 < 0. Then, Ri,1, Ri,2 and Ri,3 are
convex, convex and concave, respectively. Since U(P) is the sum of Ri,1, Ri,2 and Ri,3, U(P)
is proved to be non-convex.

Thus, we successfully prove Theorem 1.

Appendix B

At the (n + 1)-th iteration, given Pn and Bn, Fn+1 can be obtained by solving P1′, and
then we have Bn,∗

U(Fn+1, Pn, Bn) ≥ U(Fn, Pn, Bn) (A10)

Next, given Fn+1 and Bn, Pn+1 can be obtained by solving P2, then we have

U(Fn+1, Pn+1, Bn) ≥ U(Fn+1, Pn, Bn) (A11)

Finally, when solving the channel bandwidth sub-problem, given Fn+1 and Pn+1, Bn+1

can be obtained by solving P3, then we have

U(Fn+1, Pn+1, Bn+1) ≥ U(Fn+1, Pn+1, Bn) (A12)

As a result, we obtain at the (n + 1)-th iteration

U(Fn+1, Pn+1, Bn+1) ≥ U(Fn, Pn, Bn) (A13)

Hence, we successfully prove Theorem 2.
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