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Abstract: Fusing infrared and visible images taken by an unmanned aerial vehicle (UAV) is a
challenging task, since infrared images distinguish the target from the background by the difference
in infrared radiation, while the low resolution also produces a less pronounced effect. Conversely,
the visible light spectrum has a high spatial resolution and rich texture; however, it is easily affected
by harsh weather conditions like low light. Therefore, the fusion of infrared and visible light has
the potential to provide complementary advantages. In this paper, we propose a multi-scale dense
feature-aware network via integrated attention for infrared and visible image fusion, namely DFA-
Net. Firstly, we construct a dual-channel encoder to extract the deep features of infrared and visible
images. Secondly, we adopt a nested decoder to adequately integrate the features of various scales of
the encoder so as to realize the multi-scale feature representation of visible image detail texture and
infrared image salient target. Then, we present a feature-aware network via integrated attention to
further fuse the feature information of different scales, which can focus on specific advantage features
of infrared and visible images. Finally, we use unsupervised gradient estimation and intensity
loss to learn significant fusion features of infrared and visible images. In addition, our proposed
DFA-Net approach addresses the challenges of fusing infrared and visible images captured by a UAV.
The results show that DFA-Net achieved excellent image fusion performance in nine quantitative
evaluation indexes under a low-light environment.

Keywords: infrared and visible fusion; unmanned aerial vehicles; image fusion; multi-scale feature;
unsupervised gradient estimation

1. Introduction

Unmanned aerial vehicle (UAV) infrared and visible image fusion is an important
aspect of image fusion since it enables the efficient integration of information on the
different features of infrared and visible images [1], contributing to improving the quality
of visual information, strengthening target detection and recognition, and enhancing
environmental perception, making it a crucial technique for various UAV applications.
Among them, infrared images utilize thermal radiation differences to separate the feature
object from the background, which can highlight the feature object and are more effective
in low-light conditions, though the resolution is lower and less effective. In contrast, visible
images are created by capturing the information provided by reflected light with the aid of
sensors. Images of this type offer a higher level of spatial resolution and detail, but they
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are more sensitive to harsh weather conditions by combining infrared and visible images.
Combining the complementary information of these two sensors can produce images with
greater features that will be useful for UAV target detection and RGB-T analysis, as well as
understanding the scene. Due to this, developing an intelligent algorithm for UAV infrared
and visible image fusion with high performance is of great practical importance.

Infrared image fusion methods are currently divided into traditional fusion methods [2–4]
and deep-learning-based methods [5–7]. The traditional image fusion method can be cate-
gorized into three categories: multi-scale transformation methods (MST) [8–14], sparse rep-
resentation methods (SR) [15–18], and hybrid methods [19–22]. Among them, multi-scale
transformation-based methods are more commonly used, and the algorithms can be further
divided into three categories: pyramid-transform-based image decomposition [23], wavelet-
transform-based image decomposition, and multi-scale geometric decomposition [24]. In
addition, there are some subspace-based methods such as independent component analysis
(ICA), principal component analysis (PCA) [25], and non-negative matrix decomposition,
which all project high-dimensional images into a low-dimensional subspace to capture the
intrinsic structure of the source image. Traditional methods can acquire feature images
quickly, but they also have the following drawbacks: (1) inconspicuous features and blurred
images are common with manually extracted features due to the low robustness of the
extraction process; (2) it is difficult to determine one general method of feature extraction
that can be applied to all fusion tasks, since fusion performance is highly dependent on
manually extracted features; (3) to perform infrared image fusion, different features may
require manual design of different fusion strategies; and (4) traditional fusion methods are
inefficient, involve complex models, and require a high level of computational complexity.

To overcome these drawbacks, deep learning is applied to the study of algorithms for
infrared image fusion. At this stage, deep-learning-based image fusion methods are classi-
fied into two categories: fusion framework based on convolutional neural networks [26–30]
and transformer-based fusion architecture [31–37]. In different scene conditions, one would
design network frameworks for different infrared radiation fused images, for example,
PIAFusion [38] can fuse meaningful information from source images 24 h a day by sensing
light conditions, the SDNet [39] can perform multiple fusion tasks in real time, and Fusion-
GAN [40] performs different resolution image fusion without the noise caused by infrared
information. SeAFusion [41] can be deployed as a preprocessing module for advanced
vision tasks to achieve real-time image fusion. The RXDNFuse [42] algorithm takes full
advantage of the hierarchical features of the source images and does not require the manual
design of image decomposition metrics and fusion rules. In the field of image fusion,
deep learning image fusion algorithms have made significant advances, but there are still
several challenges to overcome. On the one hand, fusion effect and fusion efficiency are
always in conflict, and video fusion has strict requirements on fusion speed in practical
applications, so lightening the model and realizing the low-light environment fusion of
infrared and visible images will be an important development in the future. On the other
hand, under complex conditions, infrared and visible image fusion is easily affected by the
outside world and usually requires image preprocessing before fusion, so achieving fast
and efficient image fusion under complex conditions is also an important issue.

To address the above problems, we propose a multi-scale dense feature-aware network
via integrated attention for infrared and UAV visible image fusion (DFA-Net). Specifically,
we design a dual-channel encoder for learning advanced features of visible and infrared
images. In comparison to single-channel feature extraction, dual-channel feature extraction
can yield a greater amount of feature information. [43] Moreover, we introduce the dense
skip connection structure [44], making the decoder deeply fuse the features from different
layers of the encoder, aiming at obtaining the multi-scale feature extraction of the detailed
texture of the visible image and the significant target of the infrared image. Furthermore,
we use an integrated attention fusion module [45] to refine features of different scales and
fuse feature information of different scales, reducing the loss of feature information. Finally,
we use an unsupervised gradient estimation and intensity loss to learn significant fusion
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features from the UAV infrared and visible images, resulting in generating high-quality
fusion images.

The main contributions of this study are summarized below:

1. We design a novel multi-scale dense feature-aware network via integrated attention,
which can extract infrared image target features and visible detail texture features,
and achieve excellent results in infrared and visible image fusion by multi-scale
nesting methods.

2. We develop an integrated attention module for enhancing complementary features of
both infrared and visible images, aiming at retaining richer detail information and
focusing on salient features during fusion.

3. We combine intensity and gradient loss to refine the fused multi-source information
and generate high-quality infrared and visible fused images.

4. We achieve excellent image fusion effects on UAV infrared and visible images.

2. Materials and Methods
2.1. Network Architecture

The traditional technique of image fusion relies mostly on manually designed rules
to extract feature information, which does not take into account the rich and complex
information contained in both infrared and visible images. As a result of the fusion, features
are insufficiently extracted and information is not reproduced accurately. Consequently,
we need to extract more detailed information from our fusion model regarding the image
features. In order to enhance infrared image information representation, the first step is to
identify salient target information. An infrared image mostly contains salient information,
such as people, cars, or other objects with heat, and a multi-scale fusion frame is used to
learn the data by focusing on the encoder. Additionally, in complex imaging environments,
such as low-light environments, it is difficult to see visible detail textures. Therefore, the
framework we designed must be able to extract the necessary visible detail information from
the detected area and reconstruct and fuse the feature maps derived from the convolutional
neural network to achieve the desired results. As a result, we introduce the integrated
attention fusion module, which allows better extraction of channel features and further
refinement of the feature map after it has been extracted.

As shown in Figure 1, the proposed DFA-Net consists of a dual-channel integrated
network and a standard auto-encoder architecture. The image inputs for infrared and
visible are separated into two branches. In this way, the same convolution filter can be
used to extract the salient features of the two images. Dense skip connections are used by
DFA-Net to store detailed texture information. In order to compensate for the loss of the
deep position information of the decoder, the two branches are down-sampled separately,
and the detailed features of fusion are transmitted to the decoder through the dense jump
connection mechanism. Each node except the original node must be up-sampled to achieve
dense connections throughout the backbone network.
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The infrared and visible images are fed into the dual-channel encoder network. For the
output of each node after down sampling, the child decoder restores it to the original scale.
The fine positioning characteristics of the encoder are transmitted to the four sub-decoders
via a jump connection, which means that the shallow positioning information is applied
directly to the deep layer, thus maintaining fine-grained information. Additionally, in order
to maximize the use of fine properties, a node in the shallower sub-decoder is coupled
with a node in the deeper sub-decoder. In particular, as the encoder deepens, the number
of channels in the feature map increases, while as the decoder deepens, the number of
channels decreases. Figure 2 shows the feature extraction channel module. The nodes in
the figure represent nested convolution blocks. As the color changes from dark to light, it
represents the main feature information that the network has extracted. The downward
arrow, upward arrow, and dashed arrow indicate 2 × 2 maximum pooling, 2 × 2 upward
sampling, and skip connections. Through tensor connections, skip connections combine
coding and decoding features in the channel dimension. To observe the complexity of the
network more intuitively, we denote the output of node XI,j as Xi,j.
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network (Xi,j denotes the convolutional block, and the dashed lines represent dense connections).

The sub-encoder in the network model obtains multi-channel image feature informa-
tion through the dual-channel feature extraction layer. A second step is to feed the acquired
features into the dense connection module to retain the information about the features
of the infrared and visible images as much as possible. In addition, we preprocessed the
infrared images and visible images input into the batch standardized block, including a
nested convolution kernel of 3, two-dimensional convolution with a step size of 1, two-
dimensional batch norm, ReLU activation function with the output channel number of
64, and a number of channels to extract feature information of 128, 256, and 512. Then,
an improved ensemble-channel attention module is introduced at the end of the encoder
sub-network to focus the salient information of infrared and visible images from two
aspects of channel and space and suppress the useless information. To ensure that all the
salient features in the model can be utilized, the decoding sub-network is composed of
full convolution, and the extracted feature information is reconstructed in the decoding
sub-network to output the fusion results of infrared and visible images.

2.2. Integrated Attention Fusion

Considering that the complementary feature information of infrared and visible image
fusion is easy to miss, we design an integrated attention fusion module (IAF) to enhance the
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complementary features of infrared and visible, aiming to retain richer detailed information
and focus on salient feature information in the fusion process. As shown in Figure 3, the
IAF module supports plug-and-play, so that it can enhance the channel feature of the input
feature graph and finally output through the integrated attention fusion module without
changing the size of the input feature map.
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The process of integrating the attention fusion module is as follows: first, the feature
map is input, and the average pooling and maximum pooling operations are carried out.
Then, the feature extraction is carried out by using convolution to realize cross-channel
interaction. There is a parallel operation between average pooling and maximum pooling,
in addition to an additional information encoding mode, which improves the quality of the
information obtained and makes the features of the fusion image more apparent.

CAM(F) = σ(MLP(Avgpool(F)) + MLP(MaxPool(F))) (1)

Mintra = CAM(x0,1 + x0,2 + x0,3 + x0,4) (2)

Fensemble = [x0,1, x0,2, x0,3, x0,4] (3)

Minter = CAM(Fensemble) (4)

IAF(Fensemble) = (Fensemble + repeat(4)(Mintra))⊗Minter (5)

where σ represents Sigmoid function, MLP means multi-layer awareness, and Avgpool and
MaxPool represent average and maximum pooling operations, respectively. [•] represents
a set of feature mapping connections, repeat(n)(•) indicates a repeated attention operation,
and ⊗ represents the dot product of matrix elements.

2.3. Fusion Loss

In this paper, our loss function consists of two types of loss terms, gradient loss Lgrad
and intensity loss Lint. The loss function of the fused image of infrared and visible is
divided into two parts for the purpose of constraining the image. There are two types of
loss: the intensity loss, which constrains the apparent intensity of the fused image with
appropriate intensity based on the intensity information from the source image, and the
gradient loss, which causes the fused image to contain richer information. We define the
loss function as

Ltotal = Lint + λLgrad (6)

Among them, the goal of Lint is to constrain the apparent intensity of the fused image,
while Lgrad aims to force the fused image to contain more texture detail. Here, λ is used to
balance intensity losses and gradient losses. The intensity loss constraint fusion images
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retain more useful pixel information, such as contrast, brightness, etc. At the same time, it
can also make the visual effect of infrared–visible images look more natural and closer to
the visible image. The intensity loss can be defined as follows:

Lint =
1

HW ∑
i

∑
j

(
I f usedi,j

− I1 i,j

)2
+ α
(

I f used i,j − I2i,j

)2
(7)

where H and W are the height and width of the image, respectively; I1 is the infrared image,
I2 is the visible image, and I f used(•) is the infrared–visible fused image. The proportional
setting strategy is used to adjust α, which constrains the pixel intensity distribution of
infrared and visible images. Gradient loss Lgrad reduces the loss of feature information by
gradient descent so that the fused image has richer detail textures. We designed gradient
loss Lgrad to enhance the contrast of image details while compressing the overall dynamic
range of the image. After the operation, the feature map can be reconstructed to obtain the
enhanced image. The gradient loss can be defined as

Lgrad =
1

HW ∑
i

∑
j

S1i,j ·
(
∇I f usedi,j

−∇I1i,j

)2
+ S2i,j ·

(
∇I f usedi,j

−∇I2i,j

)2
(8)

where ∇(•) represents the Sobel operator. Moreover, based on the gradient level of the
source image, S(•) represents a decision graph generated by the decision block. As a
first step, the decision block performs Gaussian low-pass filtering on the source image in
order to reduce the influence of noise on gradient judgments. In the next step, we use the
Laplacian operator to find the gradient graph and generate the decision graph based on the
gradient size on a pixel scale. The calculation formulas for the decision map S1i,j and S2i,j
are as follows:

S1i,j = sign
(∣∣∇(L

(
Ii,j
))∣∣−min

(∣∣∇(L
(

I1i,j
))∣∣, ∣∣∣∇(L

(
I2i,j

))∣∣∣)) (9)

S2i,j = 1− S1i,j (10)

where∇(•) is the Laplacian operator, |•| is the absolute value function, L(•) is the Gaussian
low-pass filter function, sign(•) is the sign function, and min(•) is the minimum function.
And S(•) is also H ×W in size. The proposed method uses a low-pass filter in both source
images and selects pixels with large gradients, which ensures that the normal texture is
very rarely estimated incorrectly. In summary, our multi-scale dense feature-aware network
via integrated attention can achieve the optimal intensity distribution and maintain rich
texture information under the mutual constraints of intensity loss and gradient loss. The
target features in infrared images are more evident, and the detailed textures in visible
images are more noticeable.

3. Experiment and Analysis
3.1. Data Preparation and Baselines

To comprehensively evaluate our proposed method, we adopt a public multi-spectral
road scene MSRS dataset, which contains 1444 pairs of high-quality aligned infrared
and visible images with 640 × 480 pixels, mainly describing road scenes. We use RGB
images to obtain visible images and Y-channel infrared images for experiments. In order
to obtain more accurate experimental results, we use 1083 images as the training set and
361 images as the test set. In this study, we compare our method with nine state-of-the-art
approaches; these include two traditional methods, namely GTF [46] and MST-SR [47],
an Ae-based method, RFN-Nest [48], two GAN-based methods, including FusionGAN
and GANMcC [49], and four CNN-based approaches (namely IFCNN [50], U2Fusion [51],
SDNet [39], and SeAFusion [41]). Finally, we tested our algorithm using data captured by a
DJI Mavic 2 drone with a 12-megapixel camera sensor. Due to the UAV images containing
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unaligned infrared and visible images, we apply a specific image-matching algorithm called
“A UAV Image Matching Algorithm Considering Log-Polar Description and Position Scale
Distance Feature” [48]. This algorithm is utilized to correlate infrared and visible images of
the same location to reduce registration errors in UAV images.

3.2. Evaluation Metric

It is necessary to use different types of indicators for the quantitative evaluation of
infrared and visible image fusion algorithms in order to determine their performance
more accurately. Based on two evaluation indicators of information theory, it includes
entropy (EN) [52], mutual information (MI) [53], human visual perception based on visual
information fidelity (VIF) [54], spatial frequency (SF) [55], standard deviation (SD) [56] of
two evaluation indexes based on image features, sum of correlation differences (SCD) [57]
of two evaluation indexes based on image quality and average gradient (AG) [58], and the
source image and the generated image evaluation index edge retention QAB/F [59]. The
evaluation indicators are described as follows.

(1) Entropy, EN is the average amount of information contained in each received message,
also known as information entropy, source entropy, and average self-information. The
index can only be used to reflect the information carried by the fusion image.

H(A) = −∑
a

PA(a) log pA(a) (11)

where a represents gray value, and pA(a) represents gray probability distribution. It is
believed that fusion will be more effective if the EN is large, as it indicates that the image
contains more information.

(2) Mutual Information, MI, represents the amount of information that can be extracted
from a source image. The fusion effect is better with a higher MI value because the
source images contain more information. MI is calculated according to the joint infor-
mation entropy H(A, B) and the information entropy H(A) and H(B) of the image:

MI(A, B) = H(A) + H(B)− H(A, B) (12)

(3) Visual Information Fidelity, VIF, refers to a measurement method based on visual
information fidelity, which is used to measure the quality of fused images. As the VIF
value increases, the better the visual effect people will have on the fused image.

(4) Spatial Frequency, SF, is calculated by row frequency and column frequency to measure
the spatial frequency information contained in the fusion image. Spatial frequency
increases with the sharpness of the image. The formula for its calculation is as follows:

SF =
√

RF2 + CF2 (13)

CF =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1
|H(i, j)− H(i, j− 1)|2 (14)

RF =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1
|H(i, j)− H(i, j− 1)|2 (15)

(5) Standard Deviation, SD, represents how much an image’s pixel value has changed
relative to its average.

Sx =

√
∑(xi − x)2

N
(16)
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where xi represents each individual data point in the dataset, x represents the average
value of the dataset, and N represents the total number of data points in the dataset.

(6) Gradient based Fusion Performance, QAB/F, is a new objective non-reference quality
evaluation method for fused images. The algorithm for obtaining QAB/F uses local
metrics to estimate the degree of representation of input important information in the
fused image.

QAB/F =

N
∑

n=1

M
∑

m=1
QAF(n, m)wA(n, m) + QBF(n, m)wB(n, m)

N
∑

i=1

M
∑

j=1
(wA(i, j) + wB(i, j))

(17)

where QAF and QBF represent the residual value of the edge, n and m represent the
intensity and orientation retention of the image edge, and wA(i, j) and wB(i, j) are the
gradient intensity of the source image A and B, respectively.

(7) Average Gradient, AG, refers to the sharpness of an image and its ability to express
information. A larger average gradient will result in a sharper image and a better
fusion result, as indicated by this theory. Here is the calculation formula:

AG =
1

(M− 1)(N − 1)

M−1

∑
i=1

N−1

∑
i=1

√√√√(
H(i + 1, j)− H(i, j + 1)2 − H(i, j)2

)
2

(18)

where H represents the fused image, and M and N represent the height and width of the
image, respectively.

(8) Sum of Correlation Differences, SCD, measures the quality of images in image fusion.
Based on this method, differential images are calculated using the source image and
the fused image, and their correlation is evaluated. Rather than directly evaluating
the correlation between the source image and the fused image, it calculates the quality
of the fused image by considering the source image and its effects.

3.3. Experimental Result

Since traditional methods do not support the training and fusion of RGB images, we
first convert visible images into YCbCr color space and then use different methods to merge
infrared–visible images into Y channel and then convert them into RGB images. Finally,
the visualization results are clearer. Since only visible images and PET images contain color
information, the fused Y channel is mapped back into the RGB color space along with the
Cb and Cr (chromaticity) channels of the visible image (or PET image). Typically, Cb and
Cr are combined as follows for the fusion of visible and infrared images:

C f =
C1(|C1 − τ|) + C2(|C2 − τ|)
|C1 − τ|+ |C2 − τ| (19)

where C1 and C2 are Cr and Cb channels of the first image and the second source image,
respectively, C f is the result of the fusion channel, and τ is generally set to 128. Afterward,
the fused image is converted back into RGB by performing a reverse transformation.

3.3.1. Visual Performance

We compare five low-light condition images on MSRS with nine different fusion
methods, such as SeAFusion, GANMcC, MST-SR, and FusionGAN, in order to verify the
benefits of the proposed DFA-Net algorithm. The fusion results are shown in Figure 4. In
infrared–visible image fusion, infrared sensors can generate infrared images by reflecting
or capturing the thermal radiation emitted by objects, making the target more prominent in
the background. However, infrared images ignore the texture and are easily affected by
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noise. In contrast, visible sensors capture reflected light information. It is often the case that
visible images contain rich texture and structure information, but they are susceptible to
light and weather-related degradation. Infrared–visible images can effectively synthesize
the feature information of the target and the detailed texture information of visible, and
obtain the fused image with more comprehensive information. In Figure 5, FusionGAN
and GANMcC are not obvious in the infrared image because the single discriminator can
easily cause modal imbalance in the training process. However, the thermal radiation
tree information of GTF, RFN-Nest, and U2Fusion is not displayed. Compared with these
methods, the edge structure of this paper is more apparent, and the texture details are
more apparent, which indicates that enhanced channel feature extraction can retain the
features of the source image better by integrating the integrated attention fusion module
and achieving infrared–visible image fusion through enhanced channel feature extraction.

Figure 5 shows the fusion results in the fuzzy scene under low-light conditions. The
visible image is a little fuzzy, and the target of the infrared image is prominent. GTF,
FusionGAN, SDNet, U2Fusion, and GANMcC cannot retain visible texture information.
Compared with the visible image, the car license plate becomes lighter, indicating that
the visible detail texture is missing. Our method has produced fusion images in low-light
environments that show clearly defined characters, evident thermal radiation features of the
three individuals, clear images, and car license plates, all of which retain complementary
information from both infrared and visible images.

As shown in Figure 6 below, the number of figures cannot be distinguished only
through visible images, while the infrared image can recognize the outline of figures and
obtain the number of figures under the condition of low light. The other nine comparison
methods have different degrees of information loss on the whole, while the method in this
paper has more comprehensive feature information, the light is clearer and brighter, and
the information of the vehicle behind is also obvious.
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Figure 4. Qualitative comparison of DFA-Net with nine state-of-the-art methods on 01012N image
from the MSRS dataset. For a clear comparison, we select a small area with abundant texture in each
image and zoom in on it in the bottom right corner and highlight a salient region, as shown in the
red box. (a) Infrared. (b) Visible. (c) GTF. (d) MST-SR. (e) FusionGAN. (f) IFCNN. (g) RFN-Nest.
(h) SDNet. (i) GANMcC. (j) U2Fusion. (k) SeAFusion. (l) Ours.
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Figure 5. Qualitative comparison of DFA-Net with nine state-of-the-art methods on 00681N image
from the MSRS dataset. For a clear comparison, we select a small area with abundant texture in each
image and zoom in on the area in the bottom right corner and highlight a salient region, as shown in
the red box. (a) Infrared. (b) Visible. (c) GTF. (d) MST-SR. (e) FusionGAN. (f) IFCNN. (g) RFN-Nest.
(h) SDNet. (i) GANMcC. (j) U2Fusion. (k) SeAFusion. (l) Ours.
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Figure 6. Qualitative comparison of DFA-Net with nine state-of-the-art methods on 00890N image
from the MSRS dataset. For a clear comparison, we select a small area with abundant texture in each
image and zoom in on the area in the bottom right corner and highlight a salient region, as shown in
the red box. (a) Infrared. (b) Visible. (c) GTF. (d) MST-SR. (e) FusionGAN. (f) IFCNN. (g) RFN-Nest.
(h) SDNet. (i) GANMcC. (j) U2Fusion. (k) SeAFusion. (l) Ours.
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In low-light environments, vehicles will inevitably have lights of different colors at
night. As shown in Figure 7, visible contains the yellow lights of street lamps and the
red lights of vehicles. At this time, the fusion image needs bright lights and complete
vehicle outlines. According to the images, it can be clearly seen that the depth features of
GTF and IFCNN are a little fuzzy compared with the source image due to the fusion rules
designed by the traditional manual but the image produced using our method is not. In the
images not produced using our method, the brightness of the vehicle’s taillight is dimmed
to varying degrees.
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Figure 7. Qualitative comparison of DFA-Net with nine state-of-the-art methods on 00714N image
from the MSRS dataset. For a clear comparison, we select a small area with abundant texture in each
image and zoom in on the area in the bottom right corner and highlight a salient region, as shown in
the red box. (a) Infrared. (b) Visible. (c) GTF. (d) MST-SR. (e) FusionGAN. (f) IFCNN. (g) RFN-Nest.
(h) SDNet. (i) GANMcC. (j) U2Fusion. (k) SeAFusion. (l) Ours.

According to the comparative analysis of Figure 8, the infrared image contains less
thermal radiation information, while the visible image contains more abundant content.
The images of GTF, SDNet, and FusionGAN are somewhat blurred, and the above-ground
implementation of FusionGAN is almost invisible, indicating that the image has poor edge
retention ability. The brightness of the background light in U2Fusion, SDNet, and IFCNN
is not high. The method we propose can effectively eliminate these defects. Under the
condition of a low-light environment, the background light is bright and the white solid
line on the ground is clear, and the fusion effect is better than in the other methods. In
general, the DFA-Net algorithm provides certain advantages over other infrared image
combining methods.

3.3.2. Quantitative Comparison

In order to evaluate the effectiveness of our experiment, we performed a quantitative
comparison of the performance of our method against nine representative methods of
image fusion on the MSRS dataset. The index results are shown in Table 1, which shows
the mean values of the nine methods in the eight evaluation indexes. According to Table 1,
among the eight indicators, seven indicators of DFA-Net are better than other indicators,
and MI ranks second after SeAFusion.
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Figure 8. Qualitative comparison of DFA-Net with nine state-of-the-art methods on 01254N image
from the MSRS dataset. For a clear comparison, we select a small area with abundant texture in each
image and zoom in on the area in the bottom right corner and highlight a salient region, as shown in
the red box. (a) Infrared. (b) Visible. (c) GTF. (d) MST-SR. (e) FusionGAN. (f) IFCNN. (g) RFN-Nest.
(h) SDNet. (i) GANMcC. (j) U2Fusion. (k) SeAFusion. (l) Ours.

Table 1. Quantitative fusion results of 361 sets of infrared–visible images in 9 methods (red represents
the best results; blue represents the second-best results).

EN SF SD MI VIF AG SCD QAB/F

MST-SR 6.274500 0.042881 8.1 2.615585 0.805536 3.379710 1.302535 0.528150
GTF 5.488868 0.031165 6.3 1.703488 0.472943 2.369413 0.711759 0.401289

FusionGAN 5.549333 0.019308 6.3 1.879273 0.595634 1.642359 1.065234 0.159680
U2Fusion 4.819441 0.039653 6.5 1.813905 0.547874 2.976654 1.334482 0.390667

IFCNN 6.031980 0.039803 7.4 2.330893 0.694640 3.169491 1.291991 0.543784
RFN-Nest 5.586484 0.027077 7.7 2.183343 0.680637 2.264621 1.546296 0.392791

SDNet 5.428818 0.037694 6.1 1.754339 0.484199 2.982137 1.122136 0.406097
GANMcC 5.877195 0.024687 8.4 2.423083 0.694944 2.141018 1.459269 0.312746
SeAFusion 6.651394 0.043554 8.4 4.037259 0.985942 3.696791 1.685249 0.662335

Ours 6.741801 0.048172 8.5 3.75237 1.041419 3.837578 1.718825 0.689588

According to the data analysis in Table 1, DFA-Net has a good performance in the
MSRS dataset. First of all, a higher VIF indicates a better visual effect, while an increase in
EN and SF indicates more detail in the image. The fusion of the infrared image and the
visible image is information complementary, so the preservation of background information
and the fidelity of background information are equally important. Maximum QAB/F

indicates that more edge information has been transferred from the source image to the
fused image. Additionally, the higher the level of retained gradient, the greater the SD, AG,
and SCD, the better the image quality. Compared to other studies, the results of this paper
have the highest quality, the characteristics of infrared images are more obvious, and the
details and textures of visible images are more discernible.

To make the improvement effect of the evaluation index more evident, we also selected
100 pairs of low-light environment image pairs from the MSRS dataset for quantitative
evaluation and drew the cumulative distribution map. Figure 9 shows the results of the
comparison of these eight indicators by different methods. As can be seen from Figure 9,
DFA-Net has obvious advantages in the indexes of EN, AG, SD, VIF, SF, QAB/F, and SCD
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in the road scene dataset. This means that our fused images are more richly textured
at the edges and have better visuals and better image quality. In addition, DFA-Net
ranks second in MI, indicating that DFA-Net contains more mutual information and richer
image information.
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3.4. Ablation Study

We designed an intensity loss constraint fusion image to retain more useful pixel
information. More specifically, we adjusted the epoch in order to change the proportion
of intensity information from different images so that it can be applied to a variety of
image fusion tasks. Therefore, we investigated the impact of different epochs on the model
performance. The results are presented in Table 2.

Table 2. Computational results of MRSR dataset with different epochs (red represents the best results).

EN SF SD MI VIF AG SCD QAB/F

1 6.656426 0.045487 8.4 4.170775 0.988418 3.646758 1.621753 0.669267
5 6.705488 0.046563 8.5 3.844076 1.030301 3.758284 1.663681 0.690490

10 6.741384 0.048109 8.5 3.723383 1.044102 3.831187 1.726796 0.690936
15 6.773159 0.048611 8.5 3.764401 1.051541 3.831952 1.727661 0.691273
20 6.797420 0.049807 8.6 3.642573 1.060563 3.905604 1.751419 0.690326
25 6.788444 0.049672 8.5 3.588535 1.045185 3.887107 1.752573 0.691391
30 6.788444 0.049672 8.5 3.588535 1.045185 3.887107 1.752573 0.691391

In summary, a large number of qualitative and quantitative results show that the
proposed DFA-Net algorithm has good robustness and good performance in various
indexes under the conditions of efficiency, effect and multi-scale, etc. The reasons are
summarized as follows: Firstly, our network structure adopts a double-branch integrated
nested network. Secondly, we add the integrated attention fusion module to enhance the
channel feature extraction and improve the quality of the fused image. Thirdly, we define
an intensity loss, which constrains the overall apparent intensity of the fused image to
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integrate useful image information more effectively. Finally, we use dense jump connections
to enhance the description of detailed grains.

To prove that our integrated attention is effective, we tested the effect after training
without adding integrated attention. In Table 3, we can see that there is a great improvement
in all the indicators after adding integrated attention.

Table 3. Ablation results of MRSR dataset (mean and variance).

Metric DFA-Net(-IAF) DFA-Net(+IAF)

EN 6.01 ± 0.43 6.74 ± 0.45
SF 0.051385 ± 0.000089 0.048172 ± 0.000184
SD 7.4 ± 2.1 8.5 ± 2.7
MI 2.75 ± 0.47 3.75 ± 0.86
VIF 0.643 ± 0.01 1.0414 ± 0.0057
AG 2.18 ± 0.34 3.8 ± 2.0
SCD 1.294 ± 0.040 1.719 ± 0.018

QAB/F 0.4052 ± 0.0038 0.6896 ± 0.0025

3.5. Generalization Analysis

The MSRS dataset contains aligned infrared and visible images, so we can conduct
discriminant analysis to compare performance across different samples in this article. In
order to demonstrate the excellent generalization capability of DFA-Net under low-light
conditions, we collect some infrared and visible images using the DJI drone pre-2.

Based on our UAV dataset, Figures 10 and 11 illustrate a comparison of infrared
and visible image fusion results. Comparison of the fused image with the visible image
demonstrates that the thermal radiation obtained by our method highlights the feature
target with respect to the visual effects. Additionally, the background information in the
fusion image is more accurate than in the infrared image, improving the image quality.
The difference between the UAV image and the general image is that the angle of view is
different. As shown in Figure 10, even in a low-light environment, the target features in
the fused image are more prominent, and the influence of shadow on the target features is
significantly reduced. It is apparent in Figure 11 that the texture information of the fused
UAV image is richer than that of the visible image.
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4. Discussion and Conclusions

The current methods for infrared–visible image fusion still face certain challenges.
Extracting detailed texture features from visible light and background features from infrared
under low-light conditions is difficult, and comprehensively extracting information from
the source images is also challenging. We have developed a novel multi-scale dense feature-
aware network with integrated attention (DFA-Net), capable of extracting target features
from infrared images and detail texture features from visible images. Our network utilizes
multi-scale nesting methods and has achieved excellent results in infrared and visible
image fusion. Additionally, we have introduced an integrated attention module to enhance
complementary features in both infrared and visible images, emphasizing the retention of
richer detail information and salient features during the fusion process. To further improve
the quality of the fused images, we have combined intensity and gradient loss for refining
the multi-source information, resulting in high-quality infrared and visible fused images.

In addition, through qualitative and quantitative analysis, the algorithm designed in
this paper demonstrates certain advantages compared to the other nine algorithms. The
fusion of image features is more prominent, and the background texture information is
richer. In particular, the performance in unmanned aerial vehicles (UAVs) is outstanding, ef-
fectively enhancing the complementarity of UAV images and improving UAV environment
perception capabilities.
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