
Citation: Zhang, Z.; Wu, D.; Zhang,

F.; Wang, R. DECCo-A Dynamic Task

Scheduling Framework for

Heterogeneous Drone Edge Cluster.

Drones 2023, 7, 513. https://doi.org/

10.3390/drones7080513

Academic Editors: Wenzheng Xu,

Tang Liu and Weifa Liang

Received: 11 June 2023

Revised: 26 July 2023

Accepted: 1 August 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

DECCo-A Dynamic Task Scheduling Framework for
Heterogeneous Drone Edge Cluster
Zhiyang Zhang 1 , Die Wu 1,2, Fengli Zhang 1 and Ruijin Wang 1,*

1 School of Information and Software Engineering, University of Electronic Science and Technology of China,
Chengdu 610054, China

2 Chengdu Aerospace Communication Device Company Limited, Chengdu 610052, China
* Correspondence: ruijinwang@uestc.edu.cn

Abstract: The heterogeneity of unmanned aerial vehicle (UAV) nodes and the dynamic service de-
mands make task scheduling particularly complex in the drone edge cluster (DEC) scenario. In this
paper, we provide a universal intelligent collaborative task scheduling framework, named DECCo,
which schedules dynamically changing task requests for the heterogeneous DEC. Benefiting from the
latest advances in deep reinforcement learning (DRL), DECCo autonomously learns task schedul-
ing strategies with high response rates and low communication latency through a collaborative
Advantage Actor–Critic algorithm, which avoids the interference of resource overload and local
downtime while ensuring load balancing. To better adapt to the real drone collaborative scheduling
scenario, DECCo switches between heuristic and DRL-based scheduling solutions based on real-time
scheduling performance, thus avoiding suboptimal decisions that severely affect Quality of Service
(QoS) and Quality of Experience (QoE). With flexible parameter control, DECCo can adapt to various
task requests on drone edge clusters. Google Cluster Usage Traces are used to verify the effectiveness
of DECCo. Therefore, our work represents a state-of-the-art method for task scheduling in the
heterogeneous DEC.

Keywords: drone edge cluster; mobile edge computing; task scheduling; deep reinforcement learning

1. Introduction

As the technologies of mobile edge computing (MEC) and unmanned aerial vehicles
(UAVs) continue to evolve, there is an emergence of UAVs that support the Internet of
Everything (IoE) and distributed learning services for artificial intelligence (AI) based
on 6G are being widely applied in a plethora of sectors, including agriculture, logistics,
photography, emergency response, and more [1,2]. In a drone edge cluster (DEC), UAVs act
as edge nodes, processing tasks in close proximity to reduce network latency and augment
data processing speed. These tasks have intensive resource requirements and handle large
amounts of data by providing functions such as task scheduling, load balancing, task
offloading and migration, and data privacy protection [3–5].

Collaborative task scheduling is a key process in the operation and management of
DECs, which involves determining how to effectively allocate computing tasks to cluster
nodes to optimize performance and resource utilization [6]. First, it decomposes complex,
computationally intensive tasks into smaller, more manageable subtasks and places them in
the task queue of the cluster. Secondly, the collaborative scheduling algorithm determines
how to allocate tasks to different devices by obtaining the device status (available resources,
network conditions, energy consumption, etc.) in the cluster and developing algorithms
or strategies; Finally, the cluster collects execution results and dynamically adjusts task
allocation and scheduling strategies to respond to changes in the cluster environment based
on real-time feedback and monitoring data.

Typically, as shown in Figure 1, for a DEC consisting of a cloud, a base station issu-
ing task instructions, and many UAVs, the base station must manage all service entities

Drones 2023, 7, 513. https://doi.org/10.3390/drones7080513 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7080513
https://doi.org/10.3390/drones7080513
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-2015-6670
https://doi.org/10.3390/drones7080513
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7080513?type=check_update&version=1

Drones 2023, 7, 513 2 of 16

across the UAVs and the cloud while determining where to process these task requests. In
industry, similar mobile edge clusters are often built on Kubernetes [7], aimed at seamlessly
integrating distributed and layered computational resources on edge servers and terminal
nodes [8]. In these existing distributed edge cluster frameworks, an effective coordinated
scheduling algorithm should proactively schedule task requests based on resource uti-
lization and task responsiveness within the DEC. There are two main reasons why these
distributed architectures cannot be directly adapted to DEC scenarios:

1. Due to the different types and quantities of IoE services provided by UAV nodes,
they show heterogeneity in terms of hardware resources (including CPU and memory,
etc.) and network resources (including communication latency and data transmission
latency, etc.). At the same time, UAV task scheduling also faces the limitations of
MEC computing resources and the dynamic changes in different task requests. Some
customized distributed edge computing frameworks (e.g., KubeEdge [9]) fail to match
such dynamic, heterogeneous DEC scenarios;

2. The DEC collaborative task scheduling in the UAV scenario needs to comprehensively
consider multiple indicators such as resource load balancing among UAVs, resource
overload, and communication latency. The conventional edge computing frameworks
usually only schedule for a single indicator, which makes them unable to completely
describe the global state of DECs and local states of UAVs.

Unavailable UAV

Drone Edge ClusterBase Station

Task Queue

...

Resource Pod

Memory

CPU

Docker

Cloud

UAV

UAV

UAV

Schedule tasks to the

cloud, if necessary

Figure 1. Drone Edge Cluster.

Several heuristic solutions have already been applied in the UAV-assisted mobile edge
computing domain, including metaheuristic approaches [10], genetic algorithms (GA) [11],
and particle swarm optimization (PSO) [12]. These algorithms focus on UAV trajectory
planning and task offloading, requiring extensive iterations in stable environments to attain
acceptable performance. In the case of mobile edge clusters, which undergo significant
changes due to the fluctuation of available resources and request loads, these algorithms
tend to generate frequent re-optimization and cause a considerable computational burden
during iteration. Consequently, they must be more suited for the dynamic scheduling of
DEC hosting IoE and AI services.

Some academic research has recently attempted to utilize reinforcement learning (RL)
to formulate scheduling policies to support real-time DEC in dynamic environments [13].
RL obviates the need to solve optimization problems by exploring the dynamic environ-
ment of MEC and acquiring effective scheduling policies through experiential learning.
However, with the increase in the number of UAVs, the state and action spaces of DEC

Drones 2023, 7, 513 3 of 16

will grow exponentially, significantly lowering the convergence efficiency of such methods.
Deep reinforcement learning (DRL) schemes are designed to comprehend the natural en-
vironment of DEC through interaction and trial-and-error learning to tackle the issue of
time complexity. With the aid of simulated environments and feedback mechanisms, UAVs
autonomously learn and optimize decisions on flight, task allocation, and more. Each UAV
can be considered an intelligent agent, whose behavioral policies are continually optimized
through interactions with and feedback from the environment, enabling effective coordi-
nation among multiple UAVs [14–16]. In such algorithms/frameworks, the deep learning
component handles the perception and prediction of the UAVs, while the reinforcement
learning component takes charge of policy fine-tuning. Their combination is capable of
managing complex and persistent cooperative scheduling tasks.

In summary, the variability of the task requests and cluster load often lead to severe
scheduling errors or suboptimal decisions [15,17]. Therefore, relying solely on heuristic
algorithms based on system dynamics assumptions or exploration-based model-free algo-
rithms is impractical. Furthermore, scheduling tasks between UAVs with different resource
availability can lead to local resource overload and downtime. The algorithm must consider
cluster load balancing and downtime scenarios while implementing efficient, low-latency
task scheduling.

To overcome these challenges and limitations, we introduce DECCo, a distributed edge
computing cluster framework designed for UAV task collaborative scheduling scenarios.
DECCo manages the service containers on each UAV, scheduling task requests for each
UAV to achieve load balancing. The UAV coordination scheduling algorithm mA2C based
on Advantage Actor–Critic is deployed in DECCo. The main contributions are summarized
as follows:

1. We propose a distributed framework for DEC task scheduling, named DECCo. It
can schedule dynamically changing task requests for heterogeneous DECs while
ensuring high response rates and low communication latency. Tailored for real-
world requirements, the architecture provides two complementary solutions for UAV
collaborative scheduling, switching based on real-time scheduling performance;

2. We designed a targeted and scalable cost function for the collaborative scheduling of
DEC, which includes aspects of resource load balancing, resource overload penalty,
and communication latency optimization. Some custom objectives, such as priority
and geographic distribution, can also be added to the cost function, so DECCo can
adjust and generate required scheduling operations based on specific preferences
related to the natural DEC environment;

3. We designed a UAV coordination scheduling algorithm mA2C based on Advantage
Actor–Critic, which uses DRL to evaluate the global status of DEC and optimizes the
UAV collaborative scheduling policy based on the policy gradient algorithm. mA2C
uses target networks and experience replay to enhance the stability of scheduling
policy learning, and avoids interference from local downtime on policy learning
through action space masking.

In the sequel, Section 2 presents the work progress related to this paper, and Section 3
introduces the detailed design of the DECCo framework. Section 4 elaborates on the
Markov process design and DRL algorithm design in DECCo. Section 5 presents the
experiment results. Finally, Section 6 concludes the paper.

2. Related Work
2.1. Classical Solutions

Classical solutions for DEC context have been explored, based on the joint optimiza-
tion of request scheduling and service orchestration as proposed in [16,18]. Jeong et al. [19]
addressed the joint optimization problem of bit allocation for task offloading in UAV MEC
systems and achieved minimal energy consumption using a successive convex approxi-
mation strategy. Zhang et al. [20] and Liu et al. [21] further approximated the optimal
solution for the total energy consumption of mobile UAVs using the successive convex

Drones 2023, 7, 513 4 of 16

approximation method combined with Lagrangian duality and decomposition iteration.
Spatial search pruning algorithms were employed in [22] to find optimal edge servers
for migration and expansion. Additionally, Chai et al. [23] used a parameter-adaptive
differential evolution algorithm to optimize the number and placement of UAVs based on
the positions and quantities of IoT devices.

Leading companies in the industry provide MEC task scheduling solutions such as
Google GKE (Google Kubernetes Engine) [24], Azure AKS (Azure Kubernetes Service) [25],
and AWS EKS (Amazon Elastic Kubernetes Service) [26]. The scalability of Kubernetes clus-
ter scheduling tools primarily enables their availability. However, these scheduling tools
and their extensions have significant limitations in the context of DEC, i.e, the Kubernetes
cluster schedule relies heavily on heuristic-based solutions and manual configurations [27].

These heuristic-based approaches predominantly rely on centralized resource schedul-
ing and assume accurate modeling or prediction of computational resources, network
requirements, and processing times for specific requests, which may impact QoS in most
UAV mobile edge computing scenarios.

2.2. Reinforcement Learning Solutions

Offering a solution that surpasses traditional machine learning approaches, reinforce-
ment learning, based on the Markov decision process (MDP), has shown potential in
addressing these problems [28]. Reinforcement learning solutions can linearly and nonlin-
early approximate the state-action value function of a system, making them better suited to
adapt to the dynamic environment of mobile edge computing. Furthermore, they can learn
without prior knowledge. Reinforcement-learning-based DEC task scheduling solutions
originated from various areas, such as multi-user and multi-server MEC network resource
management, computation resource expansion, wireless network security, and content
caching [29]. Yang et al. [30] proposed a deep reinforcement learning-based method for
task offloading in UAV-assisted edge computing networks, identifying the optimal task
offloading decision for each UAV node using deep reinforcement learning. Liu et al. [31]
introduced a behavior selection strategy based on dual deep Q networks (DQN) to mini-
mize the cost of mobile edge computing systems considering QoS. Bi et al. [15] proposed
LyDROO, which combines Lyapunov optimization and DRL to optimize task scheduling.
Users can either schedule computational tasks to UAV nodes or offload tasks to edge
servers. Hoang et al. [32] transformed the multi-stage problem of DEC task scheduling into
a per-time-slot problem using Lyapunov optimization and solved it using a DRL-based
algorithm. This framework enables simultaneous task offloading to macro base stations and
MEC servers installed on UAVs, leveraging deep reinforcement-learning and integrated
learning for parallel computing.

Based on DRL algorithms such as DQN, actor–critic (AC) [33], and policy gradi-
ent (PG) [34], some mobile edge cluster scheduling frameworks incorporate domain-
specific knowledge for centralized scheduling. For example, Haja et al. [35] schedule
services that satisfy service requests by periodically measuring the latency between edge
nodes. Rossi et al. [36] utilizes model-based RL for service orchestration, leveraging the
geographical distribution of edge nodes as expert knowledge. Kumar et al. [37] and
Kim et al. [38] employ time-series forecasting methods to identify seasonal patterns and
trends in task demands.

Compared with heuristic solutions, DRL-based solutions show advantages in the fields
of complex scheduling space modeling, online learning and optimization, and uncertainty
handling. However, such solutions need trial and error to learn the environmental changes
of DEC. This can lead to erroneous scheduling decisions when faced with new task demand
patterns. This is a common problem that needs to be addressed in all DRL-based solutions.

3. DECCo Framework Design

As shown in Figure 2, DECCo, which comprises the Cluster Orchestrator, Co-Scheduler,
and the Cluster Controller, covers common DEC situations involving a base station and

Drones 2023, 7, 513 5 of 16

UAVs. In this architecture, tasks arriving randomly at the base station carry demands
of varying levels that dynamically change over time. Using the Co-Scheduler, tasks are
deployed in the resource pool of UAVs in containers. When UAVs have sufficient available
resources, this architecture can ensure high response rates and low communication latencies
for task scheduling.

Co-Scheduler

mA2C Heuristic Solution

Solution Switching Unit

Cluster ControllerCluster Orchestrator

Service Deployment

Scheduling ExecutionStatus Monitoring

UAVs

DECCo (deployed on the base station)

...

Node Management

Task

Arrival

Sequence Scheduling Policy

Figure 2. DECCo framework.

3.1. Cluster Orchestrator

The Cluster Orchestrator is responsible for the initialization, management, and config-
uration of UAVs, as well as real-time monitoring of global status information, including
UAV resource usage, service deployment status, and connection status. When new tasks
arrive, the Cluster Orchestrator is responsible for receiving these tasks and passing them
to the Co-Scheduler. When the Co-Scheduler generates a new scheduling policy, the
Cluster Orchestrator provides it to the Cluster Controller and keeps a record of these as
logs. Serving as middleware, the Cluster Orchestrator connects the Co-Scheduler and the
Cluster Controller.

3.2. Co-Scheduler

The Co-Scheduler, a DEC coordination scheduling solution based on DRL and heuristic
algorithms, is responsible for assigning task requests arriving at the Cluster Orchestrator to
available UAVs. The Co-Scheduler constructs a scheduling policy for the entire cluster to
accommodate task requests with varying requirements and dynamically changing UAV
hardware resources. The ultimate goal of a Co-Scheduler is to find the task scheduling
policy π, which takes the cluster state as input and outputs actions that minimize future
costs. Real-world task scheduling cannot tolerate errors or suboptimal decisions, which
could lead to serious QoS and QoE implications, directly affecting the coordinated operation
of UAVs. The Co-Scheduler executes policy improvement and avoids suboptimal decisions
through the following three components.

3.2.1. mA2C

mA2C is an intelligent scheduling solution based on DRL, interacting with the DEC
through an improved actor–critic algorithm to handle the scheduling action space and
balance dynamically changing system resource loads. mA2C combines experience replay
with target networks and employs a policy gradient method to update the policy π, thus

Drones 2023, 7, 513 6 of 16

promoting successful training. mA2C is based on model-free DRL algorithms, which
boast the advantage of intelligent and efficient learning. However, because mA2C learns
the natural environment of DEC through interaction and trial and error, it may make
suboptimal decisions in the initial phase of policy improvement or face different task
request modes.

3.2.2. Heuristic Solution

To address the above issue, a heuristic solution is also deployed to replace suboptimal
decisions of mA2C during learning. In this paper, we set this solution as an evolutionary
algorithm, which iteratively learns independently of mA2C and makes decisions on newly
observed states or patterns during mA2C’s learning process. The heuristic solution must
wait for new task requests to arrive at the base station before making decisions, leading to
no guarantee of its performance.

3.2.3. Solution Switching Unit

This component compares and switches the outputs of the heuristic solution and
mA2C. Specifically, the selection of scheduling actions starts with the output of the heuristic
solution. When the count of more optimal decisions made by mA2C exceeds a predefined
threshold, the solution switches to mA2C.

3.3. Cluster Controller

The Cluster Controller is the component directly connected to UAVs. It executes task
scheduling according to the scheduling operations provided by the Cluster Orchestrator.
That is, the Cluster Controller allocates tasks to the corresponding UAVs based on the
scheduling policy generated by the Co-Scheduler. In addition, the Cluster Controller is also
responsible for deploying services and transmitting the status information of the UAVs to
the Cluster Orchestrator.

4. Problem Formulation and System Model
4.1. Background

In this paper, we consider a DEC system comprising a cloud, a base station, and
the UAVs under its management, where the base station and UAVs are interconnected
via a local area network (LAN). Upon the arrival of a task request at the base station,
the latter assigns the task to the cloud or one of the UAV nodes it manages. Although a
multi-tier DEC system can be envisaged—in which a cooperative DEC server is established
for multiple base stations, thereby enabling collaboration among several base stations—this
manuscript focuses on the scenario of coordinated task scheduling within a singular base
station. The exemplification of our model will be based on this focused scenario in the
subsequent sections. Table A1 summarizes the notations commonly used in Section 4.

1. Base Stations and UAVs: The UAVs are represented by the set U = {1, 2, . . . , U},
which refers to UAV nodes connected to and managed by the base station. Upon
the arrival of a task request at the base station, it is either dispatched to the cloud or
allocated to its supervised UAVs for processing. To facilitate the processing of task
requests, each UAV should contain corresponding service entities;

2. Cloud: Unlike the UAVs within DEC, the cloud possesses abundant computational
and storage resources. It is connected to the base station via a wide area network
(WAN). When the UAVs cannot fulfill the tasks allocated by the base station, the cloud
shoulders these tasks.

4.2. Scheduling Problem Formulation
4.2.1. MDP Formulation for DECCo

Task scheduling policy π permits DEC to independently determine which UAV or
cloud should provide services for incoming task requests. We formalize the process by

Drones 2023, 7, 513 7 of 16

which a DEC independently executes request scheduling as a Markov process (MDP),
which forms the main framework for solving task scheduling policy π using RL.

An MDP is represented by G = (S ,A, C,Pr,Y). S is the state space, i.e., the collection
of all possible states of the DEC. Within this state space, we encapsulate the dynamic
changes in resource availability of each UAV under the control of the base station at any
given time slot t. C is the cost function reflecting the agent’s objective. Pr is the probability
transition matrix, outputting the probability distribution of entering the next state s, given
the current state s and action a. Finally, Y is the discount factor. In this paper, the elements
of (S ,A, C,Pr,Y) are defined as follows:

1. State Space. S denotes the state space. For each time slot t, we construct a state st

for the base station, which includes (i) the resource request Et = (Ecpu
t , Emem

t) of the
current task qt, where Ecpu

t and Emem
t represent the CPU and memory requirements of

the task, respectively; (ii) the task request queue information Qt awaiting scheduling
at the base station; (iii) the available resources Au,t = (Acpu

u,t , Amem
u,t) and the hardware

resources Hu = (Hcpu
u , Hmem

u) of UAV u. It is worth noting that UAV u ’s hardware
resources do not necessarily reflect the resources available for tasks, as there is a
boundary Ru, i.e., Au cannot fall below Ru. System administrators set this boundary
to reserve expansion space for other applications in the event of system overload; and
(iv) communication latency Dt between the base station and each UAV, with [Dt]0
denoting the communication latency between the base station and the cloud.

2. Action Space. A = iN
0 denotes that the current task request is assigned for execution

on UAV i. We permit the base station to schedule only one task request for all UAVs
it manages in a time slot t. All actions of the scheduling policy π are deterministic,
meaning that if at = u, then the base station will schedule the current request to the
UAV with id u in time slot t + 1.

3. Cost Function. DECCo uses the cost function C to calculate the cost of task scheduling
action at = u. In Section 4.2.2, we discuss the three objectives that make up the cost
function: load balancing, resource overload penalty, and communication latency.

4. Probability Transition. We denote Pr(st+1 | st, at) ∈ [0, 1] as the probability of the base
station transitioning from state st to st+1 given a deterministic action at. In this paper,
the probability of the base station issuing the scheduling action at is represented as
π(at | st).

5. Discount Factor. Y is a decimal number in the range [0, 1], usually close to 1. Y ’s
primary use is to expedite convergence by discounting the reward for the next state.

4.2.2. Cost Function

Our cost function can be expressed as C = λ1 · C1 + λ2 · C2 + λ3 · C3, where λ1, λ2, and
λ3 represent the corresponding weights for the given three cost items. These weights are
adjusted based on the properties of the DEC and the actual scenario, enabling our cost
function to adapt to different scenarios and UAV equipment dynamically.

1. Load Balancing C1: Balancing CPU and memory resources across all UAVs ensures
efficient utilization of resources and promotes system stability. This objective function
aims to keep the load on the CPU and memory resources of UAVs as balanced as
possible after execution of the schedule, that is, at time slot t + 1. The standard
deviation of the CPU resources load of all UAVs at time t is given by Equation (1):

Ccpu
1 =

√√√√ 1
U

U

∑
i=1

(Acpu
i,t+1 −

∑U
j=1 Acpu

j,t+1

U
)2, (1)

Acpu
u,t+1 =

{
Acpu

u,t −Ecpu
t

Hcpu
u

, i f Acpu
u,t − Ecpu

t ≥ 0,

0, otherwise,
(2)

Drones 2023, 7, 513 8 of 16

where Acpu
u,t and Ecpu

u,t represent the available CPU resources of the current UAV u and
the CPU resources required to execute the current task, respectively. Hcpu

u indicates
the CPU size of UAV u. In the above cost function, we only consider the available
resource of UAVs whose CPU and memory resources are not overloaded after task
scheduling, that is, Acpu

u,t − Ecpu
t ≥ 0. For actions that cause resource overload on

UAV u, we set the standard deviation of CPU and memory resources on u to 0 and
punish the action in the resource overload cost function.The above computation refers
to the cost function for CPU load balancing, and the process of calculating the load
balancing cost Cmem

1 for memory is identical. Finally, C1 = Ccpu
1 + Cmem

1 .
2. Resource Overload Penalty C2: In this objective function, the base station is penalized

for causing the resource requirements of the task request to exceed the available
resources of the UAV. We represent this objective’s cost as Ccpu

2 and Cmem
2 , which

calculates the resource overload cost of the CPU and memory on each UAV after
performing the task scheduling action at = u. The calculation process of the CPU
resource overload cost Ocpu

u,t+1 is represented by Equations (3) and (4):

Ocpu
u,t+1 =

{ |Acpu
u,t −Ecpu

t |
Hcpu

u
, i f Acpu

u,t − Ecpu
t < 0,

0, otherwise,
(3)

Ccpu
2 = k

U

∑
i=1

Ocpu
i,t+1. (4)

If the scheduling action overestimates the available resources of UAV u, the base
station will return the proportion of overloaded resources for this; otherwise, the
resource overload cost is 0, which means the base station will not be penalized for
this action. We sum and multiply the possible resource overloads on each UAV by
k(k > 1) to achieve a stricter overload penalty, which is crucial for preventing node
downtime, similar to C1, C2 = Ccpu

2 + Cmem
2 .

3. Communication Latency C3: Unlike most models with the same functionality, some
custom cost items can be added to the cost function of DECCo. DECCo can leverage
and adjust these custom targets based on specific preferences related to the actual
DEC environment to perform smarter scheduling operations more closely aligned
with actual needs. One of the potential objectives to be considered in this study is the
minimization of communication latency between the base station and the selected
UAVs. Upon obtaining the communication latency Dt for each UAV and the base
station at time t, the communication latency cost can be represented as C3 = [Dt]u.
Given the co-existence of minimizing communication latency and balancing load,
DECCo can consider hardware resources (i.e., load balancing) and network resources
(i.e., communication latency cost) in the DEC during policy learning. Therefore, the
weights of C1 and C3 in the total cost function will depend on the importance of
maintaining the two types of cluster resources.

4.3. mA2C

This section presents the UAV coordination scheduling algorithm, mA2C, that we
designed based on the Advantage Actor–Critic, as illustrated in Figure 3. mA2C consists
of two parts: (i) acquiring the state-value function of the DEC using a target network for
self-improvement, and (ii) updating scheduling policy parameters based on the policy
gradient, while concurrently avoiding the particular case of UAV node unavailability. To
enhance the stability of scheduling policy learning, mA2C employs a target network and
experience replay. Algorithm 1 shows the training process of mA2C.

Drones 2023, 7, 513 9 of 16

Algorithm 1 Training mA2C

Input: DEC environment
Output: Task scheduling policy πθp

1: Initialize the policy network πθp , the evaluation network Q(·, ·; θe) , target network
Q(·, ·; θt), θt ← θe);

2: Initialize the state of the DEC st, the discount factor Y and experience pool P ;
3: for slot t = 1, 2, ... do do
4: while Qt 6= ∅ do
5: Compute UAV masking vector Ft;
6: Get at, C using πθp ;
7: Store (st, at, C, st+1) in P ;
8: if |P| > Pmax then
9: Pop out the oldest experience;

10: Select random mini-batch experience from P ;
11: (Base Station Critic) Update evaluation network using Equations (5) and (6) for

each experience;
12: (UAV Actor) Improve policy network πθp using Equations (7) and (10);
13: end if
14: if t % N == 0 then
15: θt ← θe;
16: end if
17: st = st+1
18: end while
19: end for

......

...

......

Base Station CriticUAV Actor

... ...

Policy Network Evaluation Network Target Network

Parameter

copying
Action

masking

DEC environment
①Provide DEC global state

②Execute scheduling action

③Obtain cost and next state

⑤Update policy network

④Calculate State value

State value
⑤Update evaluation network

Figure 3. mA2C.

4.3.1. Base Station Critic

The goal of the Base Station Critic is to solve for the state-value function of the base
station. Initially, to represent the state-value function, we construct an evaluation network
Q(·, ·; θe) and a target network Q(·, ·; θt). An estimate of the state value is then derived via
the Bellman expectation equation:

v(st+1; θt) = ∑
at

π
(
at
∣∣st
)
(rt+1 + Yv(st+1; θt)), (5)

Drones 2023, 7, 513 10 of 16

Subsequently, the update of the evaluation network is performed by minimizing
Equation (6):

L(θe) =
1
|P| ∑

i∈P
[v(st+1; θt)− v(st; θe)]

2, (6)

Here, P refers to the size of the experience pool, which is used to reduce the variance
of the network parameter update and speed up convergence. During the network update
process, we periodically copy the parameters of Q(·, ·; θe) to Q(·, ·; θt).

4.3.2. UAV Actor

We employ a policy gradient method with episode-based updates to refine the policy
π, which can be represented by Equation (7):

∇θp J
(
θp
)
= ψt∇θp lnπθp

(
at
∣∣st
)
, (7)

Here, θp refers to the parameters of the policy network πθp , while ψt represents the
estimate of the advantage function. ψt is not restricted to a specific form. In this paper, we
introduce a baseline function B(st) = v(st; θe), thus obtaining Equation (8):

ψt = [rt+1 + Yv
(
st+1; θt

)
− v
(
st; θe

)
]2. (8)

Furthermore, in light of the complex realities of cooperative DEC environments,
where networks frequently demonstrate disconnection, intermittent connectivity, and low-
bandwidth situations, it is necessary to filter ineffective dispatch operations for the DEC to
establish viable task scheduling targets.

Consider when UAV u is unable to connect to the base station at time slot t, or when
its communication latency [Dt]u with the base station surpasses a certain threshold Dmax.
In such scenarios, UAV u can only execute stand-alone tasks such as returning to base
or terminating cooperation. The data generated during this time will be cached locally
and later uploaded to the edge or cloud when network connectivity is restored. Here,
we maintain a binary vector Ft{0, 1}{U+1} for the base station to count disconnected UAV
nodes, where [Ft]u = 1 implies that UAV u is currently available, while [Ft]u = 0 indicates
its disconnected status. Notably, if [Ft]0 equals 0, the base station cannot offload task
requests to the cloud, which is a common situation often overlooked. Ultimately, we can
optimize the original output p(st) of the policy network πθp according to Ft:

p̂(st) = p(st) ∗ Ft, (9)

where ∗ stands for elementwise multiplication. The obtained p̂(st) is used to calculate
πθp

(
at
∣∣st
)

in Equation (7):

πθp(at = i | st) =
[p̂(st)]i
‖ p̂(st)‖

. (10)

4.3.3. Heuristic Solution

Genetic algorithms are a class of evolutionary algorithms representing a global opti-
mization technique that emulates natural selection and genetic mechanisms to search for
solutions. In this study, we develop a heuristic solution for task scheduling in DECs based
on genetic algorithms. It aims to learn the optimal task scheduling policies. It is worth
noting that we utilize DECCo’s cost function C in this algorithm.

The heuristic solution initially constructs a population of random task scheduling
policies for a DEC. In each iteration of the algorithm, the performance of each policy
is evaluated using the cost function C, and the best-performing policies are selected for
reproduction. During this process, the policies undergo crossover and mutation with
specific probabilities. After a certain number of iterations, the heuristic solution returns the
best-performing task-scheduling policy from the population as the output. As mentioned

Drones 2023, 7, 513 11 of 16

earlier, this output will be compared with the output from the mA2C in the Solution
Switching Unit.

5. Experiments and Evaluations
5.1. Experiment Setup
5.1.1. Task Requests

We tailored and modified the Google Cluster Usage Tracing (GCT) [39] to fit our DEC
environment. GCT provides extensive log data from Google’s data centers, covering tasks
performed in the data center and required CPU and memory resources over a period of time.
We mapped machine units and task requests from the GCT dataset to our DEC collaborative
task scheduling framework, DECCo, and used Co-Scheduler for task allocation.

5.1.2. Cluster Construction

We have established an edge cluster on the Google Cloud Platform (GCP) [27] consist-
ing of a master node (base station) and eight edge nodes (UAVs). Task requests randomly
arrive at the master node and are distributed to the UAVs. The master node is configured
with “2 vCPU, 4GB memory”, while the four edge nodes are configured between “1 vCPU,
1–4 GB memory”. Multiple “4 vCPU, 16 GB memory” virtual machines are configured in
the cloud, and Linux TC controls communication latency with the edge cluster. For the
simulation of unavailable UAV nodes, we deployed a probe similar to a latency detector on
the master node. It will occasionally set the availability status of some nodes as unavailable
and maintain this information in table form.

5.1.3. Architecture Implementation

DECCo’s Cluster Orchestrator regularly observes and collects the current edge cluster
system state through a state monitor, including Docker services and physical nodes’ hard-
ware and network resources. For network resources, each edge node and the master node
carry a latency detector for measuring communication latency. We deployed mA2C and
heuristic solution proxy on the master node. mA2C and heuristic solution calculate schedul-
ing actions by observing the global state in the state monitor. After solution-switching,
the Cluster Orchestrator informs the Cluster Controller to execute this schedule for the
current request.

5.2. Experimental Evaluation

In our assessment, DECCo provides the DRL-based solution, mA2C, and the heuristic
solution, MA. The solution switching unit in the framework determines which to use.
mA2C is built on TensorFlow 2, wherein the evaluation and target networks implemented
in Base Station Critic are DNNs with 256, 128, 64, and 32 neurons. UAV Actor is a three-
layer deep neural network with 128, 64, and 32 hidden units per layer. The activation
function of all networks is ReLU, and the learning rate is 10−3. For each cost goal described
in the second section, we allocated weights: λ1 = 0.3; λ2 = 0.5; λ3 = 0.2.

We compared our approach with several basic and advanced baselines, including
the following:

1. Kubernetes scheduler [27]: This carries out scheduling operations based on system
metrics monitored in real time. In this paper, we employ a purely greedy strategy,
scheduling each request to the UAV node that minimizes load balancing and commu-
nication latency;

2. Heuristic solution: We directly demonstrate the independent decision making of the
heuristic solution in DECCo, i.e., the evolutionary algorithm with cross-mutation;

3. LyDROO [15] and DRLRM [40]: These are both UAV scheduling algorithms based
on Lyapunov optimization and DRL. The actor modules in them use DNNs and
action quantizers to balance exploration and exploitation. The critic utilizes model-
based optimization instead of deep neural networks. In this regard, LyDROO and
DRLRM also combine intelligent and heuristic solutions. Due to different scheduling

Drones 2023, 7, 513 12 of 16

scenarios, we set the Critic to a downright greedy strategy based on load balancing
and communication latency minimization when using LyDROO and DRLRM as
baselines. The Actor’s network parameters are the same as mA2C.

5.2.1. Practicability of DECCo

To verify the applicability of DECCo under different task request modes, we trimmed
the task demand queue into two modes: (i) random arrival mode, and (ii) a spliced mode
with random arrival and CPU usage increment iteration under the same DEC environment.
Figure 4 shows the convergence of DECCo in the task request random arrival mode, with
time slots displayed on a logarithmic scale. Figures 5 and 6 compare the convergence of
DECCo and other baseline algorithms/frameworks under the two task request modes. To
highlight the convergence difference between DECCo and other baseline algorithms, we
fitted the cost convergence curve with a polynomial to avoid the inevitable fluctuations
during the convergence process.

Figure 4. Practicability of DECCo.

In DECCo, the advantages of DRL-based solutions and heuristic solutions can be
discerned from Figures 5 and 6. In the initial phase of agent learning (time slot 1 to 103),
the performance of the heuristic solution is significantly better than that of the DRL-based
solution. This is mainly because mA2C needs some time to interact with the cluster envi-
ronment and maintain some exploratory behavior, while the heuristic solution can make
relatively accurate decisions after a small number of iterations. However, as the number of
iterations increases, the performance of the DRL-based solution will be significantly better
than that of the heuristic solution, determined by DRL’s more vital convergence ability. Fur-
thermore, when the agent faces unprecedented task request modes in the environment, the
DRL-based solution will face the same problems as in the initial learning phase, leading to a
transient increase in cost and a rapid decrease as the number of iterations increases. At this
time, the heuristic solution can be a backup for mA2C to avoid relatively serious erroneous
decisions in a short period. In the actual policy learning process, when mA2C outperforms
the heuristic solution in 100 consecutive iterative evaluations, that is, at t = 2260, the
solution switching unit will switch from using the heuristic solution to actively making
decisions with mA2C, allowing DECCo to maintain the best decisions in the long term.

(a) (b)
Figure 5. (a) Task request random arrival mode. (b) DECCo’s performance in the task request random
arrival mode.

Drones 2023, 7, 513 13 of 16

(a) (b)
Figure 6. (a) Task request splicing mode. (b) DECCo’s performance in task request splicing mode.

5.2.2. Load Balancing

Figure 7 shows the impact of the allocation of weights λ1, λ2, λ3 (λ1 + λ2 + λ3 = 1)
in the cost function’s three objectives on load balancing. We use different λ1, λ2, and λ3
values to train DECCo and calculate the convergence value of the load balancing goal C1,
respectively. When “λ1 = 0.3, λ2 = 0.5, λ3 = 0.2”, DECCo shows the best performance.
Furthermore, we focus on two parameter modes: (i) Excessive Attention to Load Balance.
When “λ1 = 0.8, λ2 = 0.1, λ3 = 0.1”, the cost converges to 0.397, at this time DECCo overly
focuses on load balancing, ignoring resource overload and network latency. (ii) Ignore Load
Balancing. When “λ1 = 0, λ2 = 0.1, λ3 = 0.9”, the cost converges to 0.24; at this time, DECCo
ignores load balancing and focuses on network latency between UAV and base station. At this
time, DECCo’s performance is not optimal but is better than the situation of overly focusing
on load balance, indicating that overly focusing on load balance is not a good choice. In
addition, if we increase the weight of the resource overload penalty λ2 under the premise of
ignoring load balancing (i.e., λ1 = 0), the convergence value of C1 will decrease. This suggests
that the overload penalty can also contribute to achieving load balance to some extent. A
possible situation that may occur is that when the available resources of each drone node are
close to zero, the model naturally achieves load balance while avoiding resource overload.

Figure 7. Impact of Cost Function Parameters on DECCo Performance.

5.2.3. Resource Overload

The resource usage of UAVs changes with the allocation of tasks. Therefore, the
resource overload term in the cost function is used to penalize those operations that make
the resource usage of UAVs exceed the resource boundary of UAVs. Since the resource
demand of a single task is usually much smaller than the available resources of UAVs,
resource overload only sometimes occurs. However, when the following two requirements
are met, the loss of QoS caused by resource overload will far exceed the imbalance of load
and high communication latency, and this loss is unpredictable: (i) the cluster resources
are highly saturated; and (ii) there is a significant difference in the task-carrying capacity
of UAVs.

To highlight the value of the resource overload penalty, we set an available re-
source boundary for each UAV. Specifically, we assign the same resource boundary value

Drones 2023, 7, 513 14 of 16

R1 = R2 = R3 = R4 = 0.8 GB to four UAVs with memory of 1 GB, 2 GB, 2 GB, and 4 GB,
respectively. In Figure 8, we show how the four UAVs’ usage changes with the time slot. It
can be seen that UAV 2 and UAV 3 experience resource overload at two time points. DECCo
can effectively recover after a resource overload occurs and can converge the resource usage
to a stable range. It is worth noting that, compared with UAV 3, the resource utilization
rate on UAV 2 is higher because UAV 2 has a smaller communication latency than the
base station. Because of the significant impact, such as node shutdown caused by resource
overload to the cluster, we recommend setting λ2 to a larger value.

Figure 8. Impact of resource overload on UAV resource usage.

6. Conclusions

In this paper, we propose a smart collaborative task scheduling framework for drone
edge clusters, DECCo, which autonomously learns task scheduling strategies with high
response rates and low communication latencies through a cooperative Advantage Actor–
Critic algorithm, ensuring load balance while avoiding resource overload and local shut-
down interference during the task scheduling strategy learning process. DECCo avoids
serious errors and suboptimal decisions by utilizing a scheduling solution switch unit,
and adapts to various types of task requests on different DECs through flexible parameter
control. We verified the effectiveness of DECCo through simulations based on a real-world
cluster resource request dataset.

We plan to extend DECCo to cover microservice deployment and resource scheduling
scenarios for DECs. This extension will not merely limit the action space of the Markov
process within DECCo to the selection of UAV nodes. The scheduling framework will also
need to consider how to efficiently deploy and schedule CPU and memory resources for the
same task across different UAV nodes. This approach will further enhance the versatility
and autonomous learning ability of DECCo across a range of DEC scenarios.

Author Contributions: Conceptualization, Z.Z.; Methodology, Z.Z., D.W., F.Z. and R.W.; Validation,
Z.Z. and D.W.; Formal analysis, Z.Z.; Investigation, Z.Z.; Data curation, Z.Z.; Writing—original draft,
D.W. and F.Z.; Writing—review & editing, Z.Z. and R.W.; Visualization, Z.Z.; Supervision, F.Z.; Project
administration, D.W. and R.W.; Funding acquisition, R.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
under Grant 62271128, and the Sichuan Science and Technology Program Key R&D Project under
Grant 2022ZDZX0004, 23ZDYF0706, 23ZDYF0085, 2022YFG0212, 2021YFS0391, 2021YFG0027

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Drones 2023, 7, 513 15 of 16

Appendix A

Table A1. Notations and Explanations.

Notation Explanation

U UAV nodes set
qt Tasks scheduled by DEC at time slot t
Et The resource request of the current task qt
At

u The available resources of UAV u at time slot t
Hu The hardware resources of UAV u
Dt Communication latency between the base station and each UAV at time slot t
st The state of the DEC at time slot t
at The scheduling action performed by DEC at time slot t
C Cost Function
Y Discount factor
θe, θt, θp Parameters of evaluation network, target network, policy network
v(t) The state value function of DEC at time slot t
π The task scheduling policy
Ft Vector to record available UAV nodes
P The size of the experience pool
N Target network update period

References
1. Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun.

Mag. 2020, 58, 55–61. [CrossRef]
2. Alameddine, H.A.; Sharafeddine, S.; Sebbah, S.; Ayoubi, S.; Assi, C. Dynamic Task Offloading and Scheduling for Low-Latency

IoT Services in Multi-Access Edge Computing. IEEE J. Sel. Areas Commun. 2019, 37, 668–682. [CrossRef]
3. Nath, S.; Wu, J. Deep Reinforcement Learning for Dynamic Computation Offloading and Resource Allocation in Cache-Assisted

Mobile Edge Computing Systems. Intell. Converg. Netw. 2020, 1, 181–198.
4. Yang, T.; Hu, Y.; Gursoy, M.C.; Schmeink, A.; Mathar, R. Deep Reinforcement Learning Based Resource Allocation in Low Latency

Edge Computing Networks. In Proceedings of the 2018 15th International Symposium on Wireless Communication Systems
(ISWCS), Lisbon, Portugal, 28–31 August 2018; pp. 1–5.

5. Yang, L.; Yao, H.; Wang, J.; Jiang, C.; Benslimane, A.; Liu, Y. Multi-UAV-Enabled Load-Balance Mobile-Edge Computing for IoT
Networks. IEEE Internet Things J. 2020, 7, 6898–6908. [CrossRef]

6. Tuli, S.; Ilager, S.; Ramamohanarao, K.; Buyya, R. Dynamic Scheduling for Stochastic Edge-Cloud Computing Environments
Using A3C Learning and Residual Recurrent Neural Networks. IEEE Trans. Mob. Comput. 2020, 21, 940–954. [CrossRef]

7. Burns, B.; Grant, B.; Oppenheimer, D.; Brewer, E.; Wilkes, J. Borg, Omega, and Kubernetes. Commun. ACM 2016, 59, 50–57.
8. Wang, X.; Han, Y.; Leung, V.C.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A Comprehen-

sive Survey. IEEE Commun. Surv. Tutorials 2020, 22, 869–904. [CrossRef]
9. Xiong, Y.; Sun, Y.; Xing, L.; Huang, Y. Extend Cloud to Edge with KubeEdge. In Proceedings of the 2018 IEEE/ACM Symposium

on Edge Computing (SEC), Bellevue, WA, USA, 25–27 October 2018; pp. 373–377.
10. Pham, Q.V.; Mirjalili, S.; Kumar, N.; Alazab, M.; Hwang, W.J. Whale Optimization Algorithm with Applications to Resource

Allocation in Wireless Networks. IEEE Trans. Veh. Technol. 2020, 69, 4285–4297.
11. Tran, T.X.; Pompili, D. Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks. IEEE

Trans. Veh. Technol. 2018, 68, 856–868. [CrossRef]
12. Li, B.; Fei, Z.; Zhang, Y. UAV Communications for 5G and Beyond: Recent Advances and Future Trends. IEEE Internet Things J.

2018, 6, 2241–2263. [CrossRef]
13. Huang, L.; Bi, S.; Zhang, Y.J.A. Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-

Edge Computing Networks. IEEE Trans. Mob. Comput. 2019, 19, 2581–2593. [CrossRef]
14. He, Y.; Zhang, Z.; Yu, F.R.; Zhao, N.; Yin, H.; Leung, V.C.; Zhang, Y. Deep-Reinforcement-Learning-Based Optimization for

Cache-Enabled Opportunistic Interference Alignment Wireless Networks. IEEE Trans. Veh. Technol. 2017, 66, 10433–10445.
[CrossRef]

15. Bi, S.; Huang, L.; Wang, H.; Zhang, Y.J.A. Lyapunov-Guided Deep Reinforcement Learning for Stable Online Computation
Offloading in Mobile-Edge Computing Networks. IEEE Trans. Wirel. Commun. 2021, 20, 7519–7537. [CrossRef]

16. Farhadi, V.; Mehmeti, F.; He, T.; La Porta, T.F.; Khamfroush, H.; Wang, S.; Poularakis, K. Service Placement and Request Scheduling
for Data-Intensive Applications in Edge Clouds. IEEE/ACM Trans. Netw. 2021, 29, 779–792. [CrossRef]

17. Mao, H.; Alizadeh, M.; Menache, I.; Kandula, S. Resource Management with Deep Reinforcement Learning. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks, Atlanta, GA, USA, 9–10 November 2016; pp. 50–56.

http://doi.org/10.1109/MCOM.001.1900411
http://dx.doi.org/10.1109/JSAC.2019.2894306
http://dx.doi.org/10.1109/JIOT.2020.2971645
http://dx.doi.org/10.1109/TMC.2020.3017079
http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.1109/TVT.2018.2881191
http://dx.doi.org/10.1109/JIOT.2018.2887086
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/TVT.2017.2751641
http://dx.doi.org/10.1109/TWC.2021.3085319
http://dx.doi.org/10.1109/TNET.2020.3048613

Drones 2023, 7, 513 16 of 16

18. Ma, X.; Zhou, A.; Zhang, S.; Wang, S. Cooperative Service Caching and Workload Scheduling in Mobile Edge Computing. In
Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 2076–2085.

19. Jeong, S.; Simeone, O.; Kang, J. Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path
Planning. IEEE Trans. Veh. Technol. 2017, 67, 2049–2063. [CrossRef]

20. Zhang, T.; Xu, Y.; Loo, J.; Shen, X.S.; Wang, J.; Liang, Y.; Wang, X. Joint Computation and Communication Design for UAV-Assisted
Mobile Edge Computing in IoT. IEEE Trans. Ind. Inform. 2019, 16, 5505–5516. [CrossRef]

21. Liu, Y.; Xiong, K.; Ni, Q.; Fan, P.; Letaief, K.B. UAV-Assisted Wireless Powered Cooperative Mobile Edge Computing: Joint
Offloading, CPU Control, and Trajectory Optimization. IEEE Internet Things J. 2019, 7, 2777–2790. [CrossRef]

22. Li, C.; Sun, H.; Chen, Y.; Luo, Y. Edge Cloud Resource Expansion and Shrinkage Based on Workload for Minimizing the Cost.
Future Gener. Comput. Syst. 2019, 101, 327–340. [CrossRef]

23. Chai, X.; Zheng, Z.; Xiao, J.; Yan, L.; Qu, B.; Wen, P.; Wang, H.; Zhou, Y.; Sun, H. Multi-Strategy Fusion Differential Evolution
Algorithm for UAV Path Planning in Complex Environment. Aerosp. Sci. Technol. 2022, 121, 107287. [CrossRef]

24. Google Kubernetes Engine (GKE). Available online: https://cloud.google.com/kubernetes-engine (accessed on 1 August 2023).
25. Azure Kubernetes Service (AKS). Available online: https://azure.microsoft.com/en-us/services/kubernetes-service (accessed

on 1 August 2023).
26. Amazon Elastic Kubernetes Service (EKS). Available online: https://aws.amazon.com/eks (accessed on 1 August 2023).
27. Google Cloud Platform (GCP). Available online: https://console.cloud.google.com (accessed on 1 August 2023).
28. Li, M.; Gao, J.; Zhao, L.; Shen, X. Deep Reinforcement Learning for Collaborative Edge Computing in Vehicular Networks. IEEE

Trans. Cogn. Commun. Netw. 2020, 6, 1122–1135. [CrossRef]
29. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of Deep Reinforcement Learning in

Communications and Networking: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [CrossRef]
30. Yang, C.; Liu, B.; Li, H.; Li, B.; Xie, K.; Xie, S. Learning Based Channel Allocation and Task Offloading in Temporary UAV-Assisted

Vehicular Edge Computing Networks. IEEE Trans. Veh. Technol. 2022, 71, 9884–9895. [CrossRef]
31. Liu, Q.; Shi, L.; Sun, L.; Li, J.; Ding, M.; Shu, F. Path Planning for UAV-Mounted Mobile Edge Computing with Deep Reinforcement

Learning. IEEE Trans. Veh. Technol. 2020, 69, 5723–5728. [CrossRef]
32. Hoang, L.T.; Nguyen, C.T.; Pham, A.T. Deep Reinforcement Learning-Based Online Resource Management for UAV-Assisted

Edge Computing with Dual Connectivity. IEEE/ACM Trans. Netw. 2023. [CrossRef]
33. Grondman, I.; Busoniu, L.; Lopes, G.A.; Babuska, R. A Survey of Actor-Critic Reinforcement Learning: Standard and Natural

Policy Gradients. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2012, 42, 1291–1307. [CrossRef]
34. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning with Function Approxi-

mation. Adv. Neural Inf. Process. Syst. 1999, 12.
35. Haja, D.; Szalay, M.; Sonkoly, B.; Pongracz, G.; Toka, L. Sharpening Kubernetes for the Edge. In Proceedings of the ACM

SIGCOMM 2019 Conference Posters and Demos, Beijing China, 19–23 August 2019; pp. 136–137.
36. Rossi, F.; Cardellini, V.; Presti, F.L.; Nardelli, M. Geo-Distributed Efficient Deployment of Containers with Kubernetes. Comput.

Commun. 2020, 159, 161–174. [CrossRef]
37. Kumar, J.; Singh, A.K.; Buyya, R. Self Directed Learning Based Workload Forecasting Model for Cloud Resource Management.

Inf. Sci. 2021, 543, 345–366. [CrossRef]
38. Kim, I.K.; Wang, W.; Qi, Y.; Humphrey, M. Forecasting Cloud Application Workloads with Cloudinsight for Predictive Resource

Management. IEEE Trans. Cloud Comput. 2020, 10, 1848–1863. [CrossRef]
39. Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.; Tune, E.; Wilkes, J. Large-Scale Cluster Management at Google with Borg.

In Proceedings of the Tenth European Conference on Computer Systems, Bordeaux France, 21–24 April 2015; pp. 1–17.
40. Zhu, X.; Luo, Y.; Liu, A.; Xiong, N.N.; Dong, M.; Zhang, S. A Deep Reinforcement Learning-Based Resource Management Game

in Vehicular Edge Computing. IEEE Trans. Intell. Transp. Syst. 2021, 23, 2422–2433. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVT.2017.2706308
http://dx.doi.org/10.1109/TII.2019.2948406
http://dx.doi.org/10.1109/JIOT.2019.2958975
http://dx.doi.org/10.1016/j.future.2019.05.026
http://dx.doi.org/10.1016/j.ast.2021.107287
https://cloud.google.com/kubernetes-engine
https://azure.microsoft.com/en-us/services/kubernetes-service
https://aws.amazon.com/eks
https://console.cloud.google.com
http://dx.doi.org/10.1109/TCCN.2020.3003036
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1109/TVT.2022.3177664
http://dx.doi.org/10.1109/TVT.2020.2982508
http://dx.doi.org/10.1109/TNET.2023.3263538
http://dx.doi.org/10.1109/TSMCC.2012.2218595
http://dx.doi.org/10.1016/j.comcom.2020.04.061
http://dx.doi.org/10.1016/j.ins.2020.07.012
http://dx.doi.org/10.1109/TCC.2020.2998017
http://dx.doi.org/10.1109/TITS.2021.3114295

	Introduction
	Related Work
	Classical Solutions
	Reinforcement Learning Solutions

	DECCo Framework Design
	Cluster Orchestrator
	Co-Scheduler
	mA2C
	Heuristic Solution
	Solution Switching Unit

	Cluster Controller

	Problem Formulation and System Model
	Background
	Scheduling Problem Formulation
	MDP Formulation for DECCo
	Cost Function

	mA2C
	Base Station Critic
	UAV Actor
	Heuristic Solution

	Experiments and Evaluations
	Experiment Setup
	Task Requests
	Cluster Construction
	Architecture Implementation

	Experimental Evaluation
	Practicability of DECCo
	Load Balancing
	Resource Overload

	Conclusions
	Appendix A
	References

