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Abstract: Unmanned aerial vehicles (UAVs) visual object tracking under low-light conditions serves
as a crucial component for applications, such as night surveillance, indoor searches, night combat,
and all-weather tracking. However, the majority of the existing tracking algorithms are designed
for optimal lighting conditions. In low-light environments, images captured by UAV typically
exhibit reduced contrast, brightness, and a signal-to-noise ratio, which hampers the extraction of
target features. Moreover, the target’s appearance in low-light UAV video sequences often changes
rapidly, rendering traditional fixed template tracking mechanisms inadequate, and resulting in poor
tracker accuracy and robustness. This study introduces a low-light UAV object tracking algorithm
(SiamLT) that leverages image feature enhancement and a dynamic template-updating Siamese
network. Initially, the algorithm employs an iterative noise filtering framework-enhanced low-light
enhancer to boost the features of low-light images prior to feature extraction. This ensures that the
extracted features possess more critical target characteristics and minimal background interference
information. Subsequently, the fixed template tracking mechanism, which lacks adaptability, is
enhanced by dynamically updating the tracking template through the fusion of the reference and
base templates. This improves the algorithm’s capacity to address challenges associated with feature
changes. Furthermore, the Average Peak-to-Correlation Energy (APCE) is utilized to filter the
templates, mitigating interference from low-quality templates. Performance tests were conducted
on various low-light UAV video datasets, including UAVDark135, UAVDark70, DarkTrack2021,
NAT2021, and NAT2021L. The experimental outcomes substantiate the efficacy of the proposed
algorithm in low-light UAV object-tracking tasks.

Keywords: unmanned aerial vehicle; low-light tracking; Siamese network; feature enhancement;
dynamic template

1. Introduction

Visual object tracking is a fundamental task in computer vision that finds extensive
applications in the unmanned aerial vehicle (UAV) domain. Recent years have witnessed
the emergence of new trackers that exhibit exceptional performance in UAV tracking [1–3],
which is largely attributed to the fine manual annotation of large-scale datasets [4–7]. How-
ever, the evaluation standards and tracking algorithms currently employed are primarily
designed for favorable lighting conditions. In real-world scenarios, low-light conditions
such as nighttime, rainy weather, and small spaces are often encountered, resulting in
images with low contrast, low brightness, and low signal-to-noise ratio compared to nor-
mal lighting. These discrepancies give rise to inconsistent feature distributions between
the two types of images, thereby rendering it challenging to extend trackers designed for
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favorable lighting conditions to low-light scenarios [8,9], making it more challenging for
UAV tracking.

Low-light UAV video sequences exhibit poor robustness and tracking drift when
conventional object-tracking algorithms are employed, as illustrated in Figure 1. This
paper aims to address the issue of object tracking under low-light conditions, which
can be divided into two sub-problems: enhancing low-light image features and tackling
the challenge of target appearance changes in low-light video sequences. First, the low
contrast, low brightness, and low signal-to-noise ratio of low-light images make feature
extraction more arduous compared to normal images. Insufficient feature information
hampers subsequent object-tracking tasks and constrains the performance of object-tracking
algorithms. Another obstacle hindering the effectiveness of object-tracking algorithms
arises from the characteristics of low-light video sequences. During tracking, the target’s
appearance often changes, and when it becomes occluded or deformed, its features no
longer correspond to the original template features, resulting in tracking drift. Such
challenges are commonplace in vision object-tracking tasks and are more pronounced
under low-light conditions due to the unstable lighting conditions, which serve as a crucial
limiting factor for the performance of object-tracking algorithms.

(a) N08005

(b) person_24

(c) signpost6
Ground Truth SiamLT_Res50 SiamRPN++ HiFT SiamAPN++ SiamRPN

Figure 1. Trackers performance under low-light conditions.

Taking into account the aforementioned issues, this paper presents a visual object-
tracking algorithm specifically designed for low-light environments. First, to enhance the
quality of images in low-light settings and to mitigate the challenge of feature extraction, a
low-light image enhancement algorithm is devised. This algorithm integrates deep learning
and filtering techniques to accentuate crucial target features. Simultaneously, the traditional
static template mechanism of Siamese networks is improved upon by employing dynamic
templates that capture changes in target features for feature matching. This increases
the likelihood of matching templates to the correct targets, thereby enhancing tracker
performance in low-light conditions. In summary, the principal contributions of this paper
are as follows:

(1) To tackle the challenges of low contrast, low brightness, and low signal-to-noise ratio
in low-light images, which hinder effective target feature extraction, an enhanced
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low-light image enhancement algorithm is proposed. An iterative noise filtering
framework is developed to suppress high-intensity noise arising from low-light image
enhancement and to emphasize key features in low-light images;

(2) To address the issue of appearance changes in low-light tracking tasks, a dynamic
template tracking mechanism is proposed, which surpasses the limited adaptability of
traditional Siamese networks reliant on static templates to changes in target features.
This enhances the tracker’s robustness;

(3) By amalgamating a dynamic template Siamese network framework with a low-light
image enhancement algorithm, two primary challenges are surmounted: extracting
target features from low-light images and coping with frequent appearance changes
in video sequences. Consequently, an object-tracking algorithm suitable for low-light
situations is proposed to bolster tracker performance under such conditions.

2. Related Work
2.1. Low-Light Image Enhancement

The objective of low-light image enhancement is to improve the quality of images by
making the details that are concealed in darkness visible. In recent years, this area has
gained significant attention and undergone continuous development and improvement in
various computer vision domains. Two main types of algorithms are used for low-light
image enhancement, namely model-based methods and deep learning-based methods.

Model-based methods were developed earlier and are based on the Retinex theory [10].
According to this theory, low-light images can be separated into illuminance and reflectance
components. The reflectance component contains the essential attributes of the image,
including edge details and color information, while the illuminance component captures the
general outline and brightness distribution of the objects in the image. Fu et al. [11,12] were
the first to use the L2 norm to constrain illumination and proposed an image enhancement
method that simultaneously estimates illuminance and reflectance components in the linear
domain. This method demonstrated that the linear domain formula is more suitable than
the logarithmic domain formula. Guo et al. [13] used relative total variation [14] as a
constraint on illumination and developed a structure-aware smoothing model to obtain
better estimates of illuminance components. However, this model has the disadvantage of
overexposure. Li et al. [15] added a noise term to address low-light image enhancement
under strong noise conditions. They introduced new regularization terms to jointly estimate
a piecewise smooth illumination and a structure-displaying reflectance in the optimization
problem of illumination and reflectance. They also modeled noise removal and low-light
enhancement as a unified optimization goal. Additionally, Ref. [16] proposed a semi-
decoupled decomposition model to simultaneously enhance brightness and suppress noise.
Although some models use camera response characteristics (e.g., LEACRM [17]), their
effects are often not ideal and require manual adjustment of numerous parameters when
dealing with real scenes.

In recent years, deep learning-based methods have rapidly emerged with the advance-
ment of computer technology. Li et al. [18] proposed a control-based method for optimizing
UAV trajectories, which incorporates energy conversion efficiency by directly deriving
the model from the voltage and current flow of the UAV’s electric motor. EvoXBench [19]
introduced an end-to-end process to address the lack of a general problem statement for
NAS tasks from an optimization perspective. Zhang et al. [20] presented a low-complexity
strategy for super-resolution (SR) based on adaptive low-rank approximation (LRA), aim-
ing to overcome the limitations of processing large-scale datasets. Jin et al. [21] developed
a deep transfer learning method that leverages facial recognition techniques to achieve a
computer-aided facial diagnosis, validated in both single disease and multiple diseases
with healthy controls. Zheng et al. [22] proposed a two-stage data augmentation method for
automatic modulation classification in deep learning, utilizing spectral interference in the
frequency domain to enhance radio signals and aid in modulation classification. This marks
the first instance where frequency domain information has been considered to enhance
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radio signals for modulation classification purposes. Meanwhile, deep learning-based
low-light enhancement algorithms have also made significant progress. Chen et al. [23]
created a new dataset called LOL dataset by collecting low/normal light image pairs with
adjusted exposure time. This dataset is the first to contain image pairs obtained from real
scenes for low-light enhancement research, making a significant contribution to learning-
based low-light image enhancement algorithm research. Many algorithms have been
trained based on this dataset. The retinal network, designed in [23], generated unnatural
enhancement results. KinD [24] improved some of the issues in the retinal network by
adjusting the network architecture and introducing some training losses. DeepUPE [25]
proposed a low-light image enhancement network that learned an image-to-illumination
component mapping. Yang et al. [26] developed a fidelity-based two-stage network that
first restores signals and then further enhances the results to improve overall visual quality,
trained using a semi-supervised strategy. EnGAN [27] used a GAN-based unsupervised
training method to enhance low-light images using unpaired low/normal light data. The
network was trained using carefully designed discriminators and loss functions while
carefully selecting training data. SSIENet [28] proposed a maximum entropy-based Retinex
model that could estimate illuminance and reflectance components simultaneously while
being trained only with low-light images. ZeroDCE [29] heuristically constructed quadratic
curves with learned parameters to estimate parameter mapping from low-light input and
used curve projection models for iterative light enhancement of low-light images. However,
these models focus on adjusting the brightness of images and do not consider the noise
that inevitably occurs in real-world nighttime imaging. Liu et al. [30] introduced prior
constraints based on Retinex theory to establish a low-light image enhancement model and
constructed an overall network architecture by unfolding its optimization solution process.
Recently, Ma et al. [31] added self-correcting modules during training to reduce the model
parameter size and improve inference speed.

However, these algorithms have limited stability, and it is difficult to achieve sustained
superior performance, particularly in unknown real scenes where unclear details and
inappropriate exposure are common and without good solutions for noise in images.

2.2. Object Tracking

In recent years, object tracking algorithms can be classified into methods based on dis-
criminative correlation filtering [32–34] and methods based on Siamese networks. Achiev-
ing end-to-end training on trackers based on discriminative correlation filtering is chal-
lenging due to their complex online learning process. Moreover, limited by low-level
manual features or inappropriate pre-trained classifiers, trackers based on discriminative
correlation filtering become ineffective under complex conditions.

With the continuous improvement of computer performance and the establishment of
large-scale datasets, tracking algorithms based on Siamese networks have become main-
stream due to their superior performance. The Siamese network series of algorithms started
with SINT [35] and SiamFC [36], which treat target tracking as a similarity learning prob-
lem and train Siamese networks using large amounts of image data. SiamFC introduced
a correlation layer for feature fusion which significantly improved accuracy. Based on
the success of SiamFC, subsequent improvements were made. CFNet [37] added a cor-
relation filter to the template branch to make the network shallower and more efficient.
DSiam [38] proposed a dynamic Siamese network that could be trained on labeled video
sequences as a whole, fully utilizing the rich spatiotemporal information of moving objects
and achieving improved accuracy with an acceptable speed loss. RASNet [39] used three
attention mechanisms to weight the space and channels of SiamFC features, enhancing the
network’s discriminative ability by decomposing the coupling of feature extraction and
discriminative analysis. SASiam [40] established a Siamese network containing semantic
and appearance branches. During training, the two branches were separated to maintain
specificity. During testing, the two branches were combined to improve accuracy. However,
these methods require multi-scale testing to cope with scale changes and cannot handle
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proportion changes caused by changes in target appearance. To obtain more accurate target
bounding boxes, B. Li et al. [41] introduced a region proposal network (RPN) [42] into the
Siamese network framework, achieving simultaneous improvement in accuracy and speed.
SiamRPN++ [43] further adopted a deeper backbone and feature aggregation architecture to
exploit the potential of deep networks on Siamese networks and improve tracking accuracy.
SiamMask [44] introduced a mask branch to simultaneously achieve target tracking and
image segmentation. Xu et al. [45] proposed a set of criteria for estimating the target state
in tracker design and designed a new Siamese network, SiamFC++, based on SiamFC.
DaSiamRPN [46] introduced existing detection datasets to enrich positive sample data and
difficult negative sample data to improve the generalization and discrimination ability of
trackers. It also introduced a local-to-global strategy to achieve good accuracy in long-term
tracking. Anchor-free methods use per-pixel regression to predict four offsets on each
pixel, reducing the hyperparameters caused by the introduction of RPNs. SiamBAN [47]
proposed a tracking framework, containing multiple adaptive heads, that does not require
multi-scale search or predefined candidate boxes, that directly classifies objects in a unified
network, and that regresses bounding boxes. SiamCAR [48] added a centrality branch to
help determine the position of the target center point and further improve tracking accuracy.
Recently, Transformer [49] was integrated into the Siamese framework to simulate global
information and improve tracking performance.

Regarding target tracking algorithms under low-light conditions, a DCF framework
integrated with a low-light enhancer was proposed in [50]. However, it is limited to hand-
crafted features and lacks transferability. Ye et al. [51] developed a new unsupervised
domain adaptation framework that uses a day-night feature discriminator to adversari-
ally train a daytime tracking model for nighttime tracking. However, there is currently
insufficient targeted research on this issue.

Remark 1. Despite significant progress in target tracking algorithms, previous research has largely
focused on tracking targets under normal lighting conditions, with little attention paid to tracking
under unfavorable lighting conditions. Current methods still fall short of meeting performance
requirements in real-world scenarios. This article addresses the challenges of tracking targets under
low-light conditions and proposes a targeted approach to addressing these issues. Experimental
results demonstrate the effectiveness of the proposed algorithm.

3. Low-Light Object Tracking Algorithm
3.1. Overall Framework

In low-light conditions, trackers often encounter tracking drift problems due to factors
such as low target feature saliency and target feature changes. This paper proposes a
low-light adapted target tracking algorithm (SiamLT) under the Siamese network frame-
work. The algorithm enhances the feature extraction ability of the tracker under low-light
conditions by incorporating an image feature enhancement module. A dynamic template
tracking mechanism is used to address the challenges of target feature changes during
tracking and improve tracking accuracy under low-light conditions.

The SiamLT network architecture is illustrated in Figure 2. The network takes in a low-
light image sequence as input and crops the original image to obtain a template image and a
search image. The low-light feature enhancement module is applied to enhance the feature
information of the template and search images. Feature extraction is then performed to
obtain the template feature map and search feature map. These feature maps are fed into the
RPN network to generate a classification score map and a regression score map, which are
used to determine the target position and size in the current frame. To enhance the Siamese
network’s adaptability to changes in target features, we introduce a dynamic template
tracking mechanism to the traditional Siamese network tracking framework. As shown in
Figure 2, the RPN network’s template input is obtained by fusing the target features from
the first frame and the previous frame. This enhances the tracker’s accuracy and stability
under low-light conditions. The Feature Enhancement, RPN, and Dynamic Template
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modules presented in Figure 2 will be thoroughly discussed in Sections 3.2, 3.3, and 3.4,
respectively.

RPN.........

Classfication Score

Regression Score

Backbone

Search Feature

Template Feature

…

#1

#k-1

#k

…

#1

#k

#k-1#k-1

…

#1

#k

#k-1

Dynamic Template
Base

Template

Search Image

Feature Enhancement

Reference

Template 
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……
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Adaptive

denoising

Cls

Reg

Figure 2. Overall structure diagram of the proposed algorithm.

3.2. Low-Light Image Feature Enhancement Module

The main objective of this module is to address the issues related to poor quality
low-light images and difficulty in extracting target features. To this end, this paper divides
the task of low-light image enhancement into two steps. The first step involves the use of
an image illumination enhancement algorithm to improve the lighting conditions, adjust
the brightness and contrast, and make the target features more prominent. However,
during the brightness enhancement process, it is challenging to differentiate between target
information and noise information in the image, and the noise intensity in the image will
also increase accordingly. High-intensity noise can interfere with the extraction of key
target features and hinder the tracking process. Therefore, this paper proposes an adaptive
image filtering and denoizing algorithm to suppress high-intensity noise in the image and
reduce its interference with key target features after illumination enhancement. The two
sub-modules work in tandem to process low-light images and obtain higher-quality image
features, significantly improving the tracking accuracy of tracking algorithms.

3.2.1. Image Illumination Enhancement Submodule

Low-light images frequently exhibit insufficient brightness and inadequate contrast,
posing challenges in extracting prominent feature information of the object and distinguish-
ing it from the image background. Consequently, weak target features and a significant
amount of interference information can lead to tracking drift in low-light conditions. To deal
with these problems, this paper proposes an image illumination enhancement module that
improves tracking performance by increasing the saliency of an object in the background.

The configuration of the module is illustrated in Figure 3, where I denotes the input
image. Initially, the lighting conditions of the input image I are assessed. Only images with
suboptimal lighting conditions are chosen for enhancement to prevent the overexposure of
images exhibiting normal lighting conditions. This paper employs the log-average lumi-
nance of the image [52] as the illumination condition evaluation index. This index simplifies
complex illumination information into a constant through pixel-level calculations. For a
given RGB image I, the light intensity value of a single pixel LW(I) is first represented as:

LW(x, y, I) = ∑
m

αmψm(I(x, y)), m ∈ {R, G, B} (1)

where ψm(I(x, y)) represents the light intensity at position (x, y) in channel m of the image,
such as ψG(I(x, y)) represents the light intensity value in the green channel. The channel
weight parameters αR , αG , αB satisfy αR + αG + αB = 1. Referring to [52], the logarithmic
average illuminance intensity is represented as:

LW(I) = exp

(
1

wh ∑
x,y

log
(

δ + LW(x, y, I)
))

(2)
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where δ is a very small constant used to avoid the special case where LW is 0. LW can
effectively represent the lighting conditions of the image, and there are obvious differences
in LW under different lighting conditions. Therefore, this paper uses LW as an indicator to
evaluate the lighting conditions of the image and sets a threshold to distinguish between
normal-light images and low-light images.

Low-Light Image Enhancement

Light condition 

judge

Η μ E

Illumination Adaptation

High

Low

High

Low

I

I

F 

Figure 3. Schematic diagram of the illumination enhancement module.

The filtered low-light images are then processed through the low-light enhancement
network for enhancement. In this study, the SCI illumination enhancement algorithm [31]
is selected for the enhancement network, using its test phase. The network structure is
shown in the figure. According to the retinal cortex theory, there is a relationship between
low-light image y and ideal image z as follows:

y = z⊗ x (3)

The network estimates the illumination component of the input image represented by
“x”. Then, it removes the estimated illumination component from the original image to
produce the enhanced image. As shown in Figure 3, the algorithm introduces a mapping
relationship Hθ to learn the illumination component in low-light images, and the inference
process can be written as:

z(y) :


u = H(y),

F = y + u,

z = y/F,

(4)

where u represents the output of the residual block, and F represents the illumination
component obtained by mapping the input image.

3.2.2. Adaptive Image Filtering Denoizing Algorithm

The image illumination enhancement module primarily focuses on improving the
brightness of the low-light image without taking into account the feature information and
noise in the image. As shown in Figure 4, during this process, enhancing valid feature
information also enhances the noise information in the image, leading to an amplified noise
intensity in the enhanced image compared to the original image. This high-intensity noise
significantly interferes with extracting the target’s key features in the image and can result in
tracking drift. To avoid tracking drift caused by the amplified noise, it is crucial to suppress
the noise in the enhanced images produced by the illumination enhancement module.

There are several image denoizing methods, including filter-based methods [53,54],
model-based methods [55,56], and learning-based methods [57–59]. However, model-based
and learning-based methods are time-consuming, and are not suitable for real-time target-
tracking tasks. On the other hand, the fast filter-based method has significant advantages
in terms of speed and can effectively remove specific noise in the image. However, the
selection of filter parameters, particularly the size of the filter window, has a significant
impact on denoizing performance. A small filter window may not achieve satisfactory
results, while a large filter window may lead to the loss of crucial information in the image.



Drones 2023, 7, 483 8 of 27

Enhanced

0.2290.2650.2750.1860.2470.329Light level

1.6913.0622.9451.3631.3971.671Noise level

Original

0.0530.0800.0690.0520.0720.083Light level

0.5741.6910.9210.3890.5440.507Noise level

Figure 4. Comparison of images before and after enhancement.

A diagram of the denoizing module is presented to illustrate the principle of the
iterative filtering algorithm. To balance the suppression of noise and the preservation of
feature information, an iterative filtering algorithm is designed for image denoizing. The
framework of the algorithm is depicted in Figure 5, where I represents the input noisy
image. As there is no precise linear relationship between the noise intensity of the image
and the filter parameters, it is difficult to set the most appropriate filter parameters based on
the noise intensity. Therefore, to avoid losing key information in the image, a low-intensity
filter with fixed parameters is used for iterative denoizing. The problem of selecting filter
parameters is transformed into controlling the number of iterations. The filtering strength
increases with the number of iterations. To match the number of iterations that preserves
the key information and removes noise, an image information loss supervision module is
set up. After each round of filtering, the output image is compared with the original image
for information comparison. Large differences between the output and original images
indicate that key information may have been lost. At this point, the filtering process stops,
and the output image is generated. The calculation formula for the loss L is presented
as follows:

L = 100− PSNR(I, D) = 100− 20 · log10

(
MAXI
MSE

)
(5)

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
‖ I(i, j)− D(i, j)‖

2

(6)

where I is the input image, D is the denoized image, m and n represent the length and
width of the image pixel size, I(i, j) and D(i, j) represent the pixel values at the (x, y)
coordinates of the input image and the denoised image, respectively. When the similarity
between the two images is higher, the MSE value is smaller, the PSNR value is larger, and
the loss L is smaller; on the contrary, when the loss L value becomes larger, it indicates that
the similarity between the denoised image and the original image is lower. When the loss L
of the image information falls below a certain threshold, it means that the filtering process
is causing a loss of information in the image. Therefore, the iterative filtering should be
stopped and the image obtained from the previous round of filtering should be output. The
entire algorithm flow of the image feature enhancement module can be summarized as in
Algorithm 1.

Iteration Framework

Loss calculationMedian filter

High

Low

High

Low

Adaptive Denoising

I
I

D

Figure 5. Schematic diagram of the adaptive denoizing module.



Drones 2023, 7, 483 9 of 27

Algorithm 1: Low-light image feature enhancement algorithm.

Input: Low-light image I;
Output: Feature enhanced image D;

1 Initialization: I0 = I;
2 Compute the light condition level Lw(I0) using Equation (2);
3 if Lw(I) < p then
4 Adjust the light condition of a low-light image using SCI net;
5 for i = 0, 1, . . . , m do
6 Denoizing the image Ii to Di using the lightweight filter;
7 Compute information loss L(I0, Di) using Equation (5);
8 if L(I0, Di) < q then
9 Let Ii+1 = Di;

10 end
11 else
12 Return D = Di
13 end
14 end
15 Return D = Dm
16 end
17 else
18 Return D = I0
19 end

Remark 2. The lightweight filter used in Algorithm 1 is a median filter with a window size of
3 × 3. In Algorithm 1, p is the threshold of illuminance intensity and is set to 0.148 referring
to [52]. q is the threshold of image information loss. It is generally believed that the image quality is
poor when the PSNR value is less than 30 dB. Therefore, we set the threshold q to 70 dB.

3.3. Bounding Box Prediction Network

To predict bounding boxes and adapt to scale changes in the target, the algorithm
utilizes a region proposal network (RPN) [42]. As shown in Figure 6, the RPN includes two
branches: a classification branch that differentiates between foreground and background,
and a regression branch that calculates four position offset parameters relative to the
anchor. After implementing the feature enhancement module and the backbone network,
the template feature map ϕ(z) and the search area feature map ϕ(x) are obtained. The two
feature maps are convolved in two branches. If there are k anchors, the classification branch
and the regression branch output score maps with 2k and 4k channels, respectively:

Acls
w×h×2k = [ϕ(x)]cls ∗ [ϕ(z)]cls

Areg
w×h×4k = [ϕ(x)]reg ∗ [ϕ(z)]reg

(7)

where ϕ(z) is used as the convolution kernel and ∗ represents the convolution operation.
During network training, the two branches of the RPN compute loss independently,

and the classification loss is determined using cross-entropy loss. pi is the probability
that the anchor is predicted as a positive sample, and p∗i is the classification label of the
anchor. If the IOU between the anchor and the true annotation box exceeds 0.6, the anchor
is labeled as a positive sample with a label of 1; otherwise, if the IOU is less than 0.3, it is
labeled as a negative sample with a label of 0.

p∗i =

{
0, IOU > 0.6

1, IOU < 0.3
(8)

Then the classification loss can be written as:

Lcls(pi, p∗i ) = − log[p∗i pi + (1− p∗i )(1− pi)] (9)
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Regression uses normalized coordinate smooth L1 loss. If Ax, Ay, Aw, Ah are used to
represent the center coordinates and size of the anchor box, and Tx, Ty, Tw, Th are used
to represent the true center coordinates and size of the annotated target, the normalized
distance is:

δ[0] =
Tx − Ax

Aw
, δ[1] =

Ty − Ay

Ah

δ[2] = ln
Tw

Aw
, δ[3] = ln

Th
Ah

(10)

Then use them to calculate the smooth L1 loss:

smoothL1(x, σ) =


0.5σ2x2, |x| < 1

σ2

|x| − 1
2σ2 , |x| ≥ 1

σ2

(11)

The regression loss can be written as:

Lreg =
3

∑
i=0

smoothL1(δ[i], σ) (12)

The final loss function is:
loss = Lcls + λLreg (13)

where λ is a hyperparameter used to balance the two parts of the loss.

CNN

CNN

Conv

Conv
127×127×3

255×255×3

22×22×256

6×6×256

Conv

Conv

4×4×(2k×256)

20×20×256

17×17×2k

4×4×(4k×256)

20×20×256

17×17×4k

Classification Branch

Regression branch

Template

Frame

Detection

Frame

Figure 6. Structure of region proposal network.

3.4. Dynamic Template Tracking Mechanism

In typical Siamese network tracking algorithms, the initial frame’s cropped target image is
usually used as a fixed template [36,41], and is not updated even if the target’s features change
during subsequent tracking. This makes the algorithm susceptible to tracking drift when facing
challenges such as occlusion, deformation, and changes in lighting. These issues frequently
arise in low-light tracking tasks, where the fixed template tracking mechanism severely limits
the algorithm’s tracking performance under low-light conditions. To address this problem, this
paper proposes a dynamic template tracking algorithm that updates templates dynamically
by fusing reference templates and basic templates. This enhances the algorithm’s adaptability
to challenges in target feature changes during the tracking process and improves tracking
accuracy and robustness under low-light conditions.

3.4.1. Template Update Method

The template update process is illustrated in Figure 7. The first step is to select the
target features in the initial frame as the basic template, which is assumed to contain the
most essential target features and is therefore considered the most credible. Since the target’s
features continue to change based on the basic template during tracking, it is necessary to
update the template to make it as close as possible to the current target’s features. In the
second step, the target features in the previous frame are selected as the reference template.
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As the target features become closer to the current frame, their similarity to the current target’s
features increases. Therefore, the target’s features in the previous frame are best suited to
reflect the changes in the target’s features. The third step involves fusing the reference template
with the basic template to obtain a new template that is most likely to be similar to the current
target’s features. This new template is used as the tracking template for the next frame. Since
the true position of the target in the current frame is unknown during tracking, templates are
cropped based on the tracking results from the previous frame.
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Figure 7. Schematic diagram of the template update process.

3.4.2. Template Quality Judgment Strategy

In the tracking process, occlusions often occur, and the reference template may contain
interference information. Updating the template with this information can reduce its
quality and negatively affect tracking performance. Additionally, frequent updates can also
result in time loss. To address this issue, the proposed method filters the template before
updating it and stops updating it when its quality is deemed poor. Drawing inspiration
from a previous work [60], the Average Peak-to-Correlation Energy (APCE) is used to
quantify the degree of occlusion of the target. Its calculation formula is as follows:

APCE =
|Fmax − Fmin|2

mean

(
∑
w,h

(Fw,h − Fmin)
2

) (14)

where Fmax , Fmin , Fw,h and, respectively, represent the maximum value, minimum value,
and corresponding value at coordinate (w, h) of the response map.

APCE is a measure of the variability of the response map and reflects the level of
confidence in detecting the target. As illustrated in Figure 8, when the response map shows
a clear and sharp peak with low noise, indicating the target is clearly detected within the
search range, APCE increases, and the response map shows a single peak with smooth
distribution. Conversely, if the target is occluded or missing, APCE decreases significantly.
Based on this feature, the paper employs the APCE value to determine the extent of target
occlusion and filter out high-quality templates. In the feature fusion process, the basic
template is considered to be more reliable, and therefore, the reference template features are
used to correct it while retaining its primary features. The inference process of the dynamic
template Siamese network is outlined in Algorithm 2.

Remark 3. When filtering templates, if the APCE value for the current frame exceeds the average
APCE value of previous historical frames (APCEavg), it is deemed that the quality of the reference
template is high, and thus, the tracking template may be updated.
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APCE=41.93
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(c) No occlusion

(a) Occlusion

(d) Update

(b) Abandon

Figure 8. Effect diagram of the APCE.

Algorithm 2: Dynamic template update algorithm.

Input: The first frame I0 and the ground truth(x0, y0, w0, h0) of the target;
Output: The predicted bounding box (xi, yi, wi, hi) of the target in the ith frame;

1 Crop the base template region and extract the feature Tb from the first frame according to
the ground truth;

2 Initialization:T0 = Tb, APCEavg = 0;
3 for i = 1, 2, . . . , n do
4 Crop the search region and extract the feature Xi from the current frame according to

the last frame’s tracking result;
5 Compute the classification scores and regression scores using Ti and Xi;
6 Compute the response map Mi by convolving Xi with Tb as convolution kernel;
7 Compute the APCE of Mi using Equation (14);
8 if APCEMi > APCEavg then
9 Crop the reference template region and extract the feature Tr from the current frame;

10 Update the template using Ti = Tb + Tr;
11 end
12 else
13 Abandon the reference template Tr and let Ti = Tb;
14 end
15 Update APCEavg;
16 end

4. Experiment and Discussion

This section primarily focuses on the experimental validation process of the algo-
rithm. First, it introduces the experimental environment and training methodologies.
Following this, performance testing and analysis are conducted using the public datasets
UAVDark135 [52], UAVDark70 [50], DarkTrack2021 [8], NAT2021 [51], and NAT2021L [51].
The experimental results are objectively compared from two standpoints: quantitative and
qualitative analyses. The quantitative analysis employs two evaluation metrics: tracking
precision and success rate. Tracking precision is defined as the ratio of the number of frames
in which the average Euclidean distance between the target’s center position tracked by
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the algorithm and the manually labeled true position in the video sequence is below a
specified threshold to the total number of frames. The tracking success rate, on the other
hand, is determined by the proportion of frames in which the overlap score between the
target bounding box predicted by the algorithm and the manually labeled true bounding
box in the video sequence surpasses a predetermined threshold to the overall number of
frames. Qualitative analysis involves annotating the tracking results of algorithms in video
images and comparing the tracking effects more intuitively based on visual impact. Lastly,
ablation experiments are conducted by dissecting the algorithm to verify the effectiveness
of each component. This study designs two versions of algorithms that utilize AlexNet
and ResNet50 as backbone networks, respectively, to demonstrate the performance of
algorithms under varying network complexities.

4.1. Experimental Details

The algorithmic environment in this study is constructed on a computer hardware
platform featuring an Intel® Xeon® Silver 4110 2.1 GHz CPU and an NVIDIA GeForce
RTX2080 GPU and is implemented using PyTorch programming. The comparison algorithm
is replicated based on the original text and assessed under the same conditions.

The model training employs a phased approach. First, the original tracking network,
without incorporating a low-light enhancement network, is trained independently. The
data utilized in this training phase is sourced from the ImageNet VID [61], GOT10K [5],
and YouTube-BB [6] datasets. The pre-training parameters of the feature extraction network
are derived from the model trained on the ImageNet dataset. During training, the template
image size is set at 127 px × 127 px, and the search image size is 255 px × 255 px. The
initial learning rate is established at 0.01, the batch size is 16, and the Adam optimizer is
employed. Subsequently, the low-light enhancement module is integrated into the network
to achieve a comprehensive network structure and attain end-to-end performance. The
SCI network parameters are loaded from models trained on the LOL [23] and LSRW [62]
datasets.

4.2. Quantitative Analysis

To validate the effectiveness of the proposed algorithm, this study conducts performance
evaluations on four low-light datasets: UAVDark135, UAVDark70, DarkTrack2021, NAT2021,
and NAT2021L, and compares its performance with other contemporary tracking algorithms.
This research considers a variety of target tracking algorithms for performance comparison,
which include shallow network-based methods (SiamAPN [63], SiamAPN++ [64], HiFT [65],
SiamRPN), deep network-based methods (SiamRPN++, SiamBAN, SiamCAR); approaches
employing anchor boxes (SiamAPN, SiamAPN++, HiFT, SiamRPN, SiamRPN++), anchor-
free techniques (SiamBAN, SiamCAR); and nighttime tracking methods (UDAT-CAR [51],
UDAT-BAN [51]). The actual performance of the algorithm is assessed through comprehen-
sive comparison.

4.2.1. UAVDark135

UAVDark135 comprises 135 video sequences captured by standard drones at night. It
encompasses various tracking scenarios, such as intersections, T-junctions, roads, highways,
and a diverse range of tracking objects, including people, boats, buses, cars, trucks, athletes,
and houses. The dataset has a total of 125,466 frames, with an average of 929 frames, a
maximum of 4571 frames, and a minimum of 216 frames, making it suitable for large-
scale evaluation. UAVDark135 offers five common challenge attributes in drone tracking,
namely viewpoint change (VC), fast motion (FM), low resolution (LR), occlusion (OCC),
and illumination variation (IV).

Overall evaluation: Figure 9 presents the tracking precision curve and success rate
curve derived from the experimental results. It is evident that the SiamLT_Res50 proposed
in this study has achieved the highest level in terms of tracking precision and success rate,
with a tracking precision of 0.707 and a success rate of 0.550. In comparison to the second-
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ranked SiamCAR, the precision is enhanced by 6.6%, and the success rate is improved
by 5.0%. Simultaneously, our AlexNet version of the algorithm, SiamLT_Alex, has also
attained the best performance among algorithms of the same level, surpassing SiamAPN,
SiamAPN++, HiFT, and SiamRPN. Relative to SiamRPN, its performance has significantly
improved, with an increase of 22.8% and 23.0% in precision and success rate, respectively.

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P

re
ci

si
on

Precision plots of OPE on UAVDark135

[0.707] SiamLT Res50
[0.663] SiamCAR
[0.642] SiamRPN++
[0.620] SiamBAN
[0.614] UDAT-BAN
[0.607] UDAT-CAR
[0.579] SiamLT Alex
[0.469] SiamRPN
[0.454] HiFT
[0.429] SiamAPN++
[0.419] SiamAPN

(a) Precision

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Overlap threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
uc

ce
ss

ra
te

Success plots of OPE on UAVDark135

[0.550] SiamLT Res50
[0.524] SiamCAR
[0.505] SiamRPN++
[0.485] UDAT-CAR
[0.484] SiamBAN
[0.473] UDAT-BAN
[0.465] SiamLT Alex
[0.378] SiamRPN
[0.357] HiFT
[0.337] SiamAPN++
[0.304] SiamAPN

(b) Success rate

Figure 9. Overall evaluation on UAVDark135 dataset.

Attribute evaluation: Figures 10 and 11 display the test results under five distinct
attributes. It can be observed that the SiamLT_Res50 method proposed in this study has
attained the highest level in multiple attributes. The precision values are 0.684 (FM), 0.683
(IV), 0.716 (LR), 0.666 (OCC), and 0.674 (VC), while the success rate values are 0.536 (FM),
0.523 (IV), 0.519 (LR), 0.505 (OCC), and 0.547 (VC). Among these, the performance in fast
motion (FM), occlusion (OCC), and viewpoint change (VC) are the most exceptional, with
precision surpassing the second place by 8.7%, 8.8%, and 8.4%, respectively.
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Figure 10. Precision comparison of attributes on UAVDark135 dataset.
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Figure 11. Success rate comparison of attributes on UAVDark135 dataset.

4.2.2. UAVDark70

UAVDark70 comprises 70 manually annotated sequences captured at night using
professional-grade drones. This dataset takes into account the unique tracking challenges
associated with drone footage, such as low resolution (LR), fast motion (FM), illumination
variation (IV), viewpoint change (VC), and occlusion (OCC).

Overall evaluation: Figure 12 displays the tracking precision curve and success rate
curve based on the experimental results. It is evident that the SiamLT_Res50 method
proposed in this study has achieved the highest performance in both tracking precision
and success rate, with values of 0.770 and 0.566, respectively. In comparison to the second-
ranked SiamRPN++, the precision improved by 6.4%, and the success rate increased by
7.2%. Simultaneously, our Alexnet-based algorithm, SiamLT_Alex, has outperformed
its counterparts, surpassing SiamAPN, SiamAPN++, HiFT, and SiamRPN. Relative to
SiamRPN, its performance has significantly improved, with increases of 15.6% and 18.0%
in precision and success rate, respectively.
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Figure 12. Overall evaluation on UAVDark70 dataset.

Attribute evaluation: Figures 13 and 14 illustrate the test results under five distinct
attributes. It is clear that the SiamLT_Res50 method proposed in this study has attained the
highest performance in multiple attributes. The precision values are 0.735 (FM), 0.838 (IV),
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0.777 (LR), 0.769 (OCC), and 0.738 (VC), while the success rate values are 0.535 (FM), 0.580
(IV), 0.573 (LR), 0.571 (OCC), and 0.536 (VC). Notably, the performance in illumination
variation (IV) and occlusion (OCC) is more remarkable, with precision surpassing the
second-best results by 8.7% and 8.3%, respectively, and success rates exceeding the second-
best results by 9.2% and 8.8%, respectively.
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Figure 13. Precision comparison of attributes on UAVDark70 dataset.
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Figure 14. Success rate comparison of attributes on UAVDark70 dataset.
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4.2.3. DarkTrack2021

The DarkTrack2021 dataset comprises 110 challenging sequences, totaling 100,377
frames. The sequences’ shortest, longest, and average lengths are 92 frames, 6579 frames,
and 913 frames, respectively. The tracking objects encompass people, buses, cars, trucks,
trams, dogs, buildings, and more, covering a diverse range of real-world drone night
tracking tasks. DarkTrack2021 involves numerous scenes with various challenges, including
perspective changes, fast motion, occlusion, low resolution, low brightness, and out-of-
field-of-view occurrences. This dataset does not categorize video sequences into attributes.

Figure 15 presents the tracking precision curve and success rate curve based on the
experimental results. It is evident that the SiamLT_Res50 proposed in this study has
achieved the highest level in terms of tracking precision and success rate, with values of
0.659 and 0.505, respectively. In comparison to SiamCAR, the precision and success rate are
improved by 6.1% and 4.3%, respectively. Simultaneously, it is noteworthy that our AlexNet
version of the algorithm, SiamLT_Alex, has also attained a high level, ranking second in
precision and fifth in success rate, surpassing the ResNet-based SiamBAN and UDAT-BAN
algorithms. This demonstrates that the algorithm framework proposed in this study can
still perform well when combined with shallow networks. It proves that the low-light
image feature enhancement and dynamic template Siamese network mechanism proposed
in this research can effectively augment the network’s capacity to extract low-light image
features and address challenges in low-light scenarios.

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

on

Precision plots of OPE on DarkTrack2021

[0.659] SiamLT Res50
[0.633] SiamLT Alex
[0.621] SiamCAR
[0.617] SiamRPN++
[0.602] UDAT-CAR
[0.572] SiamBAN
[0.542] UDAT-BAN
[0.509] SiamRPN
[0.504] HiFT
[0.489] SiamAPN++
[0.423] SiamAPN

(a) Precision

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Overlap threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
uc

ce
ss

ra
te

Success plots of OPE on DarkTrack2021

[0.505] SiamLT Res50
[0.484] SiamCAR
[0.471] UDAT-CAR
[0.470] SiamRPN++
[0.461] SiamLT Alex
[0.438] SiamBAN
[0.410] UDAT-BAN
[0.387] SiamRPN
[0.377] SiamAPN++
[0.374] HiFT
[0.313] SiamAPN

(b) Success rate

Figure 15. Evaluation on DarkTrack2021 dataset.

4.2.4. NAT2021

The NAT2021 dataset comprises 180 nighttime aerial tracking sequences, categorized
by diverse targets (e.g., cars, trucks, people, groups, buses, buildings, and motorcycles) and
activities (e.g., cycling, skating, running, and ball sports), totaling over 140,000 frames. The
test sequences incorporate 12 distinct attributes: aspect ratio change (ARC), background
clutter (BC), fast motion (FM), full occlusion (FOC), out-of-view (OV), similar object (SOB),
viewpoint change (VC), illumination variation (IV), and low ambient intensity (LAI). To
better comprehend the impact of illumination on tracking algorithms, the dataset introduces
the novel attribute of low ambient intensity (LAI). The average pixel intensity of the local
region centered on the object is calculated as the illuminance intensity for the current frame,
and the average illuminance level of the sequence is regarded as the ambient intensity
of the tracking scene. Sequences with ambient intensity below 20, which make object
identification difficult for the naked eye, are labeled as LAI attributes.

Overall evaluation: Figure 16 illustrates the tracking precision curve and success rate
curve based on the experimental outcomes. The SiamLT_Res50 method proposed in this
study attains the highest levels in both tracking precision (0.706) and success rate (0.491). In
comparison to the second-ranked UDAT-CAR, the precision has improved by 4.3%, and the
success rate by 3.2%. Concurrently, our Alexnet version of the algorithm, SiamLT_Alex, also
achieves the best performance among algorithms of a similar magnitude, outperforming
SiamAPN, SiamAPN++, HiFT, and SiamRPN. The precision and success rate has increased
by 1.0% and 2.7%, respectively, compared to SiamRPN.
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Figure 16. Overall evaluation on NAT2021 dataset.

Attribute evaluation: Figures 17 and 18 display the test results under five distinct
attributes. The proposed SiamLT_Res50 method achieves the highest levels in multiple
attributes, with particularly exceptional performance in fast motion (FM), out-of-view
(OV), and low ambient intensity (LAI) attributes. The precision surpasses the second
place by 7.6% (FM), 8.5% (OV), and 6.4% (LAI), respectively, and the success rate exceeds
the second place by 5.1% (FM), 7.0% (OV), and 2.9% (LAI), respectively. Notably, the
excellent performance in the low ambient intensity (LAI) attribute demonstrates the unique
advantage of the algorithm proposed in this study for low-light tracking tasks.
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Figure 17. Precision comparison of attributes on NAT2021 dataset.
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Figure 18. Success rate comparision of attributes on NAT2021 dataset.

4.2.5. NAT2021L

The NAT2021L dataset comprises 23 long video sequences, with sequence categories
including various targets (e.g., cars, trucks, pedestrians, crowds, buildings, and motorcycles)
and activities (e.g., cycling, skating, and running), involving challenges such as aspect ratio
change (ARC), background clutter (BC), fast motion (FM), full occlusion (FOC), out-of-view
(OV), similar object (SOB), viewpoint change (VC), illumination variation (IV), and low
ambient intensity (LAI). Furthermore, a single video length exceeded 1400 frames, making
it more challenging.

Overall evaluation: Figure 19 illustrates the tracking precision curve and success rate
curve based on the experimental outcomes. The SiamLT_Res50 method proposed in this
study attains the highest levels in both tracking precision (0.579) and success rate (0.420). In
comparison to the second-ranked UDAT-CAR, the precision has improved by 9.5%, and the
success rate by 7.4%. Concurrently, our Alexnet version of the algorithm, SiamLT_Alex, also
achieves the best performance among algorithms of a similar magnitude, outperforming
SiamAPN, SiamAPN++, HiFT, and SiamRPN. The precision and success rate has increased
by 10.0% and 10.7%, respectively, compared to HiFT.

Attribute evaluation: Figures 20 and 21 display the test results under five distinct
attributes. The proposed SiamLT_Res50 method achieves the highest levels in multiple
attributes, with particularly exceptional performance in fast motion (FM), illumination
variation (IV), and out-of-view (OV) attributes. The precision surpasses the second place



Drones 2023, 7, 483 20 of 27

by 12.0% (FM), 9.9% (IV), and 15.1% (OV), respectively, and the success rate exceeds the
second place by 13.9% (FM), 10.8% (IV), and 10.6% (OV), respectively.
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Figure 19. Overall evaluation on NAT2021L dataset.
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Figure 20. Precision comparison of attributes on NAT2021L dataset.
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Figure 21. Success rate comparison of attributes on NAT2021L dataset.

4.3. Qualitative Analysis

To visually compare the tracking performance of the algorithm, the tracking results
are marked with a bounding box in the image. This study selects four video sequences
from the UAVDark135 and DarkTrack2021 datasets to illustrate the experimental results as
follows:

(1) bike6: This video sequence involves a person riding a bicycle as the tracking target,
with interference from another similar target also riding a bicycle around the target.
The first row of the visualization results in Figure 22 shows that other tracking algo-
rithms fail to identify and drift when the two targets are in close proximity. Conversely,
the SiamLT_Res50 algorithm proposed in this paper maintains stable tracking of the
target.

(2) group1: This video sequence features two crowds of pedestrians, with the tracking
target being a pedestrian from the right crowd. The second row of the visualization
results in Figure 22 demonstrates that some tracking algorithms lost the target and
tracked the interfering target next to it during the tracking process. The SiamLT_Res50
algorithm proposed in this paper has strong anti-interference ability and consistently
tracks the correct target.

(3) running: This video sequence shows two running people, with the tracking target
being the person on the left. The third row of Figure 22 presents the visualization
results, indicating that some algorithms drift and track the wrong target as the relative
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position of the two targets changes. In contrast, the SiamLT_Res50 algorithm proposed
in this paper accurately tracks the correct target throughout the tracking process.

(4) person_22: This video sequence depicts several people walking in different directions,
with the tracking target being one of them walking from right to left. The fourth row
of visualization results in Figure 22 reveals that some algorithms fail to overcome
the challenge of similar objects blocking each other during their movement and drift
while tracking. The SiamLT_Res50 algorithm proposed in this paper achieves stable
and accurate tracking of the correct target throughout the tracking process.

(a) bike6

(b) group1

(c) running

(d) person_22
Ground Truth SiamLT_Res50 SiamRPN++ SiamBAN SiamCAR UDAT-CAR

Figure 22. Visualization of experimental results.

4.4. Ablaton Study

To evaluate the individual effectiveness of each component of the proposed algo-
rithm, this study decomposes the algorithm and conducts comparative experiments on the
UAVDark135 and DarkTrack2021 datasets.

Table 1 presents the comparison results, where a Xsymbol denotes the usage of a
module, a 5 symbol indicates its non-usage, and the best results are marked in bold. The
table indicates that the algorithm employing all modules achieves the best performance,
with an accuracy increase of 10.1% and a success rate increase of 8.9% on the UAVDark135
dataset when compared to the baseline algorithm. Similarly, on the DarkTrack2021 dataset,
the accuracy and success rate increased by 6.8% and 7.4%, respectively, compared to the
baseline algorithm. Moreover, the addition of each module demonstrated some degree
of enhancement in the algorithm’s performance. These results imply that the low-light
enhancement module (LE), image adaptive denoizing module (AD), dynamic template
mechanism (DT), and APCE template screening strategy all contribute significantly to the
algorithm’s performance and play an irreplaceable role.
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Table 1. Results of ablation experiments on modules.

LE AD DT APCE
UAVDark135 DarkTrack2021

Precision Success Precision Success

5 5 5 5 0.642 0.505 0.617 0.470
X 5 5 5 0.657 0.510 0.630 0.478
X X 5 5 0.660 0.515 0.643 0.493
X X X 5 0.702 0.548 0.647 0.498
X X X X 0.707 0.550 0.659 0.505

To further validate the reliability of two important thresholds p (illuminance intensity
threshold) and q (information loss threshold), this paper conducted ablation experiments
on the UAVDark70 dataset using the proposed method.

Upon observing the results in Table 2, it becomes apparent that when the value of p
exceeds 0.5, the performance of the tracker remains unchanged. This suggests that our
discriminator has entirely lost its functionality and cannot differentiate between light and
dark conditions in the photos. From a starting point of 0.4, as the value of p decreases,
the tracker’s performance gradually improves. This indicates that the discriminator can
distinguish certain photos, and this ability progressively strengthens until it reaches its
peak at 0.148. However, at a value of p of 0.1, the tracker’s performance begins to decline
again. This signifies that the discriminator has become too lenient and now misclassifies
some low-light photos as normal ones. Consequently, it can be inferred that the most
suitable value for p lies between 0.1 and 0.2. Hence, the adoption of a threshold of 0.148
in [57] is both reasonable and effective.

Table 2. Results of ablation experiment on illuminance intensity threshold.

p 0.1 0.148 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

success rate 0.515 0.528 0.512 0.506 0.505 0.506 0.506 0.506 0.506 0.506

precision 0.709 0.724 0.705 0.698 0.698 0.700 0.700 0.700 0.700 0.700

The results in Table 3 indicate a notable decline in tracker performance when q is less
than 40 dB or greater than 70 dB. This decline occurs because excessively small values of
q cause a significant loss of key target features during the denoizing process. Conversely,
excessively large values fail to remove noise from the image, making it difficult to extract
target feature information and resulting in decreased tracking performance. It can be ob-
served that when the value of q ranges between 40 dB and 70 dB, the tracker’s performance
remains quite similar. However, in target tracking tasks, maintaining the integrity of target
feature information is crucial. Therefore, adhering to the principle of preserving as much
feature information as possible, we opt for setting the information loss threshold at 70 dB
to achieve optimal tracking effectiveness.

Table 3. Results of ablation experiment on information loss threshold.

q 10 20 30 40 50 60 70 80 90

success rate 0.402 0.415 0.481 0.511 0.511 0.511 0.528 0.483 0.477

precision 0.622 0.637 0.652 0.702 0.702 0.709 0.724 0.676 0.667

Remark 4. In summary, the SiamLT algorithm proposed in this paper exhibits outstanding perfor-
mance in low-light tracking tasks, and each module effectively improves the algorithm’s tracking
performance under low-light conditions.
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5. Conclusions

This research article presents a novel UAV visual object-tracking algorithm for low-
light environments. The proposed approach employs an iterative filtering framework to
enhance low-light images and incorporates it into a Siamese network for feature extraction.
Additionally, the authors improve the traditional fixed template mechanism of Siamese net-
works by introducing a dynamic template update strategy to handle target feature changes
during tracking. The algorithm’s efficacy is evaluated on multiple low-light UAV video
datasets, namely UAVDark135, UAVDark70, DarkTrack2021, NAT2021, and NAT2021L,
and the results demonstrate the proposed method’s effectiveness in improving tracking
precision and robustness under low-light conditions. The authors use a conventional RPN
network for bounding box prediction, but in future work, they aim to explore tracking
algorithms based on anchor-free methods to further enhance the algorithm’s performance.
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