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Abstract: When considering the robust control of fixed-wing Unmanned Aerial Vehicles (UAVs),
a conflict often arises between addressing nonlinearity and meeting fast-solving requirements. In
existing studies, the less nonlinear robust control methods have shown significant improvements
that parallel computing and dimensionality reduction techniques in real-time applications. In this
paper, a nonlinear fast Tube-based Robust Compensation Control (TRCC) for fixed-wing UAVs is
proposed to satisfy robustness and fast-solving requirements. Firstly, a solving method for discrete
trajectory tubes was proposed to facilitate fast parallel computation. Subsequently, a TRCC algorithm
was developed that minimized the trajectory tube to enhance robustness. Additionally, considering
the characteristics of fixed-wing UAVs, dimensionality reduction techniques such as decoupling and
stepwise approaches are proposed, and a fast TRCC algorithm that incorporates the control reuse
method is presented. Finally, simulations verify that the proposed fast TRCC effectively enhances the
robustness of UAVs during tracking tasks while satisfying the requirements for fast solving.

Keywords: unmanned aerial vehicles; nonlinear robust control; robust compensation control; trajectory
tube; fast robust control

1. Introduction

Compared to manned aircraft, fixed-wing Unmanned Aerial Vehicles (UAVs), renowned
for their high agility and maneuverability, are often required to perform intense maneu-
vers, leading to nonlinearity in their dynamic characteristics [1]. Additionally, in trajectory
tracking control tasks, fixed-wing UAVs may encounter uncertainties such as external distur-
bances and model perturbations. Thus, the tracking control system needs to handle robust
tracking control in the face of strong nonlinearity. In addition, the UAV tracking control
must also satisfy fast-solving requirements for practical application. Robust control for
nonlinear systems is complex, and ensuring control performance while meeting real-time
requirements is challenging. Hence, it is imperative to propose a fast generation method for
the nonlinear robust control of fixed-wing UAVs.

The control methods for addressing nonlinear uncertain systems encompass lineariza-
tion methods [2,3], model-based methods [4-6], learning-based methods [7-10], and adap-
tive control methods [11,12]. Although various nonlinear robust control methods are
available for UAVs, each possesses its own advantages and disadvantages, as shown in
Table 1. However, none of these methods can effectively address the challenges posed by
strong nonlinearity, uncertainty, and the need for fast solving in UAV control design. Hence,
an important research direction is the achievement of synergistic benefits by combining
different methods to effectively address these challenges [13,14].

One advanced approach to combined control involves decomposing the complex
nonlinear robust control into simpler nonlinear nominal control and Robust Compensa-
tion Control (RCC) [15,16]. In this approach, the nonlinear nominal control focuses on
addressing the nonlinearity in the absence of disturbances, while the RCC is employed to
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enhance the control effectiveness in the presence of disturbances. This combination control
approach effectively alleviates the challenges associated with control design, simplifying
the complexity of control implementation and enhancing the real-time performance of
nonlinear robust control.

The design of RCC relies on quantitatively assessing the robustness of a nonlinear
system. Trajectory tubes are used to depict the range of actual trajectories influenced by
disturbances, with their size serving as a measure of system robustness. Consequently,
trajectory tubes are extensively employed in RCC design and are known as Tube-based
RCC (TRCC). In earlier studies on TRCC, trajectory tubes with non-variable cross-sectional
shapes were initially used, where only the size could be adjusted to indicate robustness
quantitatively [17]. Subsequent studies introduced trajectory tubes with variable shapes
and sizes to enhance the TRCC efficiency [18,19]. However, the calculation of trajec-
tory tubes described above is limited to using a linearized model near the nominal state,
making it suitable for scenarios with small disturbances [17]. In situations involving sig-
nificant disturbances or the coupling effects of multiple disturbances, the introduction
of a nonlinear model near the nominal state becomes necessary [20,21]. Nevertheless,
employing a nonlinear model in TRCC command calculations requires solving the complex
Hamilton-Jacobi-Bellman (HJB) equation, which poses challenges to ensuring fast-solving
performance in TRCC [22,23].

Introducing fast-solving methods for the HJB equation reduces the computational time
for TRCC command generation [24,25]. However, the current direct solution approaches
for the HJB equation mentioned above remain insufficient to meet the demands of online
applications. In addition, an approximate HJB solution method based on Sum-of-Squares
Programming (SOSP) is employed to improve the computational speed [26]. Nevertheless,
SOSP converts HJB solving into semi-definite programming, which exhibits significant
exponential growth in computational time as the dimensionality of the system’s state
increases. Consequently, while it is effective for systems with low dimensionality and weak
nonlinearity, it falls short for high-dimensional and strong nonlinear fixed-wing UAVs
in online applications. Reference [27] presents a method for the offline computation of
a trajectory tube library, which is subsequently used for the online generation of TRCC
commands. This approach effectively reduces the computational time required for online
trajectory tube computation. However, when disturbances exceed the predefined range,
this method will fail to promptly reconstruct the trajectory tube library and may lead to a
decrease in TRCC effectiveness. Hence, existing computation methods on trajectory tubes
still do not meet the TRCC requirements for online applications.

To address fast solving in nonlinear TRCC for fixed-wing UAVs, current research often
emphasizes advancements in algorithms, overlooking the significant improvements that
parallel computing and dimensionality reduction can bring to real-time applications. This
paper proposes a fast generation method for nonlinear TRCC by incorporating parallel
computing and dimensionality reduction techniques. Firstly, we developed a solving
method for discrete trajectory tubes and introduced a parallelizable TRCC command
solving algorithm that minimizes trajectory tubes to enhance robustness. Secondly, taking
into account the characteristics of fixed-wing UAVs, we proposed two-dimensionality
reduction techniques and incorporated them with the control reuse method into a fast
TRCC command solving algorithm. Finally, extensive tracking simulations validated the
effectiveness of the proposed TRCC in enhancing the robustness of UAV tracking control
while maintaining satisfactory fast-solving performance. The key innovations presented in
this paper are as follows:

1. Parallel computing method for trajectory tube computation: This paper presents a
novel method for solving discrete trajectory tubes that simplifies the solution process
by eliminating temporal correlations between tubes at different states. This approach
enables the efficient parallel processing of trajectory tubes at different state points.

2. Dimensionality reduction technique for TRCC of fixed-wing UAVs: Efficient dimen-
sionality reduction techniques, including decoupling and stepwise approaches, are
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proposed to address higher fast-solving requirements according to fixed-wing UAV
characteristics. These techniques are incorporated into a fast TRCC algorithm to
enhance online applications.

The structure of this paper is organized as follows. Section 2 provides a detailed
description of the methodology for TRCC. Techniques for fast TRCC are presented in
Section 3. Section 4 includes simulations and evaluations. Finally, Section 5 presents
the conclusions.

Table 1. The main methods for robust control of UAVs.

Robustness Characteristics

Methods External Dynamic Fast Handling

Disturbances Uncertainties Nonlinearity Solving Constraint

Feedback linearization [2] v
Nonlinear dynamic inversion (NDI) [3]
Sliding mode control (SMC) [4,5]
Model predictive control (MPC) [6]
Fuzzy control [7]

Artificial neural network (ANN) [8]
Reinforcement learning (RL) [9]
Safe RL [10]

Adaptive control [11]
Adaptive backstepping [12]
RL-based SMC [13]
ANN-based adaptive NDI [14]
LQR with robust compensation [15,16]
Tube MPC [17]
Homothetic tube MPC [18]
Parameterized tube MPC [19]
Nonlinear tube MPC [20]
Robust LQR-Trees [21]

TRCC [22,23]

TRCC with direct HJB solving [24,25]
TRCC with SOSP and tube library [27]

<
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2. TRCC Algorithm Based on Discrete Trajectory Tubes

The nonlinear robust control of fixed-wing Unmanned Aerial Vehicles (UAVs) encom-
passes nonlinear nominal control and Robust Compensation Control (RCC), as shown in
Figure 1. The trajectory tube represents the reachable set of actual trajectories for a UAV
under disturbance. A smaller tube indicates that the actual trajectories closely approximate
the ideal trajectory, thereby demonstrating a higher level of robustness. Consequently, the
trajectory tube serves as a quantitative indicator to guide the design of RCC, known as
Tube-based RCC (TRCC). Therefore, this section begins by presenting a calculation method
for discrete trajectory tubes (step 1 in Figure 1) and subsequently introduces the TRCC
method based on this robustness indicator (step 2 in Figure 1).

Flight states

A

N ( . 2\ ( 2\ ( 2\
Desired Nonlinear External _
trajectories | nominal control | disturbances -
)
+ Nominal trajectories +
- N EEEE—
@ Trajectory tube + > UAV >
- J
+ Robustness indicator
( 2\
@ Robust _ Model
compensation control " uncertainties
A J/ A J/ A J/

Figure 1. Structure of TRCC for UAVs.
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2.1. Discrete Trajectory Tube Calculation Method

At time step ¢, for a nonlinear UAYV, the relationship between the nominal state s;, the
nominal control a;, and the next state s;, 1 can be described as follows:

Se41 — St = f(st,ar) (1)

Under the influence of disturbances, the actual state of the UAV is denoted as 5;. The
state error, §; = 5; — s¢, can be defined accordingly. Thus, the relationship between the
current state error §; and the subsequent state error $;;1 can be expressed as:

8141 — 8t = f(st +8¢,a1) — f(st,ar) )

The initial set of disturbances is defined as Pto. When §; € P?, the reachable set P,
for the next state can be determined by 8;11 € P;;1. The combination of Pto and Pryq
constitutes the trajectory tube at time step ¢, as shown in Figure 2. Due to the uncertainty in
the shapes of P} and P 1, the calculation of the trajectory tube becomes more challenging.
To overcome this, the external ellipsoids of PP and P;; are employed to alleviate the
computational complexity. Consequently, the trajectory tube 7; used in practice is defined
as the region formed by connecting the external ellipsoids Eto and &1 of Pto and Piiq,
respectively.

Figure 2. A discrete trajectory tube.

2.1.1. Initial Ellipsoid Calculation

The initial ellipsoid can be defined as &) = {8;|0 < ¢Y(5;) < p?}, where ¢} represents
the shape of the ellipsoid and p? represents its size. For solving the initial ellipsoid, ¢} and
o are iteratively optimized, and the area of the initial ellipsoid size(&}) can be gradually
decreased while ensuring that £ contains PP. As shown in Figure 3, the £ gradually
approaches the external ellipsoid of PY.

Figure 3. Approach of the initial ellipsoid calculation.
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The initial error set P} is assumed to be a semi-algebraic set that can be described by N;
polynomial inequalities, denoted as Pto = {5¢|g1i(8) >0,Vi=1,2,..., Nt }. Consequently,
the optimization problem for finding £ can be formulated as follows:

min  size(&})
ef.0f ®3)
st gi(8)>0Vi=12,...,Ny = 0<e(3) < p)

2.1.2. Terminal Ellipsoid Calculation

Similarly, the terminal ellipsoid can be defined as &1 = {8;+1]0 < e;41(8t+1) < Pr+1}-
For all initial states located on the initial ellipsoid, the terminal ellipsoid is determined
as the smallest ellipsoid that contains the next state. Through the iterative optimization
of e;+1 and p;11, the area of the terminal ellipsoid size(€;41) gradually decreases while
maintaining e;;1(5;11) < pr+1. This approach gives the solution method of the &1, as
depicted in Figure 4.

Figure 4. Approach of the terminal ellipsoid calculation.

However, ¢;,1(8;+1) includes all four decision variables (e?, p?, e;+1, and py11), which
can present challenges in terminal ellipsoid solving. Hence, the constraint e;1(5¢11) < ps4+1
is converted into an incremental form, Y (§;) + de? (3;) < p¥ + dp?. Additionally, because of
) (3) = oY, the constraint is further transformed into de?(5;) < dp?, where the increment

can be approximated as follows:

0 N 0
0(a _ 9 ds 9
dey (51) =3¢ % G + % .
~ E}et §f+1 7§t €f+1_et
Mo X AT T @)
0 ~ Pt+1—P¢
dpy ~ AT

In addition, when considering model uncertainties o3, the f(8;, a;) should be modified
to f(8¢, a¢,0¢). Similar to disturbances on the state, model uncertainties can also be described
by a semi-algebraic set: W; = {o]| Sopj(ot) >0,¥j=1,2,..., Ny }. Hence, the optimization
problem for finding &1 can be formulated as follows:

min  size(Ep4q)
€t+1/Pt4+1 . (5)
s.t. e?(s}) = p?,gglt,j((ft) >0,vVj=12,...,N;, = de?(§t) < dp?

By combining the solution methods for Eto and &1, as given in Equations (3) and (5),
respectively, the calculation method for 7; can be derived.

2.2. Sum-of-Squares Programming

Sum-of-Squares Programming (SOSP) can be utilized to verify the validity of a con-
ditional statement [26,28]. The SOSP methodology entails converting the conditional
statement into an equivalent polynomial, and its validity is established based on the non-
negativity of this polynomial. Moreover, the SOSP method verifies the non-negativity



Drones 2023, 7, 481

6 of 23

of the polynomial by examining its representability as a sum of squares. Incorporating
the SOSP method necessitates adjustments to the constraints, optimization variables, and
optimization objectives specified in Equations (3) and (5).

2.2.1. Constraints

Consider the conditional statement g;;(5;) > 0,Vi=1,2,...,N; = 0 < e?(§t) < p? in
Equation (3). It is assumed that a set of non-negative multiplier polynomials L;; (i = 1,2,..., N)
exists, ensuring that the constructed polynomial p? — €9 (3;) — Zf\i 1 Lti(3t)8t,i(3) isnon-negative.
Therefore, when the condition on the left-hand side of “=-" holds, it can be inferred that
p) — €9 () is non-negative, signifying the validity of the conclusion on the right-hand side of
“=". By employing the SOSP approach, the constraint in Equation (3) can be modified as follows:

pf — e (81) = Ly Lyi(31)81,i(8) is SOS, ©)
Lm’(é}) are SOS, Vi= 1,2, e ,Nt

Similarly, the constraint in Equation (5) can be modified as follows:
dpf — def (31) — () (36) = ) Le(81) = L7 Lot (36)80,1(01) is SOS, @)
Ly j(3t) areSOS, Vi =1,2,..., N,

In addition, in the SOSP, it is necessary for all functions within the constraints to be
represented as polynomial functions. Consequently, the Taylor expansion of f (3¢, at, o)
is employed instead of the original dynamics in the calculation of de?(3;), as stated in
Equation (7). Typically, utilizing a third-order Taylor expansion guarantees adherence to
computational error requirements [27].

2.2.2. Optimization Variables

In Equation (3), the initial ellipsoid function ¢! can be represented as a quadratic

function with respect to §;, denoted as e?(s?t) = §tTE?§t, where E? is a semi-positive definite
matrix. Similarly, a semi-positive definite matrix E;; can be introduced to describe the
terminal ellipsoid function ¢;1. Consequently, the optimization variables are transformed
into E?, p?, Ei+1, and p;4q. Furthermore, the optimization variables should include the
non-negative multiplier polynomials in the constraints.

2.2.3. Optimization Objectives

In Equation (3), the objective function size(&) = p?/|E?| is obtained based on the
quadratic expression of the ellipsoid. Similarly, the objective function in Equation (5) is
denoted as size(E+1) = pr4+1/|E41]-

Taking size(£7) as an example, it is necessary to modify the objective function to
size(EQ) = pY since the SOSP can only handle linear objective functions. Furthermore, in
order to account for the joint reduction of p) and |E}|, and ensure the feasibility of the
optimization problem, the constraints on EY need to be augmented. Therefore, an additional
constraint hT (EQ — ER)h > 0, Vh # 0 is introduced to restrict the unbounded reduction of
|E?| during the optimization calculation. Here, ER represents an initial feasible solution
for E?. The solution for E? can be obtained by solving the Hamilton—Jacobi-Bellman (HJB)
differential equation, and an initial feasible solution can be provided by utilizing the Riccati
algebraic equation, which is a simplification of the H]B differential equation under linear
conditions [29]. Thus, ER can be determined by the following algebraic equation:

ERA(st) + AT(st)ER + Q — ERB(st)R™'BT(s;) ER = 0, 8)

where matrices A and B represent the state and control matrices, respectively, which are
obtained by linearizing equations f at time ¢. The weight matrices Q and R are diagonal
matrices, and their selection is determined by the initial disturbance of the various states.
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Specifically, the weight values on the diagonal of the weight matrix are chosen to be larger
for states with larger initial disturbances.

Similarly, the objective function in Equation (5) needs to be modified to size(&r 1) =

pt+1, and the constraint hT (E¢;q — E}{H)h > 0, Vh # 0 should be added.

With the incorporation of the SOSP, the mathematical model for the optimization

calculation of the initial ellipsoid, as depicted in Equation (3), can be transformed into
the following form by considering the adjusted constraints, optimization variables, and
objective functions:

; 0
min
ety i
st p) —ed(8) — ity Lei(86)8ti () is SOS, )

L;;(3) are SOS, Vi =1,2,..., N,
WY (E) — ER)h > 0,Vh #0

In addition, the mathematical model for the optimization calculation of the initial

ellipsoid, as shown in Equation (5), can be transformed into the following form:

min
Ett1,0t41, Lt) Lo j
s.t.

Ot+1

dpf —de(8) = (?(8) — p)Le(81) = L) Lot (81)801(0%) is SOS, (10)
Lmt,]-(ét) are SOS,Vj =1,2,..., Ny,
WY (Eppr —ER B> 0,Vh #0

In summary, by sequentially solving Equations (9) and (10) for a specified range of

disturbances, it is feasible to calculate the discrete trajectory tube at the desired state point.

2.3. TRCC Algorithm

To strengthen the robustness of the nominal control a; against a specified range of

disturbances, a polynomial TRCC command 4;(8) is introduced. By incorporating this
compensation control, Equation (2) can be modified as follows:

811 — 8 = f(St + 8, a; + ﬁt(SAt)) — f(St, at) (11)

The trajectory tube is utilized as a quantitative indicator to guide the design of TRCC.

The feedback control command is optimized to minimize the trajectory tube within a
specified range of disturbances, aiming to enhance the robustness of the UAV. Consequently,
the TRCC command polynomial is introduced as an optimization variable in the calculation
of the terminal ellipsoid, as illustrated in Equation (10).

The magnitude of the compensation control command is constrained by the available

control capacity of the UAV after incorporating the nominal control. Therefore, it is
necessary to include constraints on the magnitude of the compensation control command
in the process of solving for TRCC, as detailed below:

e?@t) < P? = Amin < a¢ + flt@) < Amax, (12)

where amax and apin represent the upper and lower bounds of the control, respectively.

By employing the SOSP method, the conditional statement in Equation (12) can be

modified as follows:

{P? - e?(At) - (ak,max - (uk,t + ék,t‘))Lif,au,k(éf) is SOS, (13)
09 — € (8r) — ((ar + Gkt) — A min) Lea i (3) is SOS,

where a; = [ay, a0, -+ , 4y, -+ -], and Ly g, 1 (8¢) and Ly 4 1 (8) are non-negative multiplier
polynomials.
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By including the constraints presented in Equation (13), the optimization calculation
for the terminal ellipsoid, as illustrated in Equation (10), can be modified to:

min Ot+1
Et 1, 0641, G
Lt, Lo tjs
Lt,au,k/ Lt,ul,k
s.t. dpf —ded(31) = (7(8) = PV Le(81) = T Lot (81)80,1,(00) s SOS,

La,t,j(§t) are SOS,Vj=1,2,...,N,, (14)
P? - 69 (gt) - (ak,max - (uk,t =+ ﬁk,t))Lt,au,k (éf) is SOS,
0f — € (8r) — ((ars + Axt) — A min) Lear (3) is SOS,
Lt,au,k(§t)/ Lt,al,k(§t) are SOS;

WY (Epo1 —ER )R >0,Yh #0

Hence, a solution algorithm for TRCC based on a discrete trajectory tube can be derived,
as shown in Algorithm 1. Prior to implementing the proposed TRCC algorithm, the nominal
state s; and the nominal control a; should be given by the nominal nonlinear control.

Algorithm 1 TRCC

1: Input: f,st,a,,Pto,W

t

2: Initialize E},E|, according to Equation (8)

3: Parfort=1to T

4: Calculate E/, p/,L,; according to Equation (9)
5. Calculate E, ,p,,,,4,,L, Lw,j, L, ... L ., according to Equation (14)
End parfor

6: Output: ﬁ, , 7:

In Algorithm 1, each iteration guarantees a decrease in the tube size, forming a
monotonically non-increasing sequence. With the tube size bounded below by 0, the
convergence of Algorithm 1 can be inferred [27].

3. Fast TRCC for UAV

SOSP transforms the optimization problem of the TRCC command into a semi-definite
programming (SDP) problem. The time complexity for solving SDP problems with deci-
sion dimensionality n < 10? is O(n>°log(1/¢)), where ¢ represents the required tracking
accuracy [30]. The computational time shows a significant increase as the decision dimen-
sionality grows. In the case of fixed-wing UAVs, the solution of TRCC involves addressing
high-dimensional SDP, which presents challenges for efficient control command generation.

This section introduces dimensionality reduction techniques aimed at improving solution
speed. Two methods for reducing the solving complexity of TRCC in fixed-wing UAVs are
considered: decoupling longitudinal and lateral dynamics and stepwise methods. Addition-
ally, control reuse techniques are employed to reduce the real-time requirement in online
applications. As shown in Figure 5, by incorporating these techniques, fast compensation
control solving can be achieved. This section initially introduces control reuse to reduce
real-time requirements and subsequently provides methods for dimensionality reduction.
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@ Control reuse

[ Time requirement H

. )

Time consumption <
[ il ) )

@ Dimensionality reduction
Figure 5. Techniques for fast-solving TRCC for UAVs.

3.1. Control Reuse

In general, the time interval (beat) At,ey for the TRCC command output is set to
match the simulation step Afstep. The calculation time interval At for the TRCC command
should not exceed Atpe,e and satisfy the condition Afy < Atpear = Atstep, as shown in
Figure 6a. By increasing both At,e, and Atstep, the limitation on At., can be reduced,
thereby easing the fast-solving requirement. However, an excessively large Atsiep can
compromise the simulation accuracy for UAVs. In this study, compensation control reuse
was implemented to enlarge Atpq,; while keeping Afstep constant, allowing the per-beat
compensation control polynomial to be applied to multiple simulation steps. Consequently,
the original requirement of Aty < Atstep Was relaxed to At < 2Atstep using a one-step
control reuse, as illustrated in Figure 6b. However, control reuse reduces the number
of compensation control beats in a multi-step trajectory, resulting in decreased control
performance under disturbances compared to no reuse.

A A

Atsl(‘p Atsu-pl |Ats|cp

oot i

Atpeat | Atpeat Atl)eal. Até‘ca! | Atévca! | | Atyeat |
T —

| Aty | Afear | | Ala | Afea | Ao Afea | e | Afea | Atea |
: ! ! > : . - : : >
(0] t 0] t

(a) (b)

Figure 6. Approach of control reuse: (a) without reuse; (b) with one-step reuse.

A'slep Atslep A'slep Arslep o | Ats!ep Atslep

3.2. Dimensionality Reduction
3.2.1. Decoupling

For the UAV, the state is defined ass = [V, «, g, 0, B, p, 1, ¢], where V represents the
flight velocity, « and p are the angle-of-attack and sideslip angles, respectively; p, 4, and
r denote the roll, pitch, and yaw angle velocities, respectively; and 6 and ¢ represent the
pitch and roll angles, respectively. The drone control is denoted by a = [J¢, 6y, Ja, 6¢], where
Jde represents the elevator deflection, dy, corresponds to the throttle position, 6, denotes the
aileron deflection, and J; represents the rudder deflection.

Despite the UAV’s longitudinal and lateral dynamics being coupled, the coupling
effects can be disregarded near the nominal trajectory under the action of the nominal
control. Considering this assumption, the state used in compensation control calculation,
originally consisting of eight dimensions, can be reduced to four dimensions of longitudinal
state, sjon = [V, &, g, 0], and four dimensions of lateral state: sj5; = [B, p, #, ¢]. Similarly, the
four dimensions of control can be reduced to two dimensions of longitudinal control a,,
= [Je, 0] and two dimensions of lateral control aj,; = [Ja, 6r]. Based on the decoupling
states and controls, the compensation control calculation can be divided into longitudinal
and lateral parts (Algorithm 2). The independence of these two parts allows for parallel
computation. With the reduction in state and control dimensions, the TRCC algorithm can
be modified as follows:
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Algorithm 2 Decoupling TRCC for UAV

1: Input: f,s,,a,B°, W

2: Initialize EtR,ER

..; according to Equation (8)

3: Parfort=1to T
4: Parfor (S,a) ={(S,,,/ @on )r (Spur B )
5: Calculate E/,p/,L,, according to Equation (9)
6: Calculate E,,,p,,,,4,,L,L,, . L ., L, accordingto Equation (14)
End parfor
End parfor

7: Output: ﬁf T

Decoupling compensation control affects performance through two factors. Firstly,
neglecting longitudinal and lateral coupling results in reduced accuracy and poor con-
trol performance. However, simplifying the system to facilitate more accurate control
computations under identical hardware and software conditions can ultimately enhance
control performance.

3.2.2. Stepwise Method

The stepwise approach involves dividing decision variables into two groups, and
sequentially optimizing one while keeping the other fixed. This increases the number
of problems but reduces the number of decision variables in each problem, impacting
computational time based on the number of variables in the original problem.

In the TRCC algorithm (Algorithm 3), the initial ellipsoid calculation, as depicted in
Equation (9), involves three decision variables and is not suitable for variable grouping. In
contrast, the terminal ellipsoid calculation, presented in Equation (14), with seven decision
variables, suits a stepwise approach for reducing computational time. By grouping the
decision variables in Equation (14) into {0;1,8t, Lt, Lot j, Lt au ks Leai } and {Egy1, 0641},
the optimal solutions for the terminal ellipsoid and compensation control can be obtained
separately. This leads to a three-step solution algorithm, modifying the previous two-step
approach based on the initial and terminal ellipsoid solutions. The three-step solution
algorithm is shown as follows:

In the two-step algorithm (Algorithm 1), the terminal ellipsoid and the compensation
control are jointly optimized, resulting in an iterative optimization process for each of
them. In contrast, the three-step algorithm optimizes each of them individually only once,
which leads to a reduction in calculation accuracy and poor robust control performance. In
addition, similar to the two-step algorithm, the three-step algorithm is capable of generating
a monotonically non-increasing sequence, ensuring the convergence of the optimization.
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Algorithm 3 3-step decoupling TRCC for UAV

1: Input: f,s,,a,P° W

N

: Initialize E,E;, according to Equation (8)

W

: Parfort=1to T
4: Parfor ( S/ a ) = {( Slon/alon )’ (Slat’alat )}

5: Calculate E/,p/, L, according to Equation (9)
6: set E ., = EtR+1
: Calculate p,,,4,,L,,L,, L, L, according to Equation (14) when hold
Et+1
Calculate E_,,p,,, according to Equation (14) when hold
8: R
at’ Lt’ Lo,t,j’ Lf,au,k’ Lz‘,al,k
End parfor
End parfor

9: Output: ﬁt , 7:

4. Simulation Test for Fast TRCC Performance
4.1. UAV Nonlinear Dynamics
4.1.1. Dynamic Equations

In order to conduct a comprehensive simulation and verification analysis of TRCC,
this study implemented a continuous nonlinear flight dynamics model for the UAV. This
nonlinear model was also utilized in the process of TRCC command calculation; however,
it was necessary to discretize the model based on the form of Equation (1).

The quaternion method is utilized in the UAV nonlinear flight dynamics model to
prevent singularities that may arise when using the Euler angle method. Equation (15)
demonstrates the resulting dynamics equations.

u—+quw—rov X +2mg(q193 — q092)
m| vtru—pw | = Y + 2mg(g293 + q091)
W+ po — qu Z+mg(q5— 97 — 45 +43)
[ L Lep + (I — Iy)qr — Lx (pg +7)
M | = | Lg+ (It — L)rp+ Ly (p* — %) (15)
L N L+ (Iy — L) pq + Lx (qr — p) ’
o 0 —p =9 —r||m
fi|_1|p O 7 —q]|®
92 g —r 0 p q3
L 93 rq —p O q4

where m represents the mass of the body; Iy, Iy, Iz, and Iy denote the rotational inertia
of the body; g represents gravitational acceleration; the vector [u, v, w]® represents the
components of velocity in the body-axis; g, 1, 42, and g3 refer to quaternions; and [X, Y,
Z]" and [L, M, N]" represent the external forces and moments, which primarily account for
the influence of aerodynamic forces and engine thrust.
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Equation (16) gives the kinematic equations for a UAV in the ground coordinate system.

[ G+ai—a— a3 204192 —qo93)  2(q193 + qo42) u
y | =| 2ma2+qo9s) G-ai+B a3 209295 — qom1) v

| 2 2193 —qoq2)  2(243+qom) G —ai—dg5+a3 J L w

i a1 COS % CO8 g cos 5 + sin 5 sin % sin % , (16)
g2 | _ | sin % Ccos % Ccos % — COs % sin % sin %
q3 | cos % sin % Ccos % + sin % cos % sin %

L 94 Ccos % cos gsins% — sin % sin g Ccos %

where [x, y, z]T represents the components of the position in the ground-axis, while ¥
denotes the yaw angle.
In addition, the velocity and aerodynamic angle of the UAV are determined by the

following equation.
V= Vu2+ 02 +w?
a = arctan(w/u) (17)
B = arcsin(v/V)

The UAV’s control inputs include elevator, throttle, aileron, and rudder. The elevator
deflection range is [—20°, 20°], the throttle stick position is [0, 1], the aileron deflection
range is [—21.5°, 21.5°], and the rudder deflection range is [—30°, 30°].

4.1.2. Aerodynamic Characteristics

The nonlinear aerodynamic forces and moments on the UAV can be calculated from
the aerodynamic coefficients, denoted as [Xaero, Yaero, Zaeros Laero, Maero, N. aero] T = 0.5 x 0
x S x V2 x [—Cp, Cy, —C, b x Cj, ¢ X Cy, b x C,]T, where p is the air density, S is the
wing area, b is the aircraft spread length, and c is the average aerodynamic chord length.
The variation curves depicting the aerodynamic coefficients mentioned above with respect
to the angle-of-attack within the range of —10° to 25° is presented in Figure 7.

0
1 ~ 05 -
0.5 e T
0 9) O -0.05
-0.5 0 N ~—
-10 0 10 20 -10 0 10 20 -10 0 10 20
a(®) a(°) a(®)
(a)
0 0.02 =
-0.08 ~ T
U o°
~01 \ 0.01 0.01
-10 0 o 10 20 -10 0 o 10 20 -10 0 10 20
a(®) a(®) a ()
(b)

Figure 7. UAV nonlinear aerodynamic coefficients: (a) longitudinal aerodynamic coefficients with
B =0°4g=0°/sand de = 0°; (b) lateral aerodynamic coefficients with § =5°, p=0°/s,r=0°/s, J5 = 0°
and 6, = 0°.

4.2. Performance Analysis for TRCC

The performance analysis of the TRCC involves verifying the trajectory tube and
conducting simulations of the tracking task under disturbances. The nominal trajectory
generated by constant control was used, with its initial state and control outlined in Table 2.
The range of disturbance, determined based on sensor noise, is also presented in Table 2.
The flight altitude is denoted by H, while 0, represents the mass perturbation in the
UAV model.
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Table 2. Initial state, control, and disturbance for tube calculation.

Parameter Value Parameter Value
V (m/s) 185 V (m/s) [-5, 5]
a (%) 19.3 & (°) [—0.5,0.5]
qg(°/s) 28.2 q So /s) [—0.5,0.5]
0(°) —50.5 0 (°) [—1,1]
B ) 0.7 B(°) [—0.5,0.5]
p(°/s) —-19.7 p(°/s) [—1,1]
r(°/s) —94 7(°/s) [—-0.5,0.5]
¢ () 0 ¢ () [-1,1]
H (km) 3 de (°) —5.3
Sn () 0.75 6a (°) 3.0
o (%) 0 Om (%o Mmax) [-5,5]

4.2.1. Trajectory Tube

Figure 8 displays the calculated trajectory tubes with and without TRCC. Due to the
hyperelliptic characteristic of the trajectory tube in the high-dimensional state, it is essential
to project the trajectory tube onto a three-dimensional space composed of any two states
and time to observe its shape accurately.

30 /\ -30 -

40
<
-50 J
190
18 -
a(®) 0 t(s)

0.5 :
G 2 1 t(s) p (°/s) 01 t(s)

(c) (d)
nominal trajectory [ | without TRCC [ with TRCC

Figure 8. Calculated trajectory tubes: (a) projection at angle-of-attack and pitch angle velocity;
(b) projection at velocity and pitch angle; (c) projection at sideslip angle and yaw angle velocity;
(d) projection at roll angle and roll angle velocity.
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In Figure 8a,b, tube projections for angle-of-attack, velocity, and pitch angles remained
unchanged with TRCC, except for a decrease in the pitch angle velocity. Lateral states
showed similar variations to longitudinal states, with less variation in sideslip and roll
angles, and a significant reduction in yaw and roll angle velocities, as shown in Figure 8c,d.
Pitch, roll, and yaw angle velocities are more sensitive to disturbances and exhibit a wider
range of variation under disturbances. Hence, TRCC prioritizes the suppression of distur-
bance effects on angle velocity but fails to fully address angle and velocity disturbances in
minimizing the trajectory tube size.

4.2.2. Performance in Tracking Tasks

The effectiveness of TRCC is theoretically demonstrated through a reduction in trajec-
tory tube size. In addition, conducting tracking task simulations under disturbance enables
a quantitative analysis of TRCC’s performance disturbance suppression.

Results from 100 tracking task simulations, both with and without TRCC, were
recorded separately and displayed in Figure 9. Each simulation considered random combi-
nations of disturbances and modeling inaccuracies generated within the range specified
in Table 2. The plotted area in Figure 9 illustrates the upper and lower boundaries of the
tracking error for each state influenced by disturbances.

0.5 0.1 190
e T o
0 E
< S
-05 -0.2
0 05 1 0 05 05 1
t(s) t(s) t(s)
() (b)
22 30
e 2w
~ =
18
10
0 05 1 0 05 1 .
t(s) t(s) t(s)
(d) () ®
0.5 2 0
[ ~ 0 =
- 0 > < 20
< _ -2 a
-0.5 -4 -40
0 0.5 1 0 0.5 1 0 05 1
t(s) t(s) t(s)
(8) (h) @)
=30 0
-4
=z -6 _ >
< < 40 < 10
-8
-10 -50 -20
0 05 1 0 05 1 0 05 1

t(s) t(s) t(s)
G) (k) @

------- nominal trajectory
05 M with TRCC
[ without TRCC

Figure 9. Tracking task simulations with and without TRCC: (a) elevator; (b) throttle; (c) velocity;
(d) angle-of-attack; (e) pitch angle velocity; (f) aileron; (g) rudder; (h) sideslip angle; (i) roll angle
velocity; (j) yaw angle velocity; (k) pitch angle; (1) roll angle; (m) sum of errors.
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In Figure 9a,b, TRCC produces an elevator increment of —0.2° to 0.2° and a throttle
increment of —0.2 to 0.1 under continuous random disturbances. The overall velocity error
range exhibited a slight upward shift but maintained a similar magnitude compared to
the case without TRCC. Additionally, angle-of-attack errors primarily occurred in the first
half of the trajectory. The tracking error ranges for each longitudinal state corresponded
to the calculated results for the trajectory tube, as illustrated in Figure 9c—e, as well as in
Figure 8a,b.

Furthermore, TRCC produced an aileron increment of —0.5° to 0.5° and a rudder
increment of —0.3° to 0.3° under continuous random disturbances, as shown in Figure 9f,g.
Aileron and rudder actions resulted in a slight decrease in the error of the sideslip angle
during the second half of the trajectory. In addition, the error ranges for roll and yaw
angle velocities significantly decreased. The tracking error ranges for each lateral state
corresponded to the calculated results for the trajectory tube, as shown in Figure 9h—j, as
well as in Figure 8c,d.

In Figure 9k,1, TRCC effectively reduced the pitch angle error during the second half of
the trajectory, while the roll angle error was significantly diminished. Although the tracking
error range deviated from the calculated trajectory tube, it highlighted the effectiveness of
TRCC in mitigating pitch and roll disturbances.

The variable error was introduced to comprehensively describe the state tracking error
in the presence of disturbances. It is defined as the root mean square (RMS) of the tracking
error across all eight states. Mathematically, it can be expressed as:

A A ~

e? /
error = ZZ:;; , (i = %,&, 7,6,B, ;5,1’,4)), (18)

where the velocity error is divided by 10? to account for the significant magnitude difference
compared with other states.

In Figure 9m, without TRCC, the average maximum tracking error (the average upper
boundary of the tracking error over time) was 0.93. With TRCC, it decreased to 0.32, a 66%
reduction. This demonstrates the effective improvement in UAV robustness achieved by
the proposed TRCC in conjunction with nominal control.

4.3. Performance Analysis for TRCC with Control Reuse

To assess the influence of control reuse, 100 tracking task simulations were conducted.
Random combinations of disturbances and modeling errors within the range specified in
Table 2 were employed. The simulations compared scenarios without control reuse and
with one-step control reuse, as illustrated in Figure 10.

0.1

------ nominal trajectory
I 1-step control reuse
[ without control reuse

0.5
t(s) t(s)
(d) (e)

-
o
I
3
—_

Figure 10. Tracking simulations under TRCC with and without control reuse: (a) elevator; (b) throttle;
(c) aileron; (d) rudder; (e) sum of errors.
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Figure 10a—d demonstrates that one-step control reuse widens the gap between suc-
cessive TRCC commands, resulting in significant variation during TRCC switching. The
elevator increment was particularly affected by the reuse, exhibiting noticeable jaggedness,
while the throttle, aileron, and rudder displayed relatively slight jaggedness.

With one-step control reuse, the average maximum tracking error increased from 0.32
to 0.33, resulting in just a 3% increment compared to the case without control reuse, as
shown in Figure 10e. Therefore, employing control reuse enables a reduction in fast-solving
requirements while still satisfying the robustness requirement.

4.4. Time Consumption and Performance Analysis for Decoupling TRCC
4.4.1. Time Consumption

To analyze the computational time consumption of decoupling TRCC, the algorithms
with and without dimensionality reduction were utilized to calculate the TRCC command
100 times. The computational time was recorded, and its distribution is depicted in Figure 11.

1204
1001 .
801

full (s) longitudlinal (ms) lateral (ms)

CPU time

Figure 11. CPU time distribution under TRCC with and without decoupling.

The computational time analysis employed an SOSP solver based on the MATLAB
R2020a platform SOSTOOLS v4.00 [31] and SEDUMI v1.05 [32]. All analysis results were
obtained using an “Intel Xeon Gold 6230” 40-thread CPU (2.10 GHz) with 128GB RAM.

As illustrated in Figure 11, the computational time needed for TRCC is typically in
the order of seconds, with a median value of approximately 61 s. This duration falls short
of meeting the requirement for rapid generation. However, by employing the decoupling
TRCC algorithm, the computation time for solving both the longitudinal and lateral sub-
problems is reduced to the millisecond range, with medians of around 94 ms and 95 ms,
and maximums of about 129 ms and 128 ms, respectively. Hence, the decoupling TRCC
algorithm can satisfy the fast generation criteria of 100 ms per beat, although a small
number of cases slightly exceed this threshold.

4.4.2. Performance in Tracking Tasks

To assess the influence of decoupling and dimensionality reduction, 100 tracking task
simulations were conducted. Random combinations of disturbances and modeling errors
within the range specified in Table 2 were employed. The simulations compared scenarios
with and without decoupling, as illustrated in Figure 12.

Figure 12a,b demonstrates the increased variation of elevator and throttle when utiliz-
ing decoupling TRCC, facilitating a more aggressive suppression of longitudinal distur-
bances. Consequently, Figure 12c,d exhibits slight reductions in velocity and angle-of-attack
errors. Similarly, Figure 12e,f showcases expanded aileron variation, enabling the aggressive
reduction of the roll angle velocity error. The variation in the rudder remained unchanged,
as depicted in Figure 12g, and no significant differences were observed in other state error
responses. Decoupling TRCC reduces the average maximum tracking error from 0.33 to
0.30 when compared to TRCC without decoupling, as shown in Figure 12h.
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Figure 12. Tracking simulations under TRCC with and without decoupling: (a) elevator; (b) throttle;
(c) velocity; (d) angle-of-attack; (e) aileron; (f) roll angle velocity; (g) rudder; (h) sum of errors.

Therefore, within a given UAV decoupling TRRC algorithm, the simplification of the
problem after decoupling significantly enhanced computational accuracy, outweighing
the decrease from neglecting longitudinal and lateral coupling. The decoupling TRRC
effectively reduced the computational time and improved the control performance.

4.5. Time Consumption and Performance Analysis for Stepwise TRCC
4.5.1. Time Consumption

In addjition to the incorporation of the decoupling algorithm, two-step and three-step
algorithms were employed to calculate the TRCC command 100 times. The computational
time was recorded, and its distribution is depicted in Figure 13.

2-step 3-step 2-step 3-step 2-step 3-step

%+%%%@

8-thread 16-thread 32-thread

200

CPU time ¢ (ms)
= o
< <

W
(=)

Figure 13. CPU time distribution under two-step and three-step TRCC algorithms.

The median computation times for solving TRCC were approximately 95 ms and
133 ms using the two-step and three-step algorithms, respectively, with eight parallel
computing threads. In addition, based on Welch’s t-test at a 5% significance level, three-
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0.5

step algorithms exhibited a significantly higher average computation time than two-step
algorithms, by 41.5 ms.

Increasing the number of threads to 16, the median computation times were approxi-
mately 60 ms and 68 ms using the two-step and three-step algorithms, respectively. Addi-
tionally, based on Welch’s t-test at a 5% significance level, three-step algorithms exhibited a
slightly higher average computation time than two-step algorithms, by 7.5 ms.

On further raising the number of threads to 32, the median computation times were
approximately 44 ms and 33 ms using the two-step and three-step algorithms, respec-
tively. In addition, based on Welch’s t-test at a 5% significance level, three-step algorithms
exhibited a moderately lower average computation time than two-step algorithms, by
10.6 ms. As the number of parallel computation threads increased, the three-step algorithm
showed superiority.

4.5.2. Performance in Tracking Tasks

To assess the influence of the stepwise method, 100 tracking task simulations were
conducted. Random combinations of disturbances and modeling errors within the range
specified in Table 2 were employed. The simulations compared scenarios with two-step
and three-step algorithms, as illustrated in Figure 14.

30

20
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q(°/s)

t(s) t(s)

0.5

—_
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e

0.5
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(=}

0 0.5 0.5 1
t(s) t(s)
(d)
0
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S W 3-step algorithm
[ 2-step algorithm
0 0.5 1 0 0.5 1
t(s) t(s)
(2) (h)

Figure 14. Tracking simulations with two-step and three-step TRCC: (a) elevator; (b) throttle; (c) pitch
angle velocity; (d) aileron; (e) rudder; (f) sideslip angle; (g) roll angle velocity; (h) sum of errors.

Figure 14a,b shows that the three-step algorithm reduced the variation of the elevator
and throttle compared to the two-step algorithm. Hence, this reduction led to ineffective
compensation for longitudinal disturbances, increasing the pitch angle velocity error, as
shown in Figure 14c. Additionally, the three-step algorithm led to minor aileron variation
but significantly reduced the rudder variation, as shown in Figure 14d,e. Therefore, the rud-
der failed to adequately compensate for lateral disturbances, resulting in increased sideslip
angle and yaw angle velocity errors, as shown in Figure 14f,g. Figure 14h demonstrates
that the average maximum tracking error increased from 0.30 to 0.37 when employing
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the three-step algorithm instead of the two-step algorithm. Thus, although the three-step
algorithm reduced the computational time, it resulted in an approximately 23% reduction
in TRCC performance.

4.6. Runtime Simulation

To validate the real-time performance of the Fast TRCC, a runtime simulation was
conducted. The hardware device supported up to 40 parallel computational threads, with
16 threads each used for longitudinal and lateral RCC computation. The computation
time analysis (Figure 13) demonstrated a consumption below 100 ms for the 16-thread
environment, effectively meeting the 50 ms real-time requirement with a one-step delay.
Consequently, the simulation step was set at 50 ms in the runtime simulation. Before
initiating the runtime simulation, the TRCC command for the first 16 beats was pre-
calculated. Throughout the runtime simulation, the algorithm handles the calculation of
RCC commands for the subsequent 16 beats, as depicted in Figure 15. The results of the
runtime simulation are presented in Figure 16.

Before runtime In runtime
simulation 4 simulation 32 32

Al‘step Atstep
A A 16

/ Atbcat

Atcul Atml

| Atstep At‘step

Atml

Figure 15. Time sequences for runtime simulation.

In the runtime test, the velocity initially deviated by 3 m/s, as depicted in Figure 16a.
Since the actual velocity was lower than the nominal velocity, TRCC generated a positive
throttle compensation to minimize the velocity error. The compensated throttle consistently
satisfied the constraint, as illustrated in Figure 16b. Furthermore, TRCC effectively sup-
pressed the measurement noise of the velocity and angle-of-attack through throttle and
elevator compensation, reducing the tracking error of pitch angle velocity and pitch angle,
as indicated in Figure 16a,f. In addition, in the runtime simulation, an angle-of-attack of 7°
was achieved, in which the aerodynamic characteristics presented moderate nonlinearity,
as shown in Figure 7.

As shown in Figure 16g, the sideslip angle exhibited an initial deviation of 0.3° and
was affected by continuous measurement noise. Consequently, TRCC generated a larger
rudder compensation, leading to a reduction in the tracking error for the sideslip angle and
yaw angle velocity, as depicted in Figure 16g-i. Although TRCC produced a smaller aileron
compensation, it still effectively reduced the tracking error for the roll angle velocity and
roll angle, as shown in Figure 16j-1.

The combined tracking error curves, with and without the effect of TRCC, are presented
in Figure 16m. To effectively evaluate the control effect of TRCC, the Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) metrics of the tracking error were used [33]. By
utilizing TRCC to suppress the effect of initial state deviation and measurement noise, the
MAE of the tracking error was reduced from 1.21 to 0.25, and the RMSE decreased from 1.30
to 0.27 after the implementation of TRCC, indicating improved robustness.
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Figure 16. Runtime simulation of fast-solving TRCC: (a) velocity; (b) throttle; (c) angle-of-attack;
(d) elevator; (e) pitch angle velocity; (f) pitch angle; (g) sideslip angle; (h) rudder; (i) yaw angle
velocity; (j) aileron; (k) roll angle velocity; (1) roll angle; (m) sum of errors.

4.7. Sensitivity Analysis

Sensitivity analysis identifies key nominal states and actions affecting the TRCC com-
mand. The recalculation of the compensation control command polynomials is conducted
only when these key factors experience significant changes, reducing the computational
burden of TRCC implementation.

In the sensitivity analysis, two sets of 100 test nominal state and control inputs were
randomly sampled within the ranges specified in Table 3. The sensitivity was determined
by computing AC = C; — Cy, where C; and C; are the coefficients of the compensation
command polynomials obtained under the two sets of test inputs. A larger AC indicates
that the input has a significant influence on the TRCC command, indicating high sensitivity.
The sensitivity analysis results are shown in Figure 17.

Table 3. Range of nominal states and controls for sensitivity analysis.

Parameter Range Parameter Range
V (m/s) [200, 350] « (%) [—10, 25]
q(°/s) [—30, 30] 0(°) [—60, 60]
) [-10,10] p(©/s) [-50, 50]
r(°/s) [-10, 10] ¢ ) [—90, 90]
de (°) [—15,15] Oth () [0.2,0.8]
6a (°) [—15,15] 6r (%) [—25, 25]
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Figure 17. Sensitivity analysis on TRCC commands: (a) elevator; (b) throttle; (c) aileron; (d) rudder.

In the sensitivity analysis, Welch's t-tests at a 5% significance level were used to evalu-
ate the differences in average sensitivity AC. Figure 17a shows that elevator compensation
control had the highest sensitivity to nominal velocity and angle-of-attack, with the average
sensitivity at least one order of magnitude higher than other states and controls. Similarly,
Figure 17b demonstrates the significant sensitivity of throttle compensation control to
the nominal angle-of-attack and pitch angle velocity. Figure 17c indicates comparable
average sensitivity results for aileron compensation control across lateral nominal states
and controls, except for the roll angle velocity. Lastly, Figure 17d reveals the substantial
sensitivity of rudder compensation control to nominal rudder deflection, exceeding other
nominal states and controls by at least one order of magnitude.

5. Conclusions

This study introduced a method for calculating a discrete trajectory tube and de-
veloped a parallel TRCC algorithm that enhanced robustness by minimizing the tube.
Additionally, two efficient methods for solving TRCC commands for UAVs were presented:
dimensionality reduction techniques (decoupling and stepwise) and control reuse. Through
runtime simulations under external disturbances and dynamic uncertainties, it was verified
that the proposed fast TRCC effectively enhances the robustness of UAVs during tracking
tasks while satisfying the requirements for fast solving, as supported by the following two
key points:

1.  The TRCC method for UAVs reduces the RMS tracking error by 66% compared to
the uncompensated control, significantly enhancing robustness during maneuver
trajectory tracking.

2. By utilizing one-step reuse, UAV decoupling, and a three-step algorithm, the TRCC
fast generation requirement of 50 ms per beat can be achieved in a 16-thread environ-
ment. Simulations demonstrate that the fast TRCC method reduces the RMS tracking
error by 60% compared to the uncompensated control. However, when subjected
to the same range of disturbances, the fast TRCC exhibits an approximate 9% in-
crease in the RMS tracking error compared to the slow nominal TRCC, indicating
lower robustness.
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In addition, the fast-solving method for trajectory tubes proposed in this paper enables
real-time assessment of robustness in nonlinear UAVs. In future work, its application
can extend beyond UAV control to benefit trajectory planning and situation assessment,
addressing disturbances in practical scenarios.
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