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Abstract: This paper focuses on distributed state estimation (DSE) and unmanned aerial vehicle
(UAV) path optimization for target tracking. First, a diffusion cubature Kalman filter with intermittent
measurements based on covariance intersection (DCKFI-CI) is proposed, to address state estimation
with the existence of detection failure and unknown cross-correlations in the network. Furthermore,
an alternative transformation of DCKFI-CI based on the information form is developed utilizing a
pseudo measurement matrix. The performance of the proposed DSE algorithm is analyzed using
the consistency and the bounded error covariance of the estimate. Additionally, the condition of
the bounded error covariance is derived. In order to further improve the tracking performance, a
UAV path optimization algorithm is developed by minimizing the sum of the trace of fused error
covariance, based on the distributed optimization method. Finally, simulations were conducted to
verify the effectiveness of the proposed algorithm.

Keywords: unmanned aerial vehicle; diffusion cubature Kalman filter; covariance intersection;
intermittent measurements; distributed path optimization

1. Introduction

Unmanned aerial vehicles (UAVs), also known as drones, have been widely applied
for target tracking, with versatility and advanced capabilities for civilian and military
areas, such as surveillance, environmental monitoring, resource exploration, and so on [1].
The utilization of UAVs for target tracking offers numerous advantages over traditional
stationary detection platforms. UAVs exhibit flexible mobility and provide an aerial per-
spective, allowing them to cover large areas and overcome geographical obstacles [2]. A
variety of advanced sensors, such as time-of-arrival (TOA) sensors, angle-of-arrival (AOA)
sensors, time-difference-of-arrival (TDOA) sensors, and so on, can be loaded on UAVs,
according to the requirements of the target tracking task [3]. In practical applications, UAVs
typically engage in target tracking tasks within networked formations [4,5]. In a wireless
network, the information of a UAV can only be transmitted to its neighboring UAVs, which
enhances the reliability and robustness of the system but poses significant challenges for
distributed state estimation, to improve the tracking performance. In addition, leveraging
the mobile platform characteristics of UAVs to acquire higher-quality measurements would
also contribute to improving tracking performance.

Much previous work in literature has been dedicated to developing different dis-
tributed state estimation (DSE) algorithms. Two commonly adopted techniques for address-
ing DSE are consensus-based and diffusion-based strategies. The concept of the consensus
Kalman filter (KF) was proposed in [6] to eliminate disagreements among local estimates.
The optimal and sub-optimal consensus KF proposed in [7] was proven to be Lyapunov
stable. Similarly, the Kullback–Leibler average was adopted for distributed consensus
estimation [8]. Compared with consensus KF, the incremental step of diffusion KF [9]
exchanges the measurements between neighbours, to generate intermediate estimates,

Drones 2023, 7, 473. https://doi.org/10.3390/drones7070473 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7070473
https://doi.org/10.3390/drones7070473
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-3535-2343
https://doi.org/10.3390/drones7070473
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7070473?type=check_update&version=2


Drones 2023, 7, 473 2 of 21

which leads to an additional enhancement in tracking performance. In [10], a diffusion KF
with covariance intersection (CI) was developed, to overcome unknown cross-correlations.
In [11], a diffusion KF with intermittent measurements was proposed, to tackle the loss of
the measurement packets. Furthermore, in order to address DSE for nonlinear systems,
the well-known extended Kalman filter (EKF), unscented Kalman filter (UKF) [12], and
cubature Kalman filter (CKF) [13] were introduced [14,15]. The consensus-based UKF
was proposed in [16], replacing the measurement function with linear regression [17].
Accordingly, a diffusion UKF based on CI was proposed in [18] with similar techniques
and with consideration of intermittent measurements and theoretical analysis in terms of
performance. In addition, a diffusion CKF with packet loss was derived in [19].

Compared with the improvement of tracking accuracy with DSE algorithms, the geom-
etry between UAVs and their target plays a fundamental role in determining the quality of
the measurements, which directly influences the accuracy of target tracking systems [20,21].
The Fisher information matrix (FIM) is a commonly used criterion assessing the quantity of
information from measurements. The inverse of the FIM, called Cramer–Rao lower bound
(CRLB), indicates the optimal performance of a tracking system. The optimal sensor-target
geometry was obtained by optimizing the functions related to the FIM for TOA, AOA, and
hybrid sensors in 2D and 3D space [22–27]. In [28], a motion coordination algorithm was
proposed for reconfiguration of the sensor-target geometry, based on the previous optimal
sensor-target geometry. Model predicted control was adopted to achieve the optimal geom-
etry for multiple-target localization in [29]. On the other hand, path optimization based
on numerical methods has been proposed for target tracking, to avoid the difficulty of
finding closed-form solutions [30–36]. In [37–39], gradient descent optimization algorithms
were proposed for single- and multi-sensor path planning for AOA target tracking, by
minimizing the trace of the error covariance in 2D and 3D space. In [40], path optimization
for passive emitter localization in 2D space was transformed into a nonlinear programming
problem, to minimize the determinant of the FIM. In [41], a trajectory optimization method
was proposed through maximizing the geometrical observability metric with bearings-only
measurement. Path optimization for multi-target tracking, by minimizing the predicted
conditional CRLB, was studied in [42], using a non-convex optimization method.

In general, the evolution of DSE algorithms and path optimization for UAVs provides
improved performance for target tracking. In practical applications, due to intricate en-
vironments, the failure of detection and communication of UAVs leads to intermittent
measurements [11,18]. Moreover, the cross-correlation between estimates is crucial for
ensuring a consistent fusion estimate; however, this is difficult to calculate. The CKF has
been verified to have a better tracking accuracy compared with EKF and UKF in high
dimension nonlinear systems, and the diffusion strategy guarantees an improved esti-
mation accuracy by exchanging local information. Nevertheless, few studies have taken
intermittent measurements and unknown cross-correlations into account in a diffusion
CKF. On the other hand, the majority of existing distributed path optimization methods
for enhancing tracking performance primarily consider functions related to the local error
covariance matrix as optimization objectives. While these methods effectively improve
tracking performance, they can potentially lead to a decrease in the local estimation ac-
curacy within the system, as a penalty. Therefore, inspired by distributed optimization
for multiple agents [43–46], the local estimation of other agents by each agent for optimal
solutions has a great impact on the optimization problem, with the cost function as the
sum of the local functions.However, most existing works did not take the location of the
neighboring UAVs into consideration for distributed UAV path optimization, which may
lead to local optima and even divergences.

Motivated by the aforementioned considerations, this paper focuses on distributed
state estimation and UAV path optimization for target tracking. A diffusion CKF algorithm
for target tracking is studied. Meanwhile, distributed path optimization is considered, to
improve the tracking performance of the whole system. The contributions of this paper are
as follows:
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i A diffusion CKF with intermittent measurements based on CI (DCKFI-CI) is proposed,
under consideration of detection failure and unknown correlations, which were
not fully taken into account for diffusion CKF in previous studies. Moreover, its
information-based form is derived by leveraging a pseudo measurement matrix;

ii The consistency and bounded error covariance of the diffusion estimate are analyzed
theoretically, to demonstrate the performance of the proposed DCKFI-CI. The previous
results of bounded error covariance were based on strong assumptions about detection
probability. In this paper, the condition of the bounded error covariance is also derived;

iii A distributed path optimization method is developed by minimizing the sum of the
traces of the fusion error covariance matrices; instead of the local error covariance
for each UAV used in previous works. Based on exchanging the local estimate of the
optimal solution, the cost function is minimized, which improves the accuracy of the
whole tracking system.

The remainder of this paper is organized as follows: Section 2 presents the problem
formulation. In Section 3, we propose the DCKFI-CI algorithm and derive its information-
based form. Section 4 presents a performance analysis of the DCKFI-CI algorithm. In
Section 5, we design a path optimization strategy. The proposed method is verified using
simulation in Section 6. Section 7 concludes the paper.

Notation: The 2-norm of a vector x ∈ Rn is defined as ‖x‖ =
√

xTx. tr(A) denotes
the trace of the matrix A. Chol(A) denotes the Cholesky decomposition of A. |S| denote
the cardinality of the set S. S\T = {e|e ∈ S and e /∈ T}. E{x} denotes the mathematical
expectation of the stochastic variable x.

2. Problem Formulation

In this paper, we focus on the target tracking problem of multiple cooperative UAVs in
3D space, as depicted in Figure 1. UAVs are equipped with detection sensors, communica-
tion units, and data processors. However, due to detection failure, the measurements taken
by UAVs are unfortunately intermittent. The state of the target is estimated by the data pro-
cessor by incorporating these intermittent measurements and information shared among
wireless-connected UAVs through their communication units. In addirtion, UAVs possess
the capability to engage in coordinated movement, to perform the task of target tracking.

O

x

y

z
UAV 1

UAV 2

UAV 3

UAV n

Target trajectory

Figure 1. Target tracking with multiple UAVs.

As shown in Figure 1, we consider a typical scenario in practical target tracking
applications. The target motion and intermittent measurements are modeled as a nonlinear
discrete system

xk+1 = f (xk) + wk

zi
k = γi

khi(xk) + ηi
k

(1)
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where ∈ Rnx is the state vector of the target at time k; zi
k ∈ Rnz is the measurement

vector detected by the sensor equipped on the ith UAV at time k; f (·) and hi(·) denote
the process and measurement function; the process noise wk ∈ Rnx and the measurement
noise ηi

k ∈ Rnz are mutually uncorrected Gaussian noise with zero mean and covariance Qk
and Ri

k, respectively; nx and nz are the dimensions of the state and measurement vectors,
respectively; and γi

k is a binary stochastic variable to describe the intermittent measurement
model, i.e., γi

k = 0 or 1 indicates that the measurement of the ith UAV is missing or not at
time k, respectively. The probability distribution of γi

k is{
P{γi

k = 1} = λi

P{γi
k = 0} = 1− λi

(2)

where λi represents the detection probability with 0 ≤ λi ≤ 1, then the measurement
noise follows

P(ηi
k|γi

k) =

{
N (0, Ri

k) γi
k = 1

N (0, σ2 I) γi
k = 0

(3)

where N (·, ·) denotes the norm distribution, and the absence of measurement leads to a
limiting case of σ→ ∞.

The communication topology among UAVs in this paper is described as a time-
invariant undirected graph G = (N , E ), where N = {1, 2, . . . , n} is the vertex set, and
E ⊂ N ×N is the edge set. Moreover, (i, j) ∈ E (i 6= j) means that the ith UAV and the
jth UAV can communicate with each other directly; that is, the jth UAV is a neighbor of the
ith UAV. Ni = {j|(i, j) ∈ E } ∪ i denotes the set of UAVs that are connected to the ith UAV
and itself.

The motion model of the UAVs is given by

si(k + 1) = si(k) + ui(k) (4)

where si(k) = [six(k), siy(k), siz(k)]T ∈ R3 is the position of the ith UAV at time k; and ui(k)
is the control input vector of the ith UAV at time k.

The state parameters of the target are unknown. It is assumed that the location of the
UAVs and the measurements taken by them are known to themselves. Taking into account
the communication bandwidth, only limited information can be transmitted between
the UAVs, in accordance with the communication topology. Our objective is to estimate
the target’s state using intermittent measurements and improve the tracking accuracy by
optimizing the path for the cooperation of the UAVs.

3. Diffusion CKF Based on a Covariance Intersection with Intermittent Measurements

In this section, a diffusion CKF is proposed for the distributed estimation with in-
termittent measurements taken by the UAVs. In addition, a covariance intersection is
introduced to address the unknown cross-correlations of the target tracking system. We
first derive the time- and measurement-updated form of DCKFI-CI based on the local CKF
with the intermittent measurements. Then, we transform this into an information-based
form by introducing a pseudo measurement matrix.

3.1. Local CKF with Intermittent Measurements

Before we derive the diffusion framework, the local CKF with intermittent measure-
ments is briefly reviewed. Denote x̂i

k|k as the local estimate of xk and Pi
k|k as the estimate

error covariance matrix for the ith UAV. A local CKF with intermittent measurements for
the ith UAV in its time- and measurement-updated forms can be computed by starting
from x̂i

0|0 and Pi
0|0 [19]. The iteration functions are as follows:
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Step 1. Evaluate cubature points (g = 1, 2, . . . , 2nx)

Si
k−1|k−1 = Chol

(
Pi

k−1|k−1

)
(5)

X i
g,k−1|k−1 = Si

k−1|k−1ξg + x̂i
k−1|k−1, g = 1, 2, . . . , 2nx (6)

where ξg =
√

nx[1]g; [1]g ∈ Rnx represents the gth element of the following set:


1
0
...
0

,


0
1
...
0

, . . . ,


0
0
...
1

,


−1
0
...
0

,


0
−1

...
0

, . . . ,


0
0
...
−1


︸ ︷︷ ︸

2nx

Step 2. Time update

X i
g,k|k−1 = f (X i

g,k−1|k−1), g = 1, 2, . . . , 2nx (7)

x̂i
k|k−1 =

1
2nx

2nx

∑
g=1

χi
g,k|k−1 (8)

Pi
k|k−1 =

1
2nx

2nx

∑
g=1

χi
g,k|k−1

(
χi

g,k|k−1

)T
− x̂i

k|k−1

(
x̂i

k|k−1

)T
+ Qk−1 (9)

Step 3. Measurement update

Si
k|k−1 = Chol

(
Pi

k|k−1

)
(10)

χi
g,k|k−1 = Si

k|k−1ξg + x̂i
k|k−1, g = 1, 2, . . . , 2nx (11)

Zi
g,k|k−1 = hi(χi

g,k|k−1), g = 1, 2, . . . , 2nx (12)

ẑi
k|k−1 =

1
2nx

2nx

∑
g=1

Zi
g,k|k−1 (13)

Pi
zz,k|k−1 =

1
2nx

2nx

∑
g=1

Zi
g,k|k−1

(
Zi

g,k|k−1

)T
− ẑi

k|k−1

(
ẑi

k|k−1

)T
+ Ri

k (14)

Pi
xz,k|k−1 =

1
2nx

2nx

∑
g=1

χg,k|k−1

(
Zi

g,k|k−1

)T
− x̂i

k|k−1

(
ẑi

k|k−1

)T
(15)

Mi
k = Pi

xz,k|k−1

(
Pi

zz,k|k−1 +
(

1− γi
k

)
Ri

k + γi
kσ2 Inz

)−1
(16)

x̂i
k|k = x̂i

k|k−1 + Mi
k(z

i
k − ẑi

k|k−1) (17)

Pi
k|k = Pi

k|k−1 −Mi
kPi

zz,k|k−1

(
Mi

k

)T
(18)

Taking the limit as σ→ ∞, the Equations (16)–(18) can be rewritten as

M̃i
k = Pi

xz,k|k−1

(
Pi

zz,k|k−1

)−1
(19)

x̂i
k|k = x̂i

k|k−1 + γi
k M̃i

k(z
i
k − ẑi

k|k−1) (20)

Pi
k|k = Pi

k|k−1 − γi
k M̃i

kPi
zz,k|k−1

(
M̃i

k

)T
(21)
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3.2. Diffusion Cubature Kalman Filter with Intermittent Measurements Based on CI

In this section, a DCKFI-CI is proposed based on the diffusion framework. Meanwhile,
a covariance intersection is adopted, to address the unknown cross-correlations in the target
tracking system.

First, a weighting mixing matrix is required for the diffusion update, whose elements
represent the weights used to fuse the local estimates and error covariance matrices among
neighbours in the diffusion strategy. The diffusion matrix C = [cij] ∈ Rn×n satisfies C1 = 1,
cij > 0 if j /∈ Ni, cij ≥ 0. In this paper, the well-known Metropolis weights rule is adopted:

cij =


1/
(
1 + max

{
di, dj

})
if (j, i) ∈ E

0 if (j, i) /∈ E and j 6= i
1−∑l∈Ni

cil if j = i
(22)

A DCKFI-CI algorithm is proposed by adding an incremental step for exchanging
measurements among neighbours for local estimates and a diffusion step based on CI. As
the ith UAV can obtain its neighbours’ measurements, let Ni = {i1, i2, . . . , iNi

}, then the
augmented measurement vector for the ith UAV and its corresponding measurement noise
covariance matrix are

z̆i
k =

[(
zi1

k

)T
,
(

zi2
k

)T
, · · · ,

(
z

iNi
k

)T
]T

= h̆i
(

xi
k

)
(23)

R̆i
k = diag

{
Ri1

k , Ri2
k , · · · , R

iNi
k

}
(24)

γ̆i
k = diag

{
γi1

k Inz , γi2
k Inz , · · · , γ

iNi
k Inz

}
(25)

Thus, a DCKFI-CI algorithm with time- and measurement-update is presented in
Algorithm 1.

An alternative transformation for Algorithm 1 would be replacing the measurement-
update form with the information form for CKFI in the incremental update. Accordingly,
a pseudo measurement matrix is introduced, which was also seen in [16–18], to facilitate
obtaining the applicable information form in the diffusion framework, which is defined by

Hi
k =

(
Pi

xz,k|k−1

)T(
Pi

k|k−1

)−1
(26)

Combining (19), (21) and (26) and according to matrix inversion lemma, we have(
Pi

k|k
)−1

=
(

Pi
k|k−1

)−1
+ γi

k

(
Hi

k

)T(
Ri

k

)−1
Hi

k (27)

where
Ri

k = Pi
zz,k|k−1 −Hi

kPi
xz,k|k−1 (28)
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Algorithm 1 DCKFI-CI (Time- and measurement-update)

Input: x̂i
0, f , Pi

0, f , zi
k, Ri

k,Qk−1, i ∈ N

Output: x̂i
k, f , Pi

k, f
1: Initialization

Consider a nonlinear model as in (1). Start with x̂i
0|0 = x̂i

0, f and Pi
0|0 = Pi

0, f .
2: Evaluating cubature points and time-update steps follows the local CKF with intermit-

tent measurements in Section 3.1.
3: Collect the measurements from Ni
4: Measurement update

Si
k|k−1 = Chol

(
Pi

k|k−1

)
χi

g,k|k−1 = Si
k|k−1ξg + x̂i

k|k−1, g = 1, 2, . . . , 2nx

Zi
g,k|k−1 = h̆i(χi

g,k|k−1), g = 1, 2, . . . , 2nx

ẑi
k|k−1 =

1
2nx

2nx

∑
g=1

Zi
g,k|k−1

Pi
zz,k|k−1 =

1
2nx

2nx

∑
g=1

Zi
g,k|k−1

(
Zi

g,k|k−1

)T
− ẑi

k|k−1

(
ẑi

k|k−1

)T
+ R̆i

k

Pi
xz,k|k−1 =

1
2nx

2nx

∑
g=1

χi
g,k|k−1

(
Zi

g,k|k−1

)T
− x̂i

k|k−1

(
ẑi

k|k−1

)T

Mi
k = Pi

xz,k|k−1

(
Pi

zz,k|k−1 +
(

Inz‖Ni‖ − γ̆i
k

)
R̆i

k + σ2γ̆i
k Inz‖Ni‖

)−1

xi
k,inc = xi

k|k−1 + Mi
k(z̆

i
k − ẑi

k|k−1)

Pi
k,inc = Pi

k|k−1 −Mi
kPi

zz,k|k−1

(
Mi

k

)T

5: Propagate x̂i
k,inc and Pi

k,inc to their neighbours Ni \ i
6: Diffusion update with CI (

Pi
k, f

)−1
= ∑

j∈Ni

cij

(
Pj

k,inc

)−1

x̂i
k, f = Pi

k, f ∑
j∈Ni

cij

(
Pj

k,inc

)−1
x̂j

k,inc

Thus, the DCKFI-CI in the information form is presented in Algorithm 2.
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Algorithm 2 DCKFI-CI (Information form)

Input: x̂i
0, f , Pi

0, f , zi
k, Ri

k,Qk−1, i ∈ N

Output: x̂i
k, f , Pi

k, f
1: Initialization

Consider a nonlinear model as in (1). Start with x̂i
0|0 = x̂i

0, f and Pi
0|0 = Pi

0, f , i =

1, 2, . . . , n.
2: Evaluating cubature points and prediction steps follow the local CKF with intermittent

measurements in Section 3.1.
3: Calculate Hi

k and Ri
k through (10)–(15), (26) and (28)

4: Propagate Hi
k, Ri

k and zi
k to their neighbours Ni \ i

5: Information update

Y i
k = ∑

j∈Ni

γ
j
k

(
Hj

k

)T(
Rj

k

)−1
Hj

k

qi
k = ∑

j∈Ni

γ
j
k

(
Hj

k

)T(
Rj

k

)−1
zj

k(
Pi

k,inc

)−1
=
(

Pi
k|k−1

)−1
+ Y i

k

x̂i
k,inc = x̂i

k|k−1 + Pi
k,inc(q

i
k − Y i

kxi
k|k−1)

6: Propagate x̂i
k,inc and Pi

k,inc to their neighbours Ni \ i
7: Diffusion update with CI (

Pi
k, f

)−1
= ∑

j∈Ni

cij

(
Pj

k,inc

)−1

x̂i
k, f = Pi

k, f ∑
j∈Ni

cij

(
Pj

k,inc

)−1
x̂j

k,inc

Remark 1. The pseudo measurement matrix in (26) is a linear regression of the nonlinear measure-
ment function [17]. Similarly, Hi

k can be alternatively approximated by the first order Taylor series
expansion matrix at x̂k|k−1.

4. Performance Analysis

In this section, the performance of the DCKFI-CI algorithm based on the information
form is analyzed. The consistency of the fusion estimate is analyzed, to evaluate the fusion
performance of the DCKFI-CI. In addition, the trace of the error covariance matrix is proven
to be bounded under a certain condition of the detection probability.

Define the estimated error and innovation, respectively, as{
x̃i

k|k−1 = xk − x̂i
k|k−1

z̃i
k|k−1 = zi

k − ẑi
k|k−1

(29)

The equations in (29) can be rewritten in a pseudo linearized form as x̃i
k|k−1 = αi

k−1F i
k−1

(
xk−1 − x̂i

k−1, f

)
+ wk−1

z̃i
k = γi

kβi
k H i

k

(
xk−1 − x̂i

k−1, f

)
+ ηi

k

(30)

where F i
k−1 =

∂ f (xk−1)
∂xk−1

∣∣∣x̂i
k−1, f and H i

k = ∂hi(xk)
∂xk−1

∣∣∣x̂i
k, f are the first-order Taylor series ex-

pansion of the state transformation and measurement functions, respectively; αi
k−1 =
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diag(αi
1,k−1 αi

2,k−1 · · · αi
nx ,k−1) and βi

k−1 = diag(βi
1,k−1 βi

2,k−1 · · · βi
nz ,k−1) are the compen-

sation instrumental diagonal matrices used to adjust the approximation error of the pseudo
linearized state system and measurement matrices.

Substituting (30) into the formulas in CKFI, we obtain

Pi
k|k−1 = αi

k−1F i
k−1Pi

k−1, f

(
F i

k−1

)T
αi

k−1 + Q∗k−1 (31)

where Q∗k−1 = Qk−1 + µPi
k|k−1 + κPi

k|k−1 is positive definite, µPi
k|k−1 is the difference

between αi
k−1F i

k−1Pi
k−1, f

(
F i

k−1αi
k−1

)T
, and E

{
αi

k−1F i
k−1Pi

k−1, f

(
F i

k−1

)T
αi

k−1

}
, κPi

k|k−1 is the

difference between the real error covariance matrix and the estimated error covariance
matrix. In order to compensate for the approximation error of the pseudo measurement
matrix, a stochastic matrix Φi

k ∈ Rnx×nx is introduced [47], so we have

Hi
k =

(
Pi

xz,k|k−1

)T(
Pi

k|k−1

)−1
= βi

k H i
kΦi

k (32)

Then, the related formulas of DCKFI-CI in information form can be rewritten as

Y i
k = ∑

j∈Ni

γ
j
k

(
β

j
k H j

kΦi
k

)T(
Rj

k

)−1
β

j
k H j

kΦi
k (33)

qi
k = ∑

j∈Ni

γ
j
k

(
β

j
k H j

kΦi
k

)T(
Rj

k

)−1
zj

k (34)

Definition 1 ([48]). Let x̂ represent an unbiased estimate of an unknown stochastic vector x; P and
P̆ denote the estimated and real error covariance matrices, respectively. The estimate x̂ is referred to
as a consistent estimate of x if P ≥ P̆ = E

{
(x− x̂)(x− x̂)T}.

Theorem 1. The fusion estimate obtained by DCKFI-CI is a consistent estimate, i.e., Pi
k, f ≥ P̆i

k, f =

E
{
(x− x̂i

k, f )(x− x̂i
k, f )

T
}

.

Proof. The proof is proceeded using the method of induction. Suppose that Pi
k−1, f ≥ P̆i

k−1, f

holds at time k− 1, P̆i
k|k−1 is derived as

P̆i
k|k−1 = E

{(
xk − x̂i

k|k−1

)(
xk − x̂i

k|k−1

)T
}

= E
{(

αi
k−1F i

k−1

(
xk−1 − x̂i

k−1, f

)
+ wk−1

)(
αi

k−1F i
k−1

(
xk−1 − x̂i

k−1, f

)
+ wk−1

)T
}

= αi
k−1F i

k−1P̆i
k−1, f

(
αi

k−1F i
k−1

)T
+ µPi

k|k−1 + Q∗k−1 (35)

Applying Pi
k−1, f ≥ P̆i

k−1, f into (35), we obtain

Pi
k|k−1 ≥ αi

k−1F i
k−1P̆i

k−1, f

(
αi

k−1F i
k−1

)T
+ Q∗k−1 ≥ P̆i

k|k−1 (36)

Next, we consider the real error covariance matrix P̆i
k,inc in the step of information

updating
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P̆i
k,inc = E

{(
xk − x̂i

k,inc

)(
xk − x̂i

k,inc

)T
}

= E
{[(

I − Pi
k,incY i

k

)
x̃i

k|k−1

][(
I − Pi

k,incY i
k

)
x̃i

k|k−1

]T

+

[
Pi

k,inc ∑
j∈Ni

γ
j
k

(
β

j
k H j

kΦi
k

)T(
Rj

k

)−1
η

j
k

]
[

Pi
k,inc ∑

j∈Ni

γ
j
k

(
β

j
k H j

kΦi
k

)T(
Rj

k

)−1
η

j
k

]T}
(37)

where x̃i
k|k−1 = xk − x̂i

k|k−1. Due to E
[
ηi

k(η
i
k)

T] = Ri
k and E

[
ηi

k(η
j
k)

T
]
= 0, i 6= j, it follows

that

E


[

Pi
k,inc ∑

j∈Ni

γ
j
k

(
β

j
k H j

kΦi
k

)T(
Rj

k

)−1
η

j
k

][
Pi

k,inc ∑
j∈Ni

γ
j
k

(
β

j
k H j

kΦi
k

)T(
Rj

k

)−1
η

j
k

]T


= E
{

Pi
k,inc

[
∑

j∈Ni

(
γ

j
k

)2(
β

j
k H j

kΦi
k

)T(
Rj

k

)−1
β

j
k H j

kΦi
k

]
Pi

k,inc

}
= E

{
Pi

k,incY i
kPi

k,inc

}
(38)

Substituting (38) into (37), it follows that

P̆i
k,inc = E

{(
I − Pi

k,incY i
k

)
P̆i

k|k−1

(
I − Pi

k,incY i
k

)T
+ Pi

k,incY i
kPi

k,inc

}
(39)

Multiplying
(

Pi
k,inc

)−1
on both sides of (38) and combining with (36), we obtain

(
Pi

k,inc

)−1
P̆i

k,inc = E
{[(

Pi
k,inc

)−1
− Y i

k

]
P̆i

k|k−1

(
I − Pi

k,incY i
k

)T
+ Y i

kPi
k,inc

}
= E

{(
Pi

k|k−1

)−1
P̆i

k|k−1

(
I − Pi

k,incY i
k

)T
+ Y i

kPi
k,inc

}
≤ E

{(
P̆i

k|k−1

)−1
P̆i

k|k−1

(
I − Pi

k,incY i
k

)T
+ Y i

kPi
k,inc

}
= E

{
I −

(
Y i

k

)T(
Pi

k,inc

)T
+ Y i

kPi
k,inc

}
= I (40)

In this case, we obtain Pi
k,inc ≥ P̆i

k,inc, which indicates that the local estimate x̂i
k,inc is a

consistent estimate.
We now proceed to calculating the real fusion error covariance matrix P̆i

k, f in the step
of diffusion updating

P̆i
k, f = E

{(
xk − x̂i

k, f

)(
xk − x̂i

k, f

)T
}

= Pi
k, f

n

∑
j=1

n

∑
l=1

ci,jci,l

(
Pj

k,inc

)−1
P̆j,l

k,inc

(
Pl

k,inc

)−1
Pi

k, f (41)

where P̆j,l
k,inc = E

{
x̃j

k,inc

(
x̃l

k,inc

)T
}

.

Define ∆Pi
k, f = Pi

k, f − P̆i
k, f , then we need to prove ∆Pi

k, f ≥ 0
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(
Pi

k, f

)−1
∆Pi

k, f

(
Pi

k, f

)−1

=
n

∑
j=1

cij

(
Pj

k,inc

)−1
−

n

∑
j=1

n

∑
l=1

cijcil

(
Pj

k,inc

)−1
P̆jl

k,inc

(
Pj

k,inc

)−1

≥
n

∑
j=1

cij

(
Pj

k,inc

)−1
P̆j

k,inc

(
Pj

k,inc

)−1
−

n

∑
j=1

n

∑
l=1

cijcil

(
Pj

k,inc

)−1
P̆j,l

k,inc

(
Pl

k,inc

)−1
(42)

Noting that ∑n
l=1,l 6=j cil = 1− cii, (42) becomes

(
Pi

k, f

)−1
∆Pi

k, f

(
Pi

k, f

)−1

≥
n

∑
j=1

n

∑
l=1,l 6=j

cijcil

[(
Pj

k,inc

)−1
P̃j

k,inc

(
Pj

k,inc

)−1
−
(

Pj
k,inc

)−1
P̃jl

k,inc

(
Pl

k,inc

)−1
]

=
n

∑
j=1

n

∑
l=j

cijcil

[(
Pj

k,inc

)−1
P̆j

k,inc

(
Pj

k,inc

)−1
−
(

Pj
k,inc

)−1
P̆jl

k,inc

(
Pl

k,inc

)−1

−
(

Pl
k,inc

)−1
P̆l j

k,inc

(
Pj

k,inc

)−1
+
(

Pj
k,inc

)−1
P̆j

k,inc

(
Pj

k,inc

)−1
]

=
n

∑
j=1

n

∑
l=j+1

ci,jci,lE
{((

Pj
k,inc

)−1
x̃j

k,inc −
(

Pl
k,inc

)−1
x̃l

k,inc

)
((

Pj
k,inc

)−1
x̃j

k,inc −
(

Pl
k,inc

)−1
x̃l

k,inc

)T
}
≥ 0 (43)

Thus, we have ∆Pi
k, f ≥ 0, i.e., Pi

k, f ≥ P̆i
k, f and this completes the proof.

Lemma 1 ([47]). For sysmetric positive definite matrix A, B ∈ Rn×n, (A + B)−1 > A−1 −
A−1BA−1.

Assumption 1 ([47]). There exist positive real constants f̄ , ᾱ, h̄, β, q̄, r̄, φ̄ > 0, such that the
following bounds on the system parameter matrices are satisfied

‖Fk‖ ≤ f̄ , ‖αk‖ ≤ ᾱ
h ≤ ‖Hk‖, β ≤ ‖βk‖, ‖Φk‖ ≤ φ̄

Q∗k ≤ q̄I, Rk ≤ r̄I
(44)

Theorem 2. Suppose that Assumption 1 holds and the linear form of the system in (1) is uniformly

observable, there exists a critical value λ = 1− ā2 f̄ 2−1
ā2 f̄ 2φ̄2 , such that if ∏j∈Ni

(1− λi) ≤ λ, the
following inequality holds

E
{

tr
(

Pi
k, f

)}
≤ E

{
tr
(

Pi
k,inc

)}
≤ p̄ (45)

Proof. According to the step of diffusion updating in DCKFI-CI, we have(
Pi

k, f

)−1
= ∑

j∈Ni

cij

(
Pj

k,inc

)−1

= ∑
j∈Ni

cij

[(
Pj

k|k−1

)−1
+ ∑

j∈Ni

γ
j
k

(
β

j
k H j

kΦi
k

)T(
Rj

k

)−1
β

j
k H j

kΦi
k

]
(46)

Since γi
k = 0 or 1, so the following inequality holds
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(
Pi

k, f

)−1
≥ ∑

j∈Ni

cij

(
Pj

k|k−1

)−1
(47)

Taking the trace of both sides, we obtain

tr
(

Pi
k, f

)
≤ tr


 ∑

j∈Ni

cij

(
Pj

k|k−1

)−1
−1

 (48)

Without loss of generality, there exists j, l ∈ Ni, such that cij = 1 and cil = 0, l 6= j;
then, we have

tr
(

Pi
k, f

)
≤ tr

(
Pj

k|k−1

)
, ∀j ∈ Ni (49)

Substituting (31) into tr
(

P̆i
k|k−1

)
, we have

tr
(

Pi
k|k−1

)
= tr

(
αi

k−1F i
k−1Pi

k−1, f

(
F i

k−1

)T
αi

k−1 + Q∗k−1

)

= tr

αi
k−1F i

k−1

 ∑
j∈Ni

cij

(
Pj

k−1,inc

)−1
−1(

F i
k−1

)T
αi

k−1 + Q∗k−1


≤ tr

(
αi

k−1F i
k−1Pi

k−1,inc

(
F i

k−1

)T
αi

k−1 + Q∗k−1

)
= tr

(
αi

k−1F i
k−1

[(
Pi

k−1|k−2

)−1
+ ∑

j∈Ni

γ
j
k−1

(
β

j
k−1H j

k−1Φi
k−1

)T(
Rj

k−1

)−1

× β
j
k−1H j

k−1Φi
k−1

]−1(
F i

k−1

)T
αi

k−1 + Q∗k−1

)
(50)

According to Lemma 1, we obtain

tr
(

Pi
k|k−1

)
≤ tr

(
αi

k−1F i
k−1Pi

k−1|k−2

(
F i

k−1

)T
αi

k−1 + Q∗k−1

− γi
kαi

k−1F i
k−1

(
Φi

k

)T
Pi

k−1|k−2Φi
k

(
F i

k−1

)T
αi

k−1

+ γi
kαi

k−1F i
k−1

(
Φi

k−1

)T
[(

βi
k−1H i

k−1

)T
]−1

Ri
k−1

(
βi

k−1H i
k−1

)−1
Φi

k−1

(
F i

k−1

)T
αi

k−1 (51)

According to Assumption 1, we have

tr
(

Pi
k|k−1

)
≤ ᾱ2 f̄ 2

(
1− γi

kφ̄2
)

tr
(

Pi
k−1|k−2

)
+

(
q̄ + γi

k
ᾱ2 f̄ 2φ̄2r̄

β2h2

)
n (52)

Making recursion and taking the mathematical expectation of (52), we obtain

E
{

tr
(

Pi
k|k−1

)}
≤
ᾱ2 f̄ 2

1− φ̄2

1− ∏
j∈Ni

(1− λi)

k

tr
(

P1|0
)

+ n

(
q̄ + λi

ᾱ2 f̄ 2φ̄2r
β2h2

)
k−1

∑
t=0

ᾱ2 f̄ 2

1− φ̄2

1− ∏
j∈Ni

(1− λi)

t

(53)
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Denote

p̄ = max

{
tr
{

P1|0
}

, n

(
q̄ + λi

ᾱ2 f̄ 2φ̄2 − r̄
β2h2

)}
(54)

Therefore, it is apparent that if ∏j∈Ni
(1− λi) ≤ 1− ā2 f̄ 2−1

ā2 f̄ 2φ̄2 , it follows that

E
{

tr
(

Pi
k, f

)}
≤ E

{
tr
(

Pi
k|k−1

)}
≤ p̄ (55)

and this completes the proof.

5. Distributed Path Optimization

In this section, distributed UAV path optimization is considered, for the enhancement
of the performance of the whole tracking system. As we know, the tracking performance
of stationary detection platforms is theoretically bounded by the CRLB. Fortunately, the
path optimization of UAVs, reconfiguring the geometry between the target and the UAVs,
benefits the tracking performance. In the past, the trace of the local error covariance matrix
was minimized without exchanging UAV positions, which lacks coordination. In this paper,
the average of the traces of the error covariance matrices is minimized, to accomplish the
improvement of the tracking performance for the entire network.

Define the cost function as

min
ε(k)

J(ε(k)) =
1
n

n

∑
i=1

Ji(ε(k)) (56)

where Ji(εi(k)) = tr(Pi
k, f ) is the trace of the fused error covariance matrix and ε(k) =

[ŝT
1 (k), ŝT

2 (k), · · · , ŝT
n (k)]T ∈ R3n is the augmented vector of the UAVs’ positions.

To solve the optimization problem in (56), the ith UAV performs the following update
rules [44]:

εi(k + 1) = ∑
j∈Ni

wij(k)εj(k)−
vT
‖yi(k)‖

yi(k)

yi(k + 1) = ∑
j∈Ni

wij(k)yj(k) +∇Ji(εi(k + 1))−∇Ji(εi(k)) (57)

where εi(k) = [ŝT
i,1(k), ŝT

i,2(k), · · · , ŝT
i,n(k)]

T is the local estimate of the ith UAV about the
optimal solution at time k; W = [wij] ∈ Rn×n is the weighting mixing matrix, which can
also be chosen according to the Metroplis weights rule; ∇Ji(·) is the gradient of the local
objective function Ji(·); v is the velocity of the UAV, which is assumed to be identical for
each UAV.

The explicit expression for ∇Ji(εi(k)) is difficult to derive, so we turn to numerical
computation using a central finite difference approximation. Let

∇Ji(εi(k)) = [π1(k), π2(k), · · · , π3n(k)]
T (58)

Then the lth elements of the gradient vector for the central finite difference approxi-
mation is given by

πl(k) ≈
Ji(εi(k) + δl)− Ji(εi(k)− δl)

2δ
(59)

where δl ∈ R3n, l ∈ {1, 2, . . . , 3n} is a column vector consisting of zero entries, except for
the ith entry, which is a small positive real constant, denoted as δ

δl = [0, · · · , 0, δ︸︷︷︸
lth entry

, 0, · · · , 0]T (60)
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The accuracy of the gradient approximation depends on the chosen of δ. A sufficiently
small value of δ helps avoid a large error. However, excessively small values may give rise
to numerical issues.

To obtain Ji(εi(k)± δl), updated error covariance matrices are required. We need a
virtual position for the UAV, which moves from its current position by ±δ along a specific
direction, and a virtual measurement of the fused target position is taken from the new
UAV position. The virtual measurement, along with other real measurements, is utilized to
perform estimation and fusion through DCKFI-CI, resulting in an updated error covariance
matrix. The calculation process is presented in Algorithm 3, taking the jth UAV moving δ
along x-axis computed on the ith UAV as an example. The majority of the computational
effort is dedicated to the numerical approximation of the gradient vector of the cost function,
which requires repetitive invocations of DCKFI-CI.

Algorithm 3 Calculation of Ji
(
εi(k) + δ3j−2

)
(Taking the jth UAV moving δ along the x-axis

as an example)

Input: εi(k), δ, x̂i
k, f

Output: Ji
(
εi(k) + δ3j−2

)
1: Move the ith UAV to [si,jx(k) + δ, si,jy(k), si,jz(k)]T

2: Take the virtual measurement z̆j
k of xi

k, f from the new position

3: Perform the DCKFI-CI with z̆j
k and zi

k (i ∈ N \ j) to obtain P̂i
k, f

4: Ji
(
εi(k) + δ3j−2

)
= tr

(
P̂i

k, f

)
5: Return Ji

(
εi(k) + δ3j−2

)
The approximation of ∇Ji(εi(k)) can be calculated using Ji(εi(k)± δl) and the recur-

sion in (57) can be carried out. Therefore, the next waypoint of the ith UAV at time k + 1 is

si(k + 1) = ŝi,i(k + 1) (61)

where ŝi,i(k + 1) are the components of εi(k + 1) calculated by (57).

Remark 2. Implementation of UAV collision avoidance is necessary when two UAVs come into
close proximity. However, it is important to note that such an implementation may result in a
decline in tracking performance [38,49,50]. Although advanced UAV collision avoidance strategies
need to be contemplated, they exceed the scope of this paper.

6. Simulation Experiments

In this section, we illustrate the performance of the proposed algorithm with a typical
simulation example. We consider the problem of tracking a maneuvering turning target
using five UAVs equipped with AOA sensors in a 3D space. The communication topology
among the UAVs is shown in Figure 2.

UAV 1

UAV 2

UAV 3UAV 4

UAV 5

Figure 2. The communication topology.
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The motion model of the target is described using a discrete-time state-space sys-
tem [13]

xk+1 =



1 sin ΩkT
Ωk

0 −
(

1−cos ΩkT
Ωk

)
0 0 0

0 cos ΩkT 0 − sin ΩkT 0 0 0
0 1−cos ΩkT

Ωk
1 sin ΩkT

Ωk
0 0 0

0 sin ΩkT 0 cos ΩkT 0 0 0
0 0 0 0 1 T 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


xk + wk

where xk = [xk, ẋk, yk, ẏk, zk, żk, Ωk]
T is the state of the target; xk, yk, and zk denote positions;

ẋk, ẏk, and żk denote velocities in the x, y, and z directions, respectively; and Ωk is the
unknown turn rate and T = 0.2 s is the sampling time. The process noise wk is a zero-mean
Gaussian with a covariance matrix Q = diag{q1Γ, q1Γ, q1Γ, q2T}, where

Γ =

[
T3/3 T2/2
T2/2 T

]
and q1 = 0.1 m/s3 and q2 = 1.75× 10−4 rad/s2 denote the process noise intensity.

The UAVs are equipped with AOA sensors, whose measurement equation is [51]

zi
k = γi

k

[
θi

k
ϕi

k

]
+ ηi,k = γi

k

 tan−1
( yk−siy(k)

xk−six(k)

)
tan−1

(
zk−siz(k)√

(xk−six(k))
2+(yk−siy(k))

2

)+ ηi,k

where θi
k ∈ (−π, π] and ϕi

k ∈ [−π
2 , π

2 ] are the true azimuth and elevation angles from the
UAV i at time k, respectively; tan−1(·) is the four-quadrant inverse tangent function. The
measurement noise is Ri

k = 0.052 I rad2.
To evaluate the tracking performance, the root-mean square error (RMSE) of the position

and velocity of the target estimated using the ith UAV at time k are, respectively, defined as [20]

RMSEi
k,pos =

√√√√ 1
Nc

Nc

∑
j=1

[(
xj

k − x̂i,j
k, f

)2
+
(

yj
k − ŷi,j

k, f

)2
+
(

zj
k − ẑi,j

k, f

)2
]

RMSEi
k,vel =

√√√√ 1
Nc

Nc

∑
j=1

[(
ẋj

k − ˆ̇xi,j
k, f

)2
+
(

ẏj
k − ˆ̇yi,j

k, f

)2
+
(

żj
k − ˆ̇zi,j

k, f

)2
]

where Nc is the total times of Monte Carlo runs; [xj
k, yj

k, zj
k]

T and [ẋj
k, ẏj

k, żj
k]

T are the real posi-

tion and velocity of the target at the j-th Monte Carlo run, respectively; and [x̂i,j
k, f , ŷi,j

k, f , ẑi,j
k, f ]

T

and [ ˆ̇xi,j
k, f , ˆ̇yi,j

k, f , ˆ̇zi,j
k, f ]

T are the fusion estimate of the position and velocity estimated by the ith
UAV, respectively.

To evaluate the consistency of the estimates, the disagreement of the estimates is
defined as [6]

ρk =

√
n

∑
i=1

∥∥∥ ¯̂xk, f − x̂i
k, f

∥∥∥2

where ¯̂xk, f =
1
n ∑n

j=1 x̂j
k, f represents the mean of the estimate of all UAVs. If ρk increases,

the deviation between the estimates of the UAVs also increase and this indicates a worse
consistency for the estimates.

Furthermore, the average accumulative RMSEs (AARMSE) of the position and velocity
of the whole target tracking system are adopted to assess the effectiveness of the proposed
distributed path optimization method, which are respectively defined as [16]
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AARMSEpos =

√√√√ 1
n

1
K

n

∑
i=1

K

∑
k=1

[(
xi

k − x̂i
k, f

)2
+
(

yi
k − ŷi

k, f

)2
+
(

zi
k − ẑi

k, f

)2
]

AARMSEvel =

√√√√ 1
n

1
K

n

∑
i=1

K

∑
k=1

[(
ẋi

k − ˆ̇xi
k, f

)2
+
(

ẏi
k − ˆ̇yi

k, f

)2
+
(

żi
k − ˆ̇zi

k, f

)2
]

The true initial state of the target is x0 = [0 m, 20 m/s, 0 m, 20 m/s, 0 m, 0 m/s,
−0.05 rad/s]T , and Pi

0, f = diag{1000 m2, 100 m2/s2, 1000 m2, 100 m2/s2, 1000 m2,

100 m2/s2, 10−4rad2/s2}. The initial state estimate xi
0, f of UAV i is chosen randomly

from N (x0, Pi
0, f ) in each Monte Carlo run. The initial positions of the UAVs are deployed

randomly in the area of 2000 m× 2000 m at the height of 800 m. The detection probability is
λi = 0.8. The velocity of the UAVs is 50 m/s. We set δ = 1 m for numerical approximation
of gradients and Nc = 200 for the Monte Carlo experiments.

The proposed method was compared with stationary platforms and the methods
proposed in [38,39]. The positions of the stationary platforms were deployed as the initial
positions of the UAVS. The DCKFI-CI was applied for target tracking with stationary plat-
forms. In addition, the methods in [38,39] for distributed estimation and path optimization
algorithms were adopted for comparison.

Figure 3 shows the trajectory of the target and the UAVs at the 200th Monte Carlo
run. The UAVs continuously approached the target to achieve an improved tracking
accuracy. This is due to the fact that the accuracy of tracking increases as an AOA sensor
gets closer to the target [22]. Additionally, in the top view depicted in Figure 3b, we can
observe that the UAVs also adjusted their angles with respect to each other and the target
to enhance the tracking accuracy. Figure 4 shows the compared RMSEpos and RMSEvel of
all UAVs. Figure 5 shows the compared RMSEpos and RMSEvel of UAV 1. As expected, the
tracking performance was improved with the proposed method compared to the stationary
platforms, the method in [38], and the method in [39].

Figure 6 shows the disagreement ρk of the estimates with the DCKFI-CI using the UAVs
steered with the proposed path optimization method and stationary platforms. The disagree-
ment ρk remained stable when λi was decreased from 0.8 to 0.5 for the proposed method and
stationary platforms, which demonstrates that the estimation through DCKFI-CI exhibited
good consistency. Additionally, it was also observed that the estimates using the UAVs exhib-
ited better consistency compared to those with the static platform. This is attributed to the
compression of error covariance through the acquisition of measurements via distributed path
optimization, followed by the diffusion process that reduced the disagreement of the estimates.
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Furthermore, we compared the AARMSE under different detection probabilities of λi = 0.5
and λi = 0.8. As shown in Table 1, the AARMSEpos with the proposed method decreased
55.4%, 28.7%, and 28.1% compared with the stationary platforms, the method in [38], and the
method in [39] when λi = 0.8. Meanwhile, the AARMSEvel decreased 56.8%, 31.1%, and 29.3%
when λi = 0.8. Similarly, the decrease in the AARMSEpos when λi = 0.5 was 53.8%, 30.1%,
and 30.3% compared with the stationary platforms, the method in [38], and the method in [39].
The decrease in the AARMSEvel was 48.5%, 23.4% and 21.6% compared with the mentioned
methods. According to the above results, the proposed path optimization method significantly
improved the tracking performance for the whole network with different detection probabilities.
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The proposed method is compared with the stationary platforms and the methods
proposed in [38,39]. The positions of the stationary platforms are deployed in the initial
positions of the UAVS. The DCKFI-CI is applied for target tracking with stationary plat-
forms. In addition, the methods in [38,39] of distributed estimation and path optimization
algorithms are completely adopted for comparison.

Figure 3 shows the trajectory of the target and the UAVs at the 200th Monte Carlo run.
The UAVs continuously approach the target to achieve improved tracking accuracy. This is
due to the fact that the accuracy of tracking increases as the AOA sensor gets closer to the
target [22]. Additionally, in the top view depicted in Figure 3(b), we observe that the UAVs
also adjust their angles with respect to each other and the target to enhance the tracking
accuracy. Figure 4 shows the compared RMSEpos and RMSEvel of all UAVs. Figure 5 shows
the compared RMSEpos and RMSEvel of UAV 1. As expected, the tracking performance is
improved with the proposed method compared to the stationary platforms, the method
in [38] and the method in [39].

Figure 6 shows the disagreement ρk of the estimates with the DCKFI-CI by the UAVs
steered by the proposed path optimization method and stationary platforms. The dis-
agreement ρk remains stable when λi decreases from 0.8 to 0.5 for the proposed method
and stationary platforms, which demonstrates that the estimate through DCKFI-CI ex-
hibits good consistency. Additionally, it is also observed that the estimates by the UAVs
exhibit better consistency compared to those by the static platform. This is attributed to the
compression of error covariance through the acquisition of measurements via distributed
path optimization, followed by the diffusion process that reduces the disagreement of the
estimates.
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0.5 and λi = 0.8. As shown in Table 1, the AARMSEpos with the proposed method decreases
55.4%, 28.7% and 28.1% compared with the stationary platforms, the method in [38] and
the method in [39] when λi = 0.8. Meanwhile, the AARMSEvel decreases 56.8%, 31.1%
and 29.3% when λi = 0.8. Similarly, the decrease of the AARMSEpos when λi = 0.5 is
53.8%, 30.1% and 30.3% compared with the stationary platforms, the method in [38] and the
method in [39]. The decrease of the AARMSEvel is 48.5%, 23.4% and 21.6% compared with

Figure 6. Comparison of the disagreement of the fusion estimates.

Table 1. Comparison of AARMSEpos and AARMSEvel.

λi AARMSEpos[m] AARMSEvel[m/s]

Proposed method 0.5 4.38 2.79
0.8 3.72 1.88

Stationary platforms 0.5 9.48 5.42
0.8 8.35 4.36

Method in [38] 0.5 6.27 3.64
0.8 5.22 2.73

Method in [39] 0.5 6.28 3.56
0.8 5.17 2.66

7. Conclusions

In this paper, the problem of distributed state estimation with intermittent measure-
ments for UAV target tracking was studied. Moreover, in order to further improve target
tracking performance, distributed path optimization was considered. First, a diffusion
cubature Kalman filter with intermittent measurements based on covariance intersection
was proposed. Furthermore, an alternative transformation of DCKFI-CI based on the infor-
mation form was developed by utilizing a pseudo measurement matrix. The performance
of the proposed algorithm was analyzed with respect to the consistency of the estimate and
the bound of the error covariance. With the DKFICI-CI algorithm, the estimates of the UAVs
were robust against detection failure and exhibited good consistency for target tracking.
In addition, a distributed UAV path optimization algorithm was developed to improve
the tracking performance, by minimizing the sum of the traces of fused error covariance
matrices based on exchanging the local estimate of the optimal solution with the cost
function. The proposed method provided an enhancement of the whole tracking system.
The simulations verified the effectiveness of the proposed method. The enhancement of the
tracking performance was contingent on the exchange of information among the neighbour
UAVs, which presents communication burdens. Meanwhile, the large amount of data
poses a challenge to the limited computation power carried by UAVs. In order to alleviate
these communication and computational burdens, we will incorporate event-triggered
mechanisms [52,53] into data transmission and information processing in future works.
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Nomenclature

γ binary stochastic variable
x̂ estimate of x
f (·) process function
h(·) measurement function
k discrete time
η measurement noise
P estimate error covariance
s UAV position
w process noise
x state vector
z measurement vector
CI covariance intersection
CRLB Cramer–Rao lower bound
DCKFI diffusion cubature Kalman filter with intermittent measurements
FIM Fisher information matrix
UAV unmanned aerial vehicle
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