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Abstract: In this paper, we address the challenge of low recognition rates in existing methods for radar
signals from unmanned aerial vehicles (UAV) with low signal-to-noise ratios (SNRs). To overcome
this challenge, we propose the utilization of the bispectral slice approach for accurate recognition
of complex UAV radar signals. Our approach involves extracting the bispectral diagonal slice and
the maximum bispectral amplitude horizontal slice from the bispectrum amplitude spectrum of the
received UAV radar signal. These slices serve as the basis for subsequent identification by calculating
characteristic parameters such as convexity, box dimension, and sparseness. To accomplish the
recognition task, we employ a GA-BP neural network. The significant variations observed in the
bispectral slices of different signals, along with their robustness against Gaussian noise, contribute
to the high separability and stability of the extracted bispectral convexity, bispectral box dimension,
and bispectral sparseness. Through simulations involving five radar signals, our proposed method
demonstrates superior performance. Remarkably, even under challenging conditions with an SNR as
low as −3 dB, the recognition accuracy for the five different radar signals exceeds 90%. Our research
aims to enhance the understanding and application of modulation recognition techniques for UAV
radar signals, particularly in scenarios with low SNRs.

Keywords: UAV radar signals; low signal-to-noise ratios; bispectral slice; convexity; box dimension;
sparseness; neural network

1. Introduction

In the field of UAV radar signal interference, industrial UAV communication secu-
rity [1], and precise and efficient UAV positioning [2,3], accurate recognition of modulation
types in UAV radar signals is of paramount importance. It facilitates the assessment of
signal threat levels and enables the selection of suitable algorithms for estimating signal
parameters [4–7]. However, the radio environment has become increasingly intricate [8],
resulting in declining SNRs in radar’s routine working conditions. Consequently, there is
a pressing need for modulation recognition algorithms that can exhibit enhanced perfor-
mance under low SNR conditions.

In recent years, researchers have actively explored various methods for the modulation
recognition of UAV radar signals. Approaches leveraging time–frequency distribution fea-
tures [9], entropy values [10], resemblance coefficients [11], and wavelet packet features [12]
have shown promising results. Nevertheless, most existing algorithms face challenges in
accurately identifying signals when the SNR is below 5 dB [13–15]. Only a limited number
of algorithms have demonstrated satisfactory performance within the SNR range of 0 dB
to 5 dB [16,17], while the majority of methods completely fail to function when the SNR
drops below 0 dB.

These recent advancements highlight the ongoing efforts in the field of modulation
recognition for UAV radar signals. While significant progress has been made, there is still
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room for improvement in terms of achieving high recognition accuracy under extremely
low SNR conditions. To overcome the limitations of current methods, this paper aims
to present a novel approach specifically designed to operate effectively under low SNR
conditions. Successful signal recognition in such scenarios necessitates the incorporation of
noise suppression techniques [18–20]. The studies referenced in [19,21] employ additional
denoising techniques, which can increase hardware complexity and system response
time. Higher-order spectra, such as the bispectrum, have exhibited effectiveness in noise
suppression while preserving rich signal characteristics. Among the various higher-order
spectra, the bispectrum represents the simplest form [22]. Therefore, this paper utilizes
the bispectrum to extract signal characteristics and simultaneously suppress noise, thereby
enabling the recognition of UAV radar signal modulation types through the exploitation of
geometric features inherent in bispectral slices. The studies referenced in [23–27] utilize
deep neural networks for modulation signal recognition. However, deep neural networks
require a large amount of training data and have high hardware requirements. Therefore,
this paper proposes a machine-learning-based approach, employing the GA-BP neural
network as a classifier, to effectively differentiate between different signals using the feature
matrix obtained through signal analysis.

The superiority of the method employed in this study for recognizing modulation
schemes of UAV radar signals is demonstrated as follows:

1. This method exhibits excellent performance in identifying signal modulation schemes
in low signal-to-noise ratio environments.

2. It does not require preprocessing such as time synchronization or frequency syn-
chronization; instead, it relies solely on second-order spectrum recognition, while
preserving the information of the original signal.

3. The implementation complexity of this method is low, making it more easily applicable
in various scenarios.

These contributions highlight the significance of this study in the field.
The paper’s structure is organized as follows to present a comprehensive understand-

ing of the proposed method. Section 2 provides an in-depth explanation of the principles
underlying the bispectrum, offering an overview of its fundamental concepts. In Section 3,
the characteristics extracted from bispectral slices are elucidated in detail. Section 4 focuses
on the classifier employed for the feature matrix, explaining its role and methodology. The
superiority of the proposed method is validated through simulation experiments presented
in Section 5, along with the inclusion of important data and performance analyses. Finally,
Section 6 serves as a summary, providing a comprehensive overview of the key findings
and contributions of the paper.

In summary, this paper addresses the urgent need for enhanced modulation recog-
nition of UAV radar signals under low SNR conditions within the context of complex
electronic interference environment. By harnessing the power of the bispectrum and its
geometric features, the proposed method aims to surpass the limitations of existing algo-
rithms and improve the accuracy of signal classification. The results of this study have
the potential to significantly contribute to the development of more robust and efficient
modulation recognition systems in the field of UAV radar signal interference.

2. Signal Model and System Overview
2.1. Signal Model

A Continuous-Wave (CW) signal is a commonly used fundamental signal type, and
its model can be expressed mathematically as follows (Table 1):

s(t) = A · rect
(

t
T

)
ej2π fct0 < t ≤ T (1)

A CW signal is a pure sine wave signal without modulation, where the frequency f c
remains constant without any variations in frequency or amplitude. Therefore, it exhibits a
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narrowband peak in the frequency spectrum, with the spectral center located at the carrier
frequency f c.

Table 1. The model of unmanned aerial vehicle radar signals.

Modulation Formula

CW s(t) = A · rect
( t

T
)
ej2π fct0 < t ≤ T

FSK s(t) = A ·
N
∑

i=1
ej[2π fcit]gTs (t− iTs)

LFM s(t) = A · rect
( t

T
)
ej[2π( fct+ ∆ f t2

2T )]0 < t ≤ T
SFM s(t) = A · rect

( t
T
)
ej2π[ fct+m f sin(∆ f t/m f )]0 < t ≤ T

A, T, and f c represent the amplitude, the pulse width, and the carrier frequency, respectively. ∆ f represents
the bandwidth. mf represents the frequency modulation index. g(t) = 1/

√
Trect[(t− T/2)/T] , where rect(t)

represents the rectangular function. Ts represents the number of symbols. N represents the width of the symbol.
Ts represents the number of subpulses in the group.

CW signals are commonly used in various applications such as wireless communi-
cation, radar systems, navigation systems, testing, and measurements. The simplicity of
its model expression makes it easy to analyze and process. It is important to note that in
practical applications, the specific parameters and characteristics of CW signals may be
adjusted according to the requirements of the application, such as adjusting the amplitude,
phase, or frequency. The above expression provides a general representation, but the
specific CW signal model may vary depending on the application scenario.

A Frequency-Shift Keying (FSK) signal is a digital modulation technique where infor-
mation is encoded and transmitted by changing the signal’s frequency. The FSK signal can
be represented by the following mathematical expression (Table 1):

s(t) = A ·
N

∑
i=1

ej[2π fcit]gTs(t− iTs) (2)

In FSK modulation, different waveforms are modulated on different carrier frequencies
to represent different binary values. FSK signals find widespread applications in wireless
communication, data transmission, and modulation/demodulation systems. Their simple
mathematical expression and good immunity to interference make FSK a commonly used
digital modulation technique.

A Linear Frequency Modulation (LFM) signal is a modulation signal characterized by
a continuous variation in frequency, commonly used in radar systems and communication
systems. The mathematical expression of an LFM signal can be represented as follows
(Table 1):

s(t) = A · rect
(

t
T

)
ej[2π( fct+ ∆ f t2

2T )]0 < t ≤ T (3)

The key characteristic of an LFM signal is its linearly changing frequency, where the
frequency increases or decreases at a constant rate over time. This linear frequency change
results in a wideband signal with a continuous bandwidth in the frequency domain. LFM
signals are commonly used in radar applications for range and velocity measurements,
as well as for analyzing the distance and velocity of target echoes. It is important to
note that the model expression of an LFM signal can be adjusted and modified based on
specific application requirements, such as incorporating phase terms or pulse compression
techniques. The provided expression offers a general representation, but the specific LFM
signal model may vary depending on the application scenario and system design.

Sinusoidal Frequency Modulation (SFM) is a type of frequency modulation technique
where the frequency of a carrier signal is varied sinusoidally with time. It is commonly
used in communication systems, radar applications, and signal processing. The SFM signal
model can be expressed as follows (Table 1):
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s(t) = A · rect
(

t
T

)
ej2π[ fct+m f sin(∆ f t/m f )]0 < t ≤ T (4)

SFM finds applications in various areas, including wireless communication, radar
systems, audio synthesis, and frequency modulation (FM) broadcasting. By modulating
the carrier frequency, SFM allows the transmission of information in the form of frequency
variations, which can be demodulated at the receiver end to recover the original message or
data. It is important to note that the specific implementation of SFM may vary depending on
the system requirements and the desired modulation characteristics. Different modulation
functions and modulation indices can be used to achieve specific frequency modulation
profiles and meet the needs of the application.

2.2. System Overview

As illustrated in Figure 1, this paper proposes a comprehensive radar signal intra-pulse
modulation recognition system, comprising two crucial components: signal processing and
the GA-BP classifier.
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Initially, the received radar signal undergoes down-conversion to an intermediate
frequency. The signal processing module then employs advanced techniques to compute
the bispectrum of the intermediate-frequency signals. Additionally, the module employs
bilinear interpolation to resize the resulting image to an appropriate size. This resizing
process ensures that the image retains the high-order characteristics of the original signals,
while effectively reducing the noise to a significant extent. To achieve precise and accu-
rate modulation recognition, the system incorporates the GA-BP classifier. This classifier
has been meticulously trained offline using a deep residual network. As a result, it can
proficiently classify various radar signals with exceptional accuracy. The proposed system
addresses the challenges associated with radar signal modulation recognition by integrat-
ing innovative signal processing methodologies and the powerful GA-BP classifier. By
leveraging bispectrum analysis, image resizing, and deep residual network training, the
system achieves remarkable recognition performance, enabling the accurate identification
of diverse radar signal modulations.

3. Bispectrum Estimation

The remaining noise primarily consists of the thermal noise from the receiver system
and the clutter noise resulting from signal pre-processing in the reconnaissance system.
Research has shown that the distribution of clutter noise, caused by a large number of
scattering points, and the thermal noise from the receiver system tend to follow a Gaussian
distribution [28]. Moreover, studies [29,30] demonstrate that the higher-order spectrum, as
an analytical tool for time series, effectively suppresses Gaussian noise while preserving
the characteristics of signals.

For instance, the power spectrum, also referred to as the second-order spectrum, is
obtained through the one-dimensional Fourier transformation of the second-order cumulant
of a signal. It provides valuable insights into the distribution of signal energy across
different frequencies. Nevertheless, the power spectrum encounters certain limitations,
including issues of equivalence and multiplicity. It primarily captures the fundamental
aspects of the signal, but fails to identify the characteristics of a minimum phase system,
and remains susceptible to the influence of noise. To overcome these limitations, the



Drones 2023, 7, 472 5 of 13

utilization of higher-order spectra becomes essential. The higher-order spectra offer a more
comprehensive understanding of the signal, thanks to their nonlinear system identification
properties, ability to retain phase information, and effectiveness in eliminating Gaussian
noise. Thus, high-order statistics serve as an indispensable mathematical tool in the field of
signal processing.

As the order of the higher-order spectra increases, the computational complexity
also escalates. Among the various higher-order spectra, the third-order spectrum has
gained considerable attention due to its straightforward processing approach and lower
computational burden. The bispectrum is mathematically defined as the two-dimensional
Fourier transform of the third-order cumulant. However, its physical interpretation is
not clearly defined. The normalized second-order zero-delay cumulant represents the
variance of the signal, while the normalized third-order zero-lag cumulant represents
the skewness of the signal. Similarly, the normalized fourth-order zero-lag cumulant
represents the kurtosis of the signal. Consequently, the power spectrum can be understood
as the decomposition of signal variance in the frequency domain, whereas the bispectrum
represents the decomposition of signal skewness in the frequency domain. The bispectrum,
based on higher-order cumulants, is defined as follows.

For a random sequence
{

x(n), x(n + T1), · · · , x(n + Tk−1)
}

, the higher-order cumu-
lant ckx

(
T1, · · · , Tk−1

)
of the sequence meets [31]:

∞

∑
T1=−∞

· · ·
∞

∑
Tk−1=−∞

|ckx(T1, · · · , Tk−1)| < ∞ (5)

Then, (k − 1)-dimension discrete Fourier transform (DFT) of k-order cumulant is a
k-order spectrum as

Skx(ω1, · · · , ωk−1) =
∞

∑
T1=−∞

· · ·
∞

∑
Tk−1=−∞

ckx(T1, · · · , Tk−1) exp−j(ω1T1+···+ωk−1Tk−1) (6)

where |ωi| < π, i = (1, · · · , k− 1), |ω1 + ω2 + · · ·+ ωk−1| ≤ π.
Bispectrum is also known as three-order bispectrum, the definition of which is as follows:

Bx(ω1, ω2) =
∞

∑
T1=−∞

∞

∑
Tk−1=−∞

c3x(T1, T2) exp−j(ω1T1+ω2T2) (7)

To estimate the bispectrum of signals, this paper utilizes a direct non-parametric
method for bispectrum estimation. The specific steps are as follows.

Step 1: Divide the data {x(0), x(1), ···, x(N − 1)} into K segments. Each segment contains
M samples, N = KM. Overlap is allowed between data of two neighboring segments.

Step 2: Based on the classic formula, calculate the coefficients of DFT according to

X(k)(λ) =
1
M

M−1

∑
n=0

x(k)(n) exp−j2πnλ/M (8)

Step 3: Then, compute the triple correlation of the coefficients calculated above accord-
ing to

b̂(λ1, λ2) =
1

∆2
0

L1

∑
i1=−L1

L1

∑
i2=−L1

X(k)(λ1 + i1)X(k)(λ2 + i2)X(k)(−λ1 − λ2 − i1 − i2) (9)

where k = 1, ···, K; λ1 + λ2 ≤ f s/2, 0 ≤ λ2 ≤ λ1, ∆0 = f s/N0, N0 and L1 should satisfy
M = 2(L1 + 1)N0.

Step 4: Bispectrum estimation of data {x(0), x(1), ···, x(N − 1)} is given as the mean of
the K segments:



Drones 2023, 7, 472 6 of 13

B̂(ω1, ω2) =
1
K

K

∑
k=1

b̂(ω1, ω2) (10)

where ω1 = 2π fsλ1
N0

, ω2 = 2π fsλ2
N0

.
The algorithm utilized in this study effectively computes the signal bispectrum, which

exhibits superior performance in suppressing Gaussian noise and accurately capturing
the unique characteristics of various radar radiation sources. To evaluate its efficacy,
experimental signals from five distinct UAV radar signals, namely, CW, LFM, SFM, FSK,
and noise FM, were employed. Each signal underwent extraction and analysis, employing
1024 sampling points. Figure 2 illustrates the resulting visualization, where the x and y
axes represent frequency, and the z axis represents the corresponding amplitude. Notably,
Figure 2 vividly showcases pronounced disparities in the bispectrum amplitude spectrum
observed among radar radiation source signals employing diverse modulation modes.

Through this comprehensive investigation, it is evident that the proposed algorithm
not only successfully suppresses Gaussian noise but also effectively captures the intricate
nuances that differentiate radar radiation sources with distinct modulation characteristics.
This finding serves to enhance our understanding and analytical capabilities in radar signal
processing, fostering advancements in radar technology and applications.

Drones 2023, 7, x FOR PEER REVIEW 6 of 14 
 

Step 3: Then, compute the triple correlation of the coefficients calculated above ac-
cording to 

( ) ( ) ( ) ( )
1 1

1 1 2 1

( ) ( ) ( )
1 2 1 1 2 2 1 2 1 22

0

1ˆ ,
L L

k k k

i L i L
b X i X i X i iλ λ λ λ λ λ

=− =−

= + + − − − −
∆ ∑ ∑  (9) 

where k = 1, ···, K; λ1 + λ2 ≤ fs/2, 0 ≤ λ2 ≤ λ1, Δ0 = fs/N0, N0 and L1 should satisfy M = 2(L1 + 1)N0. 
Step 4: Bispectrum estimation of data {x(0), x(1), ···, x(N − 1)} is given as the mean of 

the K segments: 

( ) ( )1 2 1 2
1

1 ˆˆ , ,
K

k
B b

K
ω ω ω ω

=

= ∑  (10) 

where 

1 2
1 2

0 0

2 2,s sf f
N N
π λ π λ

ω ω= =
. 

The algorithm utilized in this study effectively computes the signal bispectrum, 
which exhibits superior performance in suppressing Gaussian noise and accurately cap-
turing the unique characteristics of various radar radiation sources. To evaluate its effi-
cacy, experimental signals from five distinct UAV radar signals, namely, CW, LFM, SFM, 
FSK, and noise FM, were employed. Each signal underwent extraction and analysis, em-
ploying 1024 sampling points. Figure 2 illustrates the resulting visualization, where the x 
and y axes represent frequency, and the z axis represents the corresponding amplitude. 
Notably, Figure 2 vividly showcases pronounced disparities in the bispectrum amplitude 
spectrum observed among radar radiation source signals employing diverse modulation 
modes. 

  
(a) (b) 

  

(c) (d) 

Figure 2. Cont.



Drones 2023, 7, 472 7 of 13Drones 2023, 7, x FOR PEER REVIEW 7 of 14 
 

 

 

(e)  

Figure 2. Bispectrum amplitude spectrum. (a) The bispectrum of CW. (b) The bispectrum of FSK. 
(c) The bispectrum of LFM. (d) The bispectrum of SFM. (e) The bispectrum of noise FM. 

Through this comprehensive investigation, it is evident that the proposed algorithm 
not only successfully suppresses Gaussian noise but also effectively captures the intricate 
nuances that differentiate radar radiation sources with distinct modulation characteristics. 
This finding serves to enhance our understanding and analytical capabilities in radar sig-
nal processing, fostering advancements in radar technology and applications. 

4. Characteristic Analysis of Bispectral Slices 
The bispectrum amplitude spectrum serves as a valuable three-dimensional feature 

that captures important signal characteristics. However, its computational complexity 
poses a challenge for real-time processing, which limits the widespread adoption of the 
bispectrum in practical applications. Moreover, in signal analysis and interpretation, one-
dimensional curves often offer more convenience compared to two-dimensional images. 
In practice, researchers commonly employ one-dimensional slices of the bispectrum to 
analyze specific signal characteristics or processes. The bispectral slice is obtained by per-
forming the one-dimensional Fourier transform on the corresponding cumulant slice. 
Among the different types of bispectral slices, the bispectral diagonal slice is the simplest 
and most frequently used for analysis. The choice of bispectral slice for signal analysis is 
closely tied to the distribution of the signal bispectrum. Typically, in order to capture a 
wide range of signal features, the slice with the highest bispectral amplitude is selected. 
This particular slice tends to better reflect the higher-order statistical characteristics of the 
signal compared to other slices. 

To further enhance the understanding and application of bispectrum analysis, sev-
eral advanced techniques have been developed. These techniques aim to explore and ex-
tract more detailed information from the bispectrum, enabling a comprehensive analysis 
of signal properties. Examples include using multiple slices along different directions to 
reveal additional features, employing nonlinear transformations to enhance the discrimi-
native power of the bispectrum, and utilizing adaptive approaches to handle non-station-
ary signals. 

In summary, the bispectrum offers a powerful tool for signal analysis and character-
ization. Although its computational complexity and the selection of appropriate bispectral 
slices present challenges, ongoing research efforts continue to explore advanced tech-
niques to overcome these limitations. By leveraging the rich information embedded in the 
bispectrum, researchers can gain deeper insights into the higher-order statistical proper-
ties of signals, leading to advancements in various fields such as communication systems, 
radar signal processing, and biomedical signal analysis. 

Figure 2. Bispectrum amplitude spectrum. (a) The bispectrum of CW. (b) The bispectrum of FSK.
(c) The bispectrum of LFM. (d) The bispectrum of SFM. (e) The bispectrum of noise FM.

4. Characteristic Analysis of Bispectral Slices

The bispectrum amplitude spectrum serves as a valuable three-dimensional feature
that captures important signal characteristics. However, its computational complexity
poses a challenge for real-time processing, which limits the widespread adoption of the
bispectrum in practical applications. Moreover, in signal analysis and interpretation, one-
dimensional curves often offer more convenience compared to two-dimensional images. In
practice, researchers commonly employ one-dimensional slices of the bispectrum to analyze
specific signal characteristics or processes. The bispectral slice is obtained by performing
the one-dimensional Fourier transform on the corresponding cumulant slice. Among the
different types of bispectral slices, the bispectral diagonal slice is the simplest and most
frequently used for analysis. The choice of bispectral slice for signal analysis is closely tied
to the distribution of the signal bispectrum. Typically, in order to capture a wide range of
signal features, the slice with the highest bispectral amplitude is selected. This particular
slice tends to better reflect the higher-order statistical characteristics of the signal compared
to other slices.

To further enhance the understanding and application of bispectrum analysis, several
advanced techniques have been developed. These techniques aim to explore and extract
more detailed information from the bispectrum, enabling a comprehensive analysis of
signal properties. Examples include using multiple slices along different directions to reveal
additional features, employing nonlinear transformations to enhance the discriminative
power of the bispectrum, and utilizing adaptive approaches to handle non-stationary signals.

In summary, the bispectrum offers a powerful tool for signal analysis and characteri-
zation. Although its computational complexity and the selection of appropriate bispectral
slices present challenges, ongoing research efforts continue to explore advanced techniques
to overcome these limitations. By leveraging the rich information embedded in the bispec-
trum, researchers can gain deeper insights into the higher-order statistical properties of
signals, leading to advancements in various fields such as communication systems, radar
signal processing, and biomedical signal analysis.

Therefore, in this paper, the bispectral diagonal slice and bispectral horizontal slice
with the maximum amplitude value are selected for analysis. Figures 3 and 4 depict both
slices of the five different signals. As observed in Figures 3 and 4, the extracted bispec-
tral slices effectively preserve the information of the bispectral amplitude spectrum. The
diagonal slice and horizontal slice of the CW signal exhibit a single peak distribution,
corresponding to the signal’s single frequency. The diagonal slice of the FSK signal displays
a bimodal distribution, reflecting its dual-frequency characteristic, while the horizontal
slice shows a unimodal distribution. The diagonal slices of the LFM and SFM signals
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demonstrate complex multi-peak distributions, which reflect the frequency modulation
characteristics of these signals. The horizontal slices of both signals reveal differences in
modulation. The diagonal and horizontal slices of the noise FM signal exhibit complex
multi-peak distributions, covering the entire frequency range. Based on the distinct char-
acteristics of the aforementioned signals, the geometric scale and distribution differences
of the slices are employed in this paper to differentiate between the five types of UAV
radar signals.
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4.1. Bispectral Convexity

The peak information of different types of UAV radar signals exhibits significant
differences. To quantify the degree of deviation between the peak and the mean of these
signals, the convexity T [32] of the signal’s bispectral slice can be described as follows:

T =
max(s(ω1, ω2))

min(s(ω1, ω2))
(11)

The ratio of the maximum value to the mean value in the amplitude data is referred to
as the convexity T. A higher value of convexity indicates a more pronounced presence of
“abnormal” features in the data. As the convexity decreases, the data tend to exhibit a more
average level. Therefore, the convexity of a signal is extracted as a feature to analyze the
peak distribution of the bispectrum. In this paper, the convexity of the diagonal slices and
horizontal slices is extracted as features to distinguish each signal.
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4.2. Bispectral Box Dimension

The different complexity characteristics of bispectral slices reveal the distinctions
among various radar radiation sources. In order to describe the differences in geometric
scales, we employ the bispectral box dimension. The bispectral box dimension [33] is
defined as follows:
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(X, d) represents a metric space. r represents a non-negative real number. B(c, r)
represents a closed sphere, where c and r denote the center and radius of B, respectively. X
has a non-empty subset A. For each positive number r, M(A, r) denotes the number of the
smallest closed spheres that cover A.

M(A, r) =
{

N : A ⊂
N
∪

i=1
(ci, r)

}
(12)

where c1, c2, ···, cN represent different points of X.
If limit lim

r→0
ln(M(A, r))/ln M(1/r) exists, the box dimension of A is defined as fol-

lows [34]:

Dc = lim
r→0

ln(M(A, r))
ln M(1/r)

(13)

The fractal dimension of A, denoted as Dc, represents the geometric properties of
bispectral slices. It is also known as the box dimension. This dimension reflects the
complexity of the geometric structure. In this paper, the box dimension of the diagonal
slices is extracted as a feature to describe the geometric properties.

4.3. Bispectral Sparseness

The sparseness [35,36] of a vector s is given as ξ:

ξ =

√
L− (∑|si|)

/√
∑ s2

i√
L− 1

(14)

where L is the length of the vector s, and 0 ≤ ξ ≤ 1. The sparseness of data increases with
higher values of the sparseness parameter. In this paper, the sparseness of the bispectral
slices is selected as a feature to describe the characteristics of the signal.

5. Classifier Design

In this study, the GA-BP neural network is employed as the classifier to effectively
distinguish between different signals, utilizing the feature matrix obtained through sig-
nal analysis.

The Genetic Algorithm (GA) is a computer-science-based method that emulates the
principles of natural selection and genetic manipulation observed in biological evolu-
tion [37]. It functions as an adaptive iterative optimization algorithm with exceptional
global search capabilities, aiming to improve the classification accuracy of the BP neural net-
work and prevent it from converging to local minima [38]. By combining GA optimization
with the BP neural network, the GA-BP neural network is formed.

The GA-BP neural network integrates the robustness and global optimization abilities
of the GA with the learning and adaptation capabilities of the BP neural network. Initially,
the GA is employed to optimize the initial weights and thresholds of the BP neural net-
work. This optimization process enables the network to better adapt to the given signal
classification task and improves its overall performance. The GA-BP algorithm flow begins
with the initialization of the population, where a set of candidate solutions (chromosomes)
is created. Each chromosome represents a potential set of weights and thresholds for the
BP neural network. Then, the GA employs selection, crossover, and mutation operators to
iteratively evolve the population and generate new and improved solutions. Through this
evolutionary process, the GA explores the search space and gradually converges toward
optimal solutions that maximize the classification accuracy of the BP neural network.

Overall, the integration of the GA and BP neural network in the GA-BP algorithm
provides a powerful and effective approach for signal recognition tasks, leveraging the
advantages of both optimization techniques and neural network learning capabilities.

The algorithm flow is illustrated in Figure 5.
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6. Simulation Results and Analysis

Five types of typical UAV radar radiation source signals are simulated in this study:
CW, FSK, LFM, SFM, and noise FM signal. The frequency and bandwidth of the simu-
lated signals are expressed using normalized sampling frequency, with a signal length of
1024 sampling points (sampling frequency of 400 MHz). For the CW signal, the carrier
frequency ranges from 0.1 to 0.4 times the sampling frequency (fs). The FSK signal consists
of two frequency points: 500 MHz and 150 MHz, with random coding as the signal’s coding
rule. The carrier frequencies of the LFM and SFM signals range from 0.1 to 0.4 fs, and both
signals have a bandwidth of 0.1 to 0.4 fs. The noise FM signal has a carrier frequency of
0.1 to 0.4 fs and a modulation index of 0.2 to 0.8 GHz/V. Additive Gaussian white noise
is used as the signal noise, and the classification performance is measured with respect to
the SNR. For each type of UAV radar signal, 200 samples are generated within the range
of −6 to 6 dB SNR variation, with 200 samples taken every 3 dB. Among these samples,
100 are used as training samples, and the remaining samples are used as test samples. The
simulation results are presented in Figure 6.
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As depicted in Figure 6, the recognition rate of the five UAV radar signals exceeds
92.5% when the SNR is greater than −3 dB. Even at an SNR of −6 dB, the system maintains
an accuracy rate of over 80%.

7. Conclusions

Accurate recognition of modulation types in UAV radar signals is crucial in complex
electronic interference environment. This paper proposes a modulation recognition method
for UAV radar signals based on bispectral slices and a GA-BP neural network. The pro-
posed method overcomes the limitations of existing techniques, particularly in low SNR
scenarios. It achieves accurate recognition of five types of UAV radar signals: CW, FSK,
LFM, SFM, and FM. Notably, even in low SNR environments with an SNR set to −3 dB,
the proposed method achieves a recognition accuracy of 92.5% for these five different
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UAV radar signals. However, our method has certain limitations, such as its inability to
effectively differentiate signals other than these five types. In our future work, we will focus
not only on the recognition of the signals of interest but also on rejecting other unknown
and irrelevant signals.
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