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Abstract: The small UAV (unmanned aerial vehicle) cluster has become an important trend in
the development of UAVs because it has the advantages of being unmanned, having a small size
and low cost, and ability to complete many collaborative tasks. Meanwhile, the problem of GPS
spoofing attacks faced by submachines has become an urgent security problem for the UAV cluster.
In this paper, a GPS-adaptive spoofing detection (ASD) method based on UAV cluster cooperative
positioning is proposed to solve the above problem. The specific technical scheme mainly includes
two detection mechanisms: the GPS spoofing signal detection (SSD) mechanism based on cluster
cooperative positioning and the relative security machine optimal marking (RSOM) mechanism. The
SSD mechanism starts when the cluster enters the task state, and it can detect all threats to the cluster
caused by one GPS signal spoofing source in the task environment; when the function range of the
mechanism is exceeded, that is, there is more than one spoofing source and more than one UAV
is attacked by different spoofing sources, the RSOM mechanism is triggered. The ASD algorithm
proposed in this work can detect spoofing in a variety of complex GPS spoofing threat environments
and is able to ensure the cluster formation and task completion. Moreover, it has the advantages of a
lightweight calculation level, strong applicability, and high real-time performance.

Keywords: GPS spoofing; collaborative positioning; rigid structure; complex scene; yaw

1. Introduction

The term unmanned aerial vehicle (UAV for short) refers to an unmanned aircraft
operated by radio remote control equipment and self-contained program control device,
which can provide services in places that are difficult for humans to reach. In the early
stage, the application of UAVs was limited to the military field. In recent years, with the
rapid improvement of sensing, remote sensing, flight control, computational vision, image
transmission, and other related technologies, the development of UAV has entered the fast
lane [1]. Especially since 2015, with the continuous improvement of civil UAV technology,
its application in agriculture, forestry and plant protection, power inspection, geographic
mapping, aerial photography, and other aspects has become more and more normal. After
2019, UAV autonomous control and application technology has made great progress,
showing some new development trends. Because a single UAV can only carry a single
mission load and has limited mission execution capacity, the efficiency of the whole system
can be improved through the complementary ability and action coordination of multiple
UAVs. Therefore, the application of UAVs is gradually developing from a single platform
to multiple platforms [2].

By learning from the self-organization mechanism of nature, UAV cluster consisting
of multiple UAVs with limited autonomous ability is able to achieve an overall perfor-
mance gain through mutual information communication without relying on centralized

Drones 2023, 7, 461. https://doi.org/10.3390/drones7070461 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7070461
https://doi.org/10.3390/drones7070461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-9471-0614
https://orcid.org/0000-0002-1633-4051
https://doi.org/10.3390/drones7070461
https://www.mdpi.com/journal/drones
http://www.mdpi.com/2504-446X/7/7/461?type=check_update&version=2


Drones 2023, 7, 461 2 of 24

command and control. As a result, UAV cluster often possesses a higher degree of au-
tonomous cooperation and requires little human intervention to complete the expected task
objectives [3].

The wide application of UAV in different fields exacerbates its security issues, e.g., net-
work attack [4], channel attack [5], and signal attack [6]. Among these attacks, GPS spoofing
as a kind of signal attack has been the most urgent threat [7,8], given the fact that modern
UAV positioning and navigation systems have become highly dependent on GPS signals.
If the positioning and navigation information has been deceived, UAVs may deviate from
the normal flight route and in more serious cases end up in a catastrophic crash.

1.1. Problem Statement

Detecting a GPS spoofing attack is a challenging problem. In a confrontation envi-
ronment, the adversary usually causes a more complex and bad impact on the cluster by
deploying more spoofing sources. According to how many spoofing sources there are, the
possible GPS spoofing attach faced by an UAV cluster can be divided into two categories:
the single GPS spoofing source attack and the multiple GPS spoofing source attack, different
deployment strategies have different effects on clusters. When there is only one spoofing
source, it may attack only one UAV or multiple UAVs. Considering the case where only
one target UAV has been attacked, although the target UAV may have the capability to
detect the existence of spoofing by itself, the detection can hardly be reliable given the
uncertainty of the environment. If multiple UAVs have been attacked by one spoofing
sources, although the attack is obvious, it is still difficult to determine whether there is
only one spoofing source or not. When there are multiple spoofing sources, the problem
becomes even more challenging due to the complicated interactions of the spoofing sources.

1.2. Contribution

In this work, we aim at solving the GPS spoofing detection problem for the case
of multiple spoofing sources and we propose a cluster cooperative positioning-based
algorithm that can successfully detect the existence of spoofing for UAV clusters, no
matter how complex the threat environment is. The algorithm includes two mechanisms.
Under the guidance of distributed computing, we design the GPS spoofing signal detection
(SSD) mechanism. Furthermore, “no longer considering who is cheated, we should pay
attention to who is safe”, which is the core of the relative security machine optimal marking
(RSOM) mechanism. Thus, it is worth mentioning that in order to ensure the autonomous
recovery of the formation in an unsafe environment, we assume that not all members
of the UAV cluster are deceived and at least one UAV in the cluster is safe. The main
contributions of this paper can be summarized as follows:

• The GPS spoofing attacks for the UAV cluster are analyzed and classified, and the
various complex attack scenarios under a cluster environment are simulated. To the
best of our knowledge, research into the problem of spoofing attacks on the UAV
cluster from multiple spoofing sources, as considered in this paper, is novel.

• A novel GPS-adaptive spoofing detection (ASD) algorithm which includes two de-
tection mechanisms, GPS Spoofing Signal detection (SSD) mechanism and Relative
Security UAV Optimal Marking (RSOM) mechanism, is proposed. The algorithm can
switch between different detection mechanisms to effectively detect GPS spoofing
signals according to the characteristics of GPS spoofing attack initiated by the attacker
in different attack scenarios.

• A modeling and hardware simulation based technique has been studied to ensure the
mission safety of UAV cluster. In fact, how to ensure the mission safety of UAV cluster
in GPS spoofing environment is still in its infant stage. This work provides theoretical
support and an application guidance for the development and application of this new
task model.



Drones 2023, 7, 461 3 of 24

The rest of this paper is organized as follows: Section 2 mainly summarizes the relevant
research work. Section 3 discusses the establishment of the small smart UAV cluster model,
the principle of the GPS spoofing attack, and its impact on the cluster task state. Section 4
introduces the detailed design of ASD. Section 5 presents the simulation experiments and
compares with the latest results in the same domain. Section 6 summarizes this work and
concludes with the potential impacts and prospects.

2. Related Work

As reported in [reference to the Volpe report], the U.S. Department of Transportation
has performed a thorough security evaluation of civil GPS signal applications and con-
cluded that “GPS has further penetrated into civil infrastructure. It has become an attractive
target and can be used by individuals, groups or countries hostile to the United States”.
Malicious attacks on GPS signals mainly include intentional interference and deception,
where the consequence of deception is often considered more severe than that of intentional
interference. As a result, the detection of GPS deception has become a hot topic and been
investigated intensively [9,10].

Some recent research has shown that civil UAVs can be easily deceived [11–13]. A sim-
ple GPS spoofing attack has been successfully implemented by researchers from Los Alamos
National Laboratory [10]. Later, the Iranian army has claimed that they successfully con-
trolled an American rq-170 sentinel UAV, when it was flying about 140 miles from the
border between Iran and Afghanistan [14]. In [15], the authors showed that they can
deceive the UAV by sending false position data to their GPS receiver, thus misleading the
UAV to crash on the sand.

Regarding the detection and response schemes for GPS deception, the work in [16]
has made a complete overview of the effort on combating GPS deception and jamming.
A method to further improve the detectability of false GPS spoofing signal by encrypting the
signature of navigation message was proposed in [17]. An algorithm for monitoring GPS
deception based on power measurement and automatic gain control behavior observation
has been proposed in [18]. The effectiveness of this algorithm has been verified by using
commercial GPS receivers. In [19], the authors have proposed a GPS deception detection
and protection scheme, leveraging the calculation of moving variance based on Doppler off-
set and consistency test of PVT calculation. In [20], the authors claimed that the forged GPS
deception signal could not completely cover the real GPS signal, and proposed a method
to detect GPS deception in the signal tracking stage through the detection technology of
its residual signal. In [8], automatic gain control is used within the GPS receiver to detect
and flag potential spoofing attacks within a low computational complexity framework.
Moreover, [21] proposed a technique that allows UAVs to detect GPS spoofing by using
an independent ground infrastructure that continuously analyzes the contents and times
of arrival of the estimated UAV positions. The proposed technique is able to detect the
spoofing attacks in less than two seconds and further determine the spoofing location after
15 min of monitoring time with an accuracy of up 150 m.

Notably, some other work have studied the use of multiple receivers to detect GPS
spoofing attacks [11,22,23]. In [22], the authors demonstrated the ability of detecting GPS
spoofing using a dual antenna receiver. Their technique relies on observing the carrier
difference between different antennas under the same oscillator. In this configuration,
the attacker needs to add a transmitting antenna every time when a receiving antenna is
added, which makes the attacking task more complex. In [11], multiple receivers are used
to authenticate GPS signal by using the correlation between GPS signal and military GPS
signal. Among these receivers, a cross check receiver is used to determine whether its GPS
signal is true. The technique has been tested on stationary and mobile GPS receivers and
it can effectively detect spoofing attacks. In [23], multiple independent GPS receivers are
used to detect GPS spoofing attacks. This technique relies on fixing the distance between
receivers and then measuring the distance between the positions reported by the receivers.
Under the real GPS signal, the measured distance is similar to the previous fixed distance.
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However, under the GPS spoofing attack, the measured distance can be close to zero. This
is because all receivers are cheated of the same false position. Currently, there are still
some scholars who use machine learning methods to solve this problem. Their research
focus is mainly on extracting ground features, and they are committed to how to extract
the accuracy of features. Although it is equally effective in application, it does not have
strong interpretability [24–26].

There are not many existing research results based on cluster deployment to detect
deception signals and ensure the safety of drone missions. Among them, a game-based
detection method for drone clusters was proposed in reference [27], which utilizes the
relative position relationships of members in the cluster to effectively detect spoofing
attacks. However, there are strong limitations on the size and threat scenarios of the cluster.
Furthermore, a method based on task prior knowledge and formation rigid structure
proposed by Liang Chen takes 8 s to achieve spoofing detection [28]. The Euclidean distance
between members in a cluster calculated from different data sources in reference [29] is used
to determine deception. This paper enriches threat scenarios and adversary capabilities,
but has a strong dependence on security thresholds. Moreover, existing achievements all
share a common problem, as they do not provide a method to determine the true position
of drones or ensure the continuation of missions after detecting attacks [30]. In fact, these
previous works mainly focused on detection technology and did not provide mature and
effective autonomous attack mitigation or defense mechanisms.

3. System Models
3.1. The Small UAV Cluster Model

Given a set of UAVs, M, performing a common mission, each of which is equipped
with a GPS receiver, a wireless communication module, and some sensors for specific appli-
cations. According to the GPS signal characteristics, we use three-dimensional (3D) data to
specify their locations. Let the location of UAV m at time t be um(t) = [xm(t), ym(t), zm(t)]T ,
where m ∈ N+. The UAV cluster model uses the flooding broadcast mode, which is com-
monly used in an ad hoc network to realize the communication between UAVs. That is,
each UAV in the cluster shares the location information of all the others within the effective
distance of broadcast. As shown in Figure 1, dmax is the largest distance between UAVs in
the cluster, and emax is the maximum effective range of UAV broadcasting. When designing
the cluster formation, the condition dmax < emax ensures that each UAV in the cluster can
receive the location information from the other UAVs.

The relative position between UAVs is one of the key bases for the formation design.
When the navigation information of an UAV is detected to be dishonest, its position can be
obtained through the relative positions between the other UAVs. Therefore, when designing
the model, the relative position to the other UAVs is known to each UAV in the cluster.

Figure 1. Relationship between the largest relative distance in an UAV cluster and the maximum
effective distance of flooding communication.
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1. UAV Position representation in the Cartesian coordinate system
It is known that in the position calculation, the original output data of the GPS receiver
cannot directly be used in the calculation. Instead, it needs to be transformed from
the spherical coordinate system to the Cartesian coordinate system.
Suppose that D is a point on the Earth’s surface and the spherical coordinate of D is
(lat, lon, r), where r is the radius of the earth. It is shown in Figure 2 that ∠AOB = lat,
∠DOB = lon, and the point D is expressed as follows:

D =

 xD
yD
zD

 =

 r · cos(lon) · sin(lat)
r · sin(lon)

r · cos(lon) · cos(lat)

 (1)

If an UAV in the cluster reaches the specified position at H, which is vertically above
point D, then it broadcasts the position D′:

D′ =

 xD′

yD′

zD′

 =

 (r + H) · cos(lon) · sin(lat)
(r + H) · sin(lon)

(r + H) · cos(lon) · cos(lat)

 (2)

Figure 2. Schematic diagram of the conversion between the spherical coordinate system and ground
coordinate system.

2. Indication of the relative position between UAVs
The object of formation design is mainly to achieve a small cluster of UAVs. Thus,
the full connection mode is adopted for the information interaction between UAVs.
For model M={m ∈ N + |u1, u2, u3, . . . , um}, as shown in Figure 3, the position
relationship between any two UAVs can be expressed as a four-dimensional vector:

u1u2 =


α
β
θ
l

 (3)

Figure 3. Schematic diagram of the relative position between UAVs in a cluster.
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Thus, if u1 = {x1, y1, z1}, the following equation holds:

u2 =

 x2
y2
z2

 =

 x1 + lcosα
y1 + lcosβ
z1 + lcosθ

 (4)

3.2. Adversary Model: GPS Spoofing Principle

The principle of GPS spoofing on the target UAV is as follows: the position spoofing
attack will not change the UAV’s position, but change the UAV’s belief in its position.
Thus, while the UAV is still in its real position when attacked, the perception of its location
by its navigation system will be given by the attacker. Then, the UAV plans its route
to the final destination according to the instructions transmitted to the controller by the
navigation cognition.

The purpose of a GPS spoofer is to control the GPS antenna, in order to send the
customized GPS positioning information to make the UAV navigation system believe that
it is deceiving the expected position. According to the concealment and strategy of the
attack, GPS spoofing attacks can be divided into the following two categories.

• Public: the spoofer does not try to cover up the attack, no matter whether the change
between the customized deceptive GPS positioning information and the real GPS
positioning information is within a reasonable range. It only tries to capture the
target faster.

• Covert: the spoofer tries to avoid detection by sending cleverly crafted deceptive
signals that match the actual signal in terms of output power and other parameters.
Thus, the spoofer can prevent the target from triggering a fault detection alarm.

Since the spoofer can attack the target publicly or covertly, we consider that UAV
is equipped with a fault detector, which can filter out the navigation signal with large
mutations. Therefore, for the spoofer design, we would like to keep its attack covert
by adjusting the parameters of the forged GPS signal, in order to avoid being found.
The specific setting rules for parameter requirements can be found in [31]. The main idea is
that the change between the spoofing signal sent by the spoofer and the signal received
by the UAV GPS receiver at the previous time will be limited to a threshold, so that these
applied positions will not trigger the fault detector in the UAV. Such a threshold between
the current position and the position where the spoofing is applied is called the instance
drift distance [32,33].

Let Emax be the instance drifted distance that limits the attack, ˆxm(t)=[x̂m(t), ŷm(t), ˆzm(t)]T

be the attacker’s imposed location on UAV m, and Em(t)=[Exm(t), Eym(t), Ezm(t)]
T be a vector

whose individual elements represent the distance difference between the UAV’s actual
location and the attacker’s imposed location. Then, we have the following equation:

‖Em(t)‖2 = ‖xm(t)− ˆxm(t)‖2 ≤ Emax (5)

Explanations of all variables mentioned in this section are summarized in Table 1.

Table 1. Explanations of all variables mentioned in Section 3.

Variables Explanation

M A set of UAVs
um One of the members in M
dmax The largest distance between each two UAVs in M
emax The maximum effective range of UAV broadcasting
D The parking position of UAV on the ground
D′ The hovering position of UAV in the air
u1u2 The position relationship between any two UAVs in M
Emax The instance maximum drifted distance
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4. Proposed Method

In this section, the ASD method based on UAV cluster cooperative positioning is
proposed, The workflow description is detailed in the Appendix A, which includes two
detection mechanisms: the SSD mechanism based on the cluster cooperative positioning
and the RSOM mechanism.

4.1. SSD Mechanism Based on Cluster Cooperative Positioning

During the execution of public tasks by the UAV cluster N, all members of the clus-
ter broadcast the real-time position obtained by GPS receiver to the team through their
respective wireless communication module at each time. The design principle of SSD is:
at each broadcast time, when the signals broadcast by the cluster have the same location
information, one can determine that there is at least one spoofing source in the mission
airspace, and the RSOM mechanism of the ASD algorithm is triggered at this time; when
the broadcast signals are different, we randomly select a submachine in the cluster, Un,
and extract its location information, PUn . Then, we use the real-time location information
broadcasted by other members and the relative location information between other mem-
bers and Un in the formation to calculate where the other members think Un should be.
For example, based on the location information broadcasted by U1, the position where
U1 thinks Un should be located can be obtained by Formulas (2)–(4). If there is only one
spoofing source in the mission airspace, the SSD mechanism can accurately locate the spoof-
ing attack submachine in the cluster; otherwise, the RSOM mechanism will be triggered.
Figure 4 shows the workflow of the SSD mechanism.

Figure 4. The workflow of the SSD mechanism.
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4.2. RSOM Mechanism

The RSOM mechanism is triggered when there are multiple spoofing sources in the
mission airspace and the GPS signal security status of each submachine in the cluster
cannot be accurately determined. Compared to the assumption of [27], i.e., “at least one
UAV in the cluster is safe”, our RSOM can detect the case of a full cluster spoof. However,
this assumption is still followed in our designed algorithm. Our purpose in doing so
differs from that of [27] in that their spoofing detection has to be implemented under this
assumption, whereas we do so to guarantee that the UAV cluster has the ability to recover
autonomously in case of a spoofing attack. By letting go of this restriction, RSOM can call
the ground station to achieve an artificial takeover of the cluster mission in the event of
a full overrun being detected. In this attack scenario, in order to ensure the self-recovery
capability of the cluster, the premise of RSOM is that at least one aircraft in the cluster is
safe. Therefore, the threats faced by the UAV cluster can be summarized as follows: if two
or more UAVs are attacked by different GPS spoofing signals, how can they be detected?

RSOM is designed with the idea that there is no need to face this problem directly.
Specifically, at least one aircraft in the cluster is safe, so in such a complex threat scenario,
we should accurately find the safe one. The details of the design idea are as follows:
RSOM selects a virtual central machine for the UAV cluster to provide us with reference
information representing the motion state of the whole cluster. Considering the loose
coupling between the GPS measurement and the strapdown inertial navigation system
(INS), the altitude dynamics of UAVs will not be affected by GPS spoofing attacks at the
fist moment of spoofing, which has been confirmed by Kerns et al. [34] through a field test.
At the same time, a large number of studies have shown that the relative controllability
of altitude dynamics can maximize the asymptotic stability of closed-loop systems when
applying optimal control signals in the event of GPS failure. Therefore, in the RSOM
mechanism, the optimal marking of relative security machine is realized by using the
deviation of the altitude information obtained by each member of UAV cluster from the
GPS relative to the flight altitude obtained by altitude dynamics of the virtual central
machine. In the RSOM mechanism, the yaw information is the core factor in determining
the altitude of the UAV, so we simplify and divide the altitude model of the UAV, and finally,
obtain the independent yaw model.

The RSOM mechanism includes three altitude models: the independent yaw model
of the submachine, the independent yaw model of the virtual central machine, and the
marking model. The workflow of the RSOM mechanism is shown in Figure 5.

Figure 5. The design and work principle of the RSOM mechanism.
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For each UAV, the yaw angle is given by the GPS receiver and the magnetometer,
which are expressed as ψGPS and ψmag, the obtain algorithm are shown as Algorithm 1 and
Algorithm 2, respectively [35].

Algorithm 1 Algorithm for obtaining obtainψGPS based on GPS receiver input data

1: Input the position information of the current time and the previous time:(lat1, lon1, alt1)
and(lat2, lon2, alt2);

2: Take (lat2, lon2, alt2) as the representation of a Cartesian coordinate system:(x2, y2, z2);
3: Based on (lat1, lon1, alt1), take (x2, y2, z2) as the representation of a ENU

system:(de2, dn2, du2);
4: Constraint ψGPS∈[-π, π];
5: ψGPS=arctan2(de2, dn2);

Algorithm 2 Algorithm for obtaining the ψmag based on magnetometer attitude measure-
ment data

1: Suppose that the measured value of the magnetometer in the body coordinate system,
(xb, yb, zb), is bmm=[mxb myb mzb ]

T

2: Considering that the magnetometer may not be placed horizontally during the UAV
mission, it is necessary to use the two axis inclination sensors to measure the pitch
angle, θ, and the roll angle, φ, and then project the measured values on the horizontal

plane. Therefore,


mxe = mxb cosθm + myb sinφmsinθm

+mzb cosφmsinθm

mye = myb cosφm −mzb sinφm
where mxe , mye∈R indicates the projection of the magnetometer reading on the hori-
zontal plane.

3: Constraint ψmag∈[-π,π]
4: ψmag=arctan2(mye ,mxe )

1. Independent yaw model of the submachine
In the independent yaw model of submachine, the yaw angle of the submachine in
the cluster is defined as:

ψ = (1− µψ)ψGPS + µψψmag (6)

where ψGPS and ψmag can be obtained by algorithms 2 and 3. µψ∈[0,1] is a weight-
ing factor.
The basic idea of the linear complementary filter is to use their complementary features
to obtain more accurate altitude angle. In this model, the linear complementary
filter [36–38] is only used as a known tool, so it is only briefly explained without
showing the detailed reasoning process. At time k, after obtaining ψ(k), the yaw angle
is estimated as:

ψ̂(k) =
τ

τ + Ts
(ψ̂(k− 1) + Tsωzb(k)) +

Ts

τ + Ts
ψ(k) (7)

where τ ∈ R+ represents the time constant, Ts ∈ R+ represents the sampling period
used by the filter, and ωzb represents the component of the angular velocity in the z
direction in the earth fixed coordinate system [39]. Take τ

τ+Ts
= 0.95, then Ts

τ+Ts
= 0.05.

The complementary filter of the yaw angle is expressed as follows:

ψ̂(k) = 0.95(ψ̂(k− 1) + Tsωzb(k)) + 0.05ψ(k) (8)

2. Independent yaw model of the virtual central machine
GPS provides external information to the UAV. It belongs to the experimental group
of this subject and needs to be verified. Therefore, we need a control group in the
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model. For the flight altitude estimation of the whole cluster, we only use the internal
information of the UAV, namely the magnetometer. The yaw representation of the
flight altitude of the whole cluster is realized by fusing the yaw altitude of each
member machine with a weighted average method to form a new yaw altitude model.
It can be considered that we have selected a virtual central machine for the cluster,
and the new yaw altitude model is the yaw representation of the virtual central
machine; its physical meaning is to represent the flight altitude of the cluster to the
greatest extent.
Here:

ψ′ = ψmag. (9)

Input ψ′(k) to Equations (7) and (8) to obtain ψ̂′(k). Then, the independent yaw model
of the virtual central machine, Ψ(k), can be expressed as follows:

Ψ(k) =
m

∑
n=1

ψ′n(k)ρn(k)

ρ(k) =
1
2

log
1− ε(k)

ε(k)

(10)

where ε(k) is the error confidence obtained by the exponential standardization of the
so f tmax function to the current error of each submachine magnetometer, and ε1(k) +
ε2(k) + ε3(k) + . . . + εm(k) = 1. ρ(k) is the final weight coefficient of each submachine.

3. Marking model
The difference between the results of the independent yaw model of the virtual
central machine and that of the submachine is used as the basis for the results of the
calibration model:

dn = |Ψ(k)− ψ̂n(k)| (11)

Note that dmin = (d1, d2, . . . , dm), dmin corresponding to the submachine is the optimal
marking of the making model to the relative security of the UAV.

4.3. Time Complexity Analysis

According to the big O representation, O(n), the algorithm grows as the data size n
increases. The ASD algorithm designed in this paper does not contain loops and recursive
statements, so the time complexity is O(1). It should be noted that it does not fully represent
the actual execution time. The actual execution time of the algorithm is also closely related
to the performance of the hardware device.

To sum up, it can be concluded that the two mechanisms of the ASD algorithm have a
serial relationship in the working process. Last, but not least, at the end of the algorithm
design, we added a straightforward defense, the “Leader-follower mode”. This mode
is triggered when the ASD algorithm detects GPS spoofing. That is, the relatively safe
submachine selected by RSOM will enter the leader mode and the other submachines
will enter the follower mode. Generally speaking, under the premise that “at least one
submachine in the cluster is safe”, the ASD algorithm can solve various threats faced by
UAV cluster in the mission environment, and has the ability to guarantee the formation
and flight mission at the same time. This study proposes the constraint that “at least one
submachine in the cluster is safe”, and its application background is the fully autonomous
task of the UAV cluster. With manual monitoring and intervention during the task, this
restriction can be released and the cluster submachines can be switched to manual takeover
when all of them are under attack.

5. Simulation and Evaluation

To verify the effectiveness of the ASD algorithm proposed in this paper, simulation
experiments are carried out in this section. The experiments are performed on Gazebo
and MATLAB platforms. We built the UAV cluster system model on the Gazebo platform,
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and connected the MATLAB-based ASD algorithm to the Gazebo flight control through
cross-platform combination. The verification process and result analysis are as follows.

5.1. Experimental Configuration

In this experiment, during the task of the UAV cluster system model, the motion
heights of all submachines are always the same, and the subsequent spoofing signal
generation is only also based on longitude and latitude. Therefore, when designing the
formation, β = 0 and θ = 0 are in the relative position relationship between the cluster
submachines, and the overall structure is a pentagon. The specific motion parameters of
the small smart UAV cluster after entering the stable flight are as follows:

• Cluster size: 5;
• Relative position relationship between machines: [α β θ l];
• Cluster velocity: 5 m/s;
• Cluster motion height: 50 m;
• Cluster motion direction: all submachines are consistent;
• Maximum distance between machines: 20 m;
• Maximum effective range of communication: 500 Hz.

Correspondingly, to verify the detection efficiency of the ASD algorithm proposed
in this study, we modeled the enemy according to the GPS spoofing principle on the
Gazebo simulation platform. Five spoofing sources (S1, S2, S3, S4, S5) are set up; follow-
ing the movement of the cluster, they are randomly distributed around the cluster and
the distance from the cluster is always within the effective range of the spoofing signal.
Section 3.2 mentions both public and covert spoofing, but the detection principle of the
ASD proposed does not specifically target a certain type of spoofing. However, in the
experimental deployment, the enemy models all used covert deception, as it is a more
advanced spoofing ability.

5.2. Experimental Deployment

The initial state of the UAV cluster system model at the beginning of each scenario: the
submachines are lined up on the ground. The UAV cluster is manually controlled to take off
vertically one by one, reaching a specified altitude of 50 m. The cluster then enters the fully
autonomous mode. Each submachine adjusts its position according to the preset positional
relationship between the aircraft, forms a formation, and enters the flight mission.

• Scenario 1:Baseline model test: This case is to obtain the normal movement log of the
UAV cluster in the mission scenario without any attack or threat, which can be used
as a baseline to detect the threat later.

• Scenario 2: Adversary model test: Note that the five spoofing sources work exactly
the same, so only one of them is randomly selected for validity testing. In this
scenario, the deployment location of S4 is shown in Figure 6. In Figure 6a, there is
only one submachine in the signal radiation range of S4, while in Figure 6b, there are
more submachines in its signal radiation range. Such a setup can test not only the
effectiveness of the spoofing source, but also whether the spoofing source can spoof
all submachines within its signal radiation range. In the experiment, after the cluster
enters a stable mission state, we do not start the ASD algorithm, but we start S4, after
which we observe the movement state of the cluster and save the flight logs.

• Scenario 3: Contrast experiment of scenario 2: In this case, the deployment location of
S4 is shown in Figure 6a; that is, there is only one submachine in the signal radiation
range of S4. Different from the setting of scenario 2, after the cluster enters a stable
mission state, we first start the ASD algorithm and then start S4. After that, we record
the movement state of the cluster and save the flight logs.

• Scenario 4: Testing of two spoofing sources: In this case, the deployment locations of
the two spoofing sources (i.e., S1 and S2) are shown in Figure 6c. It can be observed
from Figure 6c that the signal radiation range of these two spoofing sources contains
three submachines. Here, we will use S1 and S2 to attack them. In the experiment,
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after the cluster enters a stable mission state, we start the ASD algorithm and turn on
the two spoofing sources. Then, the movement state of the cluster and the flight logs
will be recorded.

• Scenario 5: Testing of three spoofing sources: In this case, the deployment locations of
the three spoofing sources (i.e., S1, S2, and S3) are shown in Figure 6d. The rest of the
operation is the same as in Scenario 4.

• Scenario 6: Testing of four spoofing sources: In this case, the deployment locations of
the three spoofing sources (i.e., S1, S2, S3, and S4) are shown in Figure 6e. The rest of
the operation is the same as in Scenario 4.

• Scenario 7: Testing of the full cluster spoofed: In this case, we directly considered and
deployed the most complex attack scenario with five spoofing sources (i.e., S1, S2, S3,
S4, and S5); as shown in Figure 6f, after the cluster enters a stable mission state, we
start the ASD algorithm and the five spoofing sources. It can be observed that the
cluster suddenly oscillates in formation after a period of time, but soon returns to
its original form; however, the overall motion direction is off the expected trajectory.
At that point, the UAV cluster sent a distress signal to the ground station. Again, we
keep the flight logs.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Tactics of an adversary: deploying the deception source. (a) Deploy S4 to attack one of the
submachines to verify the effectiveness of the spoofing source. (b) Verify whether the S4 spoofing
source has the ability to spoof all submachines within its signal radiation range. (c) Deploy two different
spoofing sources to launch a GPS spoofing signal attack on three submachines in the cluster. (d) Deploy
three different spoofing sources to launch a GPS spoofing signal attack on three submachines in the
cluster. (e) Deploy four different spoofing sources to attack four submachines in the cluster. (f) Deploy
five different spoofing sources to attack five submachines in the cluster.
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5.3. Experimental Results and Analysis

Scenarios 1 and 2 of the experimental deployment belong to equipment testing and
the others belong to algorithm verification.

In each scenario, we conduct multiple sets of experiments. Throughout the experiment,
we observed that, in the state of cluster motion, at some point after the spoofing source
was turned on, individual submachines did shake abnormally or leave the team, but the
final observation result was that the cluster corrected the formation and finished the flight
mission. The specific result analysis can be obtained through the retained flight logs,
as shown below.

Model testing results
Figure 7a shows the state diagram of the UAV cluster system model completing a flight

mission in a safe environment, i.e., scenario 1. Figure 7b,c are the results of the verification
of the enemy model, i.e., scenario 2. Among them, Figure 7b shows the output of the GPS
receiver deploying a spoofing source and the S4 spoofing a submachine, No. 4. Figure 7c
shows the output of the GPS receiver deploying S4 to deceive two submachines, i.e., 4 and
5, simultaneously.

It can be seen that the formation of the UAV cluster has been disrupted and the output
conforms to the spoofing principle. This phenomenon implies that S4 does effectively
attack the submachines within its signal radiation range. Furthermore, it demonstrates that
the enemy model we designed is effective, which can support the construction of the GPS
spoofing countermeasure environment required for the experiment.

Algorithm verification results
Since no abnormality was observed in the overall motion state of the UAV cluster,

we chose to use the data for a more intuitive interpretation. In the table recording data
information, we use the same color to indicate the corresponding relationship between the
spoofing source and the target. Moreover, I marks the reference machine selected by ASD,
while F marks the target selected.

Table 2 shows the record of current spoofing sources, and the flight logs of each
submachine in scenario 3. According to the ASD algorithm design, the RSOM mechanism
will not be triggered when only one aircraft suffers a spoofing attack. In fact, the final
output of the ASD algorithm is the detection result of the SSD mechanism. According to
the log information of the submachine GPS receiver, it can be seen that No. 4 was attacked;
the SSD randomly selected No. 1 at this time, and only No. 4 had abnormal cognition of
the position of No. 1 of the other four racks. Furthermore, we can see from the logs that
after detecting a spoofing attack on No. 4, the system tells No. 4 to disable the GPS receiver
and go into the leader mode in the cluster. Similarly, we can also see in the logs that the
algorithm detected the threat at the second moment after being spoofed.

Table 3 shows the record of spoofing sources currently, and the flight logs for each
submachine in scenario 4. Unlike Table 2, the final output of the ASD algorithm is no longer
the result of the SSD mechanism, but rather RSOM. Based on the analysis of the spoofing
sources data and GPS receiver information, it is not difficult to see that No. 2 and 3 were
attacked by the same spoofing source, S2, and No. 4 was attacked by a different spoofing
source, S1, from the previous signal. This situation cannot be solved by SSD, which triggers
RSOM. In No. 1 and No. 5, which are safe in the cluster, RSOM finally chooses No. 5
as the leader of the safety machine according to the idea of algorithm design. Similarly,
in scenario 5, these three submachines are also subject to a spoofing attack, the difference
being that these three submachines receive spoofing signals from three different spoofing
sources, respectively, which can be obtained from Table 4. The RSOM mechanism also
works perfectly; it selected No. 1.

Scenario 6 is the most complicated of all. To ensure that each spoofing source deployed
achieves the expected efficiency, we iteratively adjust their location and signal strength,
and finally, achieve one-to-one spoofing, as shown in Table 5. Of course, scenario 6 is
also the strongest proof of the effectiveness of the ASD algorithm. In our deployment,
No. 1 is outside the effective range of all spoofing signals. From the table we can see
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that the RSOM does calibrate it accurately, making it the leader of the cluster. During the
experimental observation, we saw that the formation of the UAV cluster vibrated obviously
when attacking, but it quickly recovered and adjusted as before, and finally completed
the task.

Table 6 shows the record of spoofing sources and the flight logs for each submachine
in scenario 7. In the validation work of this scenario, we liberalized the “at least one
drone safe” restriction and deployed five different spoofing sources to spoof each of the
five submachines separately. As you can see from the information in Table 6, the RSOM
still selected the submachine it thought could be the leader out of the five submachines:
No. 2. However, the fact is that No. 2 has also been attacked by the spoofer S2. Its yaw
information relative to that of the virtual central machine was already far greater than
the normal drift range of the magnetometer. At this point, the UAV cluster no longer
had completely reliable navigation information and the ASD eventually sent a distress
command to the ground station.

(a) (b)

(c)

Figure 7. Illustration of effectiveness verification of the UAV cluster system model and the en-
emy model. (a) The trajectory information output by GPS receivers of the UAV cluster system model
in the safe mission environment. (b) Deploy spoofing source 4 to attack No. 4 in the cluster without
any detection and defense measures. The motion trajectory output by UAV cluster GPS receivers.
(c) Deploy spoofing source 4 to attack No. 4 and 5 in the cluster without any detection and defense
measures. The motion trajectory output by UAV cluster GPS receivers.
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Table 2. The spoofing data record and flight log information obtained by scenario 3.

Enemy deployment strategy and spoofing data record

S1 S2 S3 S4 S5

- - - 25.5 28.2 -
- - - 27.5 29.2 -
- - - 29.5 30.2 -
- - - 31.5 31.2 -

Position information received by the GPS receiver of each submachine in the cluster

No. 1 No. 2 No. 3 No. 4 No. 5

32.87953077 34.30943511 30.02636122 36.38238413 27.17319167 34.30943511 28.26300546 30.95533315 31.78971698 30.95533315
32.59085634 34.03254691 29.73768679 36.10549593 26.88451724 34.03254691 27.97433104 30.67844495 31.50104255 30.67844495
32.32634117 33.73249404 29.47317162 35.80544306 26.62000208 33.73249404 27.5 29.2 31.23652738 30.37839208

32.09622408 33.405315 29.24305453 35.47826402 26.38988498 33.405315 29.5 30.2 31.00641029 30.05121304
31.91688606 33.04777078 29.06371651 35.1207198 26.21054696 33.04777078 - 30.82707227 29.69366881
31.81412885 32.66119484 28.9609593 34.73414386 26.10778976 32.66119484 - 30.72431506 29.30709287

Output of the SSD mechanism in the ASD algorithm under the same timestamp

INo. 1 No. 2 No. 3 FNo. 4 No. 5

32.87953077 34.30943511 32.87956122 34.30948413 32.87949167 34.30943511 32.87950546 34.30943315 32.87951698 34.30943315
32.59085634 34.03254691 32.59088679 34.03259593 32.59081724 34.03254691 32.59083104 34.03254495 32.59084255 34.03254495
32.32634117 33.73249404 32.32637162 33.73254306 32.32630208 33.73249404 32.1165 32.5541 32.32632738 33.73249208

32.09622408 33.405315 32.09625453 33.40536402 32.09618498 33.405315 F34.1165 33.5541 32.09621029 33.40531304
31.91688606 33.04777078 31.91691651 33.0478198 31.91684696 33.04777078 - 31.91687227 33.04776881
31.81412885 32.66119484 31.8141593 32.66124386 31.81408976 32.66119484 - 31.81411506 32.66119287

The colored section emphasizes the successful entry of the deception source into the GPS receiver’s data.
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Table 3. The spoofing data record and flight log information obtained by scenario 4.

Enemy deployment strategy and spoofing data record

S1 S2 S3 S4 S5

25.5 28.2 26 30.2 - - -
27.5 29.2 28 31.2 - - -
29.5 30.2 30 32.2 - - -
31.5 31.2 32 33.2 - - -

Position information received by the GPS receiver of each submachine in the cluster

No. 1 No. 2 No. 3 No. 4 No. 5

32.87953077 34.30943511 30.02636122 36.38238413 27.17319167 34.30943511 28.26300546 30.95533315 31.78971698 30.95533315
32.59085634 34.03254691 29.73768679 36.10549593 26.88451724 34.03254691 27.97433104 30.67844495 31.50104255 30.67844495
32.32634117 33.73249404 28 31.2 28 31.2 27.5 29.2 31.23652738 30.37839208

32.09622408 33.405315 30 32.2 30 32.2 29.5 30.2 31.00641029 30.05121304
- - - - 30.82707227 29.69366881

Output of the RSOM mechanism in the ASD algorithm under the same timestamp

Ivirtual central machine No. 1 No. 2 No. 3 No. 4 FNo. 5

Ψ(k)&ψ̂n(k) −2.083049636 −2.103285455 0.400434363 0.400434363 0.40238313 −2.098250379

dn - 0.020235819 2.483483999 2.483483999 2.485432766 0.015470743

The colored section emphasizes the successful entry of the deception source into the GPS receiver data, representing the different colors of each deception source. The corresponding
parts of the color blocks in the table can reflect which drone the deception source attacked.
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Table 4. The spoofing data record and flight log information obtained by scenario 5.

Enemydeployment strategy and spoofing data record

S1 S2 S3 S4 S5

26 31.3 24.5 30.6 25.5 28.4 - -
28 31.3 26.5 30.6 27.5 29.4 - -
30 32.3 28.5 31.6 29.5 30.4 - -
32 33.3 30.5 32.6 31.5 31.4 - -

Position information received by the GPS receiver of each submachine in the cluster

No. 1 No. 2 No. 3 No. 4 No. 5

31.91688606 33.04777078 29.06371651 35.1207198 26.21054696 33.04777078 27.30036075 29.69366881 30.82707227 29.69366881
31.81412885 32.66119484 28.9609593 34.73414386 26.10778976 32.66119484 27.19760355 29.30709287 30.72431506 29.30709287
31.82313175 32.26129617 28 31.3 26.5 30.6 27.5 29.4 30.73331796 28.9071942
31.97080846 31.88955487 30 32.3 28.5 31.6 29.5 30.4 30.88099467 28.53545291
32.24110927 31.59470327 - - - -
32.58404982 31.38881062 - - - -

Output of the RSOM mechanism in the ASD algorithm under the same timestamp

Ivirtual central machine FNo. 1 No. 2 No. 3 No. 4 No. 5

Ψ(k)&ψ̂n(k) −1.128328325 −1.131434769 0.408047301 0.413437933 0.409874591 −1.135919561

dn - 0.003103444 1.536375626 1.541766258 1.538202916 0.007591236
The colored section emphasizes the successful entry of the deception source into the GPS receiver data, representing the different colors of each deception source. The corresponding
parts of the color blocks in the table can reflect which drone the deception source attacked.
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Table 5. The spoofing data record and flight log information obtained by scenario 6.

Enemy deployment strategy and spoofing data record

S1 S2 S3 S4 S5

25.5 28.2 26.5 30.3 24.5 28.5 25 29.6 -
27.5 29.2 28.5 31.3 26.5 29.5 27 30.6 -
29.5 30.2 30.5 32.3 28.5 30.5 29 31.6 -
31.5 31.2 32.5 33.3 30.5 31.5 31 32.6 -

Position information received by the GPS receiver of each submachine in the cluster

No. 1 No. 2 No. 3 No. 4 No. 5

32.32634117 33.73249404 29.47317162 35.80544306 26.62000208 33.73249404 27.70981587 30.37839208 31.23652738 30.37839208
32.09622408 33.405315 29.24305453 35.47826402 26.38988498 33.405315 27.47969878 30.05121304 31.00641029 30.05121304

31.91688606 33.04777078 27 30.6 28.5 31.3 26.5 29.5 27.5 29.2
31.81412885 32.66119484 29 31.6 30.5 32.3 28.5 30.5 29.5 30.2
31.82313175 32.26129617 - - - -

Output of the RSOM mechanism in the ASD algorithm under the same timestamp

Ivirtual central machine FNo. 1 No. 2 No. 3 No. 4 No. 5

Ψ(k)&ψ̂n(k) −1.868540485 −1.872339647 0.411671473 0.406189617 0.413437933 0.409874591

dn - 0.006799162 2.280211958 2.274730102 2.281978418 2.278415.76
The colored section emphasizes the successful entry of the deception source into the GPS receiver data, representing the different colors of each deception source. The corresponding
parts of the color blocks in the table can reflect which drone the deception source attacked.
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Table 6. The spoofing data record and flight log information obtained by scenario 7.

Enemy deployment strategy and spoofing data record

S1 S2 S3 S4 S5

24.5 28.5 25 29.6 26.5 30.3 25.5 28.2 31.5 32.2
26.5 29.5 27 30.6 28.5 31.3 27.5 29.2 33.5 33.2
28.5 30.5 29 31.6 30.5 32.3 29.5 30.2 35.5 34.2
30.5 31.5 31 32.6 32.5 33.3 31.5 31.2 37.5 35.2

Position information received by the GPS receiver of each submachine in the cluster

No. 1 No. 2 No. 3 No. 4 No. 5

35.57992834 36.00852281 32.7267588 38.08147183 29.87358925 36.00852281 30.96340304 32.65442085 34.49011455 32.65442085
35.22171153 35.83053205 32.3685419 37.90348106 29.51537243 35.83053205 30.60518622 32.47643008 34.13189774 32.47643008

26.5 29.5 27 30.6 28.5 31.3 27.5 29.2 33.5 33.2
8.5 30.5 29 31.6 30.5 32.3 29.5 30.2 35.5 34.2

- 31 32.6 - - -
Output of the RSOM mechanism in the ASD algorithm under the same timestamp

Ivirtual central machine No. 1 FNo. 2 No. 3 No. 4 No. 5

Ψ(k)&ψ̂n(k) −2.24089981 0.41928125 0.41256874 0.418652482 0.4198514278 0.500265478

dn - 2.66018106 2.65346855 2.659552292 2.6607512378 2.741165288
The colored section emphasizes the successful entry of the deception source into the GPS receiver data, representing the different colors of each deception source. The corresponding
parts of the color blocks in the table can reflect which drone the deception source attacked.
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From the above series of experimental results, the ASD algorithm can detect the attack
behavior at the second moment of spoofing. The acquisition frequency of UAV flight logs
is 5 Hz, which means that the time required to detect deception is 0.4 s. This is because the
ASD algorithm contains two mechanisms, which take time to judge, trigger, and switch.
From the information output frequency of the flight log, ASD is known as a very efficient
real-time detection algorithm, which is not affected by the time delay of one recording.
On the other hand, the RSOM mechanism does not seem to focus on detecting spoofing
intuitively, but this is not the case. When a secure submachine is selected, all information
it provides is trusted by default. Then, based on the geometric relationship between the
submachines, it is easy to obtain the location where other submachines should be. At this
time, if there is a non-negligible error between the information output by the GPS receiver
of which submachine and the information provided by the secure submachine, it can be
determined that the information has been spoofed. Because this problem is obvious, it is
not emphasized. The “Lead-follower” mode is a small defense set up for the cluster to
ensure that at least one submachine is safe to complete the task.

5.4. Comparative Analysis of the Method’s Performance

Regardless of whether used in a simulation environment or a real physical environ-
ment, it is difficult to fully reproduce the theoretical results of existing research in UAV
flight experiments due to the uncertainty brought by atmospheric disturbances and motion
time drift in the environment on the output of UAV sensors. Therefore, in this section,
the original authors’ analysis of the original performance data of the methods proposed by
them is directly referenced and compared with the methods proposed in this chapter in
different performance dimensions.

Comparing the ASD method proposed in this article with the detection method
proposed by Liang, Chen et al. [28] in Table 7, our method only took 0.4 s in a task, which
can be called a very effective real-time detection method that is not affected by the time
delay of a single record; concurrently, ASD is, without requiring prior knowledge, suitable
for random flight missions and also better at detecting accuracy.

AR Eldosouky, A Ferdowsi, et al. [27], when analyzing their proposed method, did
not analyze the performance of the method such as timeliness and detection accuracy. They
paid more attention to the effectiveness of a simulation experiment, and their method
can solve a narrow problem domain, which not only has strong limitations on the threat
scenarios where deception occurs, but also specifies the applicable cluster size. By relaxing
these limitations, the proposed ASD method can face complex threat scenarios with the
same detection capabilities.

The method Pavlo Mykytyn (2023) [29] proposed does not limit the types of threats
that occur, and also designs complex adversarial scenarios. However, the design of the
method to determine whether the spoofing attack occurs based on the distance difference
has a strong dependence on the security threshold, but there is currently no authoritative
setting rule for the security threshold. In addition, the infrared ranging method introduces
additional hardware equipment. In ASD method proposed, there is no such issue, as there
is no need for auxiliary values or equipment.

Finally, the confrontation environment that ASD proposed in this chapter can face
is complex, and it is worth mentioning that the ASD method does not require any prior
knowledge, and the assistance of any other additional equipment and does not increase
the load burden on unmanned aerial vehicles. Moreover, the ASD method has small
computational complexity, has high efficiency, and is timely and accurate.
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Table 7. Comparison of similar methods.

Methods Detection
Accuracy

Detection
Time Method Characteristics

Liang, Chen
(2019) [28] 98.6% 8 s Requires prior knowledge of a given task, and other members within

the communication range must be greater than 3

AR Eld. etc.
(2020) [27]

Undefined
and not
analyzed

Undefined
and not
analyzed

There is only one deception source, only one aircraft is deceived at a
time, and one aircraft is absolutely safe; the method is applicable to
clusters with a scale of 5 or more

Pavlo Mykytyn
(2023) [29]

Undefined
and not
analyzed

Undefined
and not
analyzed

One distance ranging technology; the execution of this method
strongly relies on security thresholds

method proposed 100% 0.4 s

1. The cluster size is greater than or equal to 3 and is suitable for
random flight missions;
2. There can be multiple deception sources in the flight environment
that launch indiscriminate attacks against the cluster;
3. There are no constraints required for the execution of deception
detection in the method, and during the task, after implementation of
detection, it follows the safe machine concept, but not a strong
constraint.

6. Conclusions

At present, in view of the impact of GPS spoofing on UAVs, the existing detection
methods mainly focus on the single-machine problem. Machine learning methods are
the most popular of these methods. In the practical application of UAVs, timeliness is an
issue that cannot be ignored. The detection mechanism in the ASD algorithm has good
detection efficiency in the simulation environment; accurate detection can be achieved
almost immediately when a spoofing attack occurs. On the other hand, at present, how
to solve the UAV cluster in the face of GPS spoofing attack is still a new problem. Among
the few research results that address the same problem [27,29], the execution of methods
requires the execution under various constraints.

Obviously, the confrontation environment faced by the ASD method proposed in
this study is more complex. It is worth mentioning that the ASD method does not use
any other equipment except the most basic airborne equipment, and the computation
sequence is simple. In the experimental design of this article, in order to accurately grasp
and analyze the objective performance of the method, atmospheric disturbance factors
were not added to the simulation environment. Furthermore, the autonomous performance
of ROSM mechanism is established under a constraint condition of “at least one secure
drone exists in the cluster”. Thus, in the next research step, we will find problems based
on practical applications, hoping to improve the robustness of ASD. In addition, in future
research, we will consider using visual ranging among UAV cluster members to determine
the true location of the submachines attacked by spoofing. In this way, the algorithm will
become more complete and intelligent, enabling better cluster control.
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Appendix A

This is the flowchart of our proposed method, ASD, and the mechanisms description
included is in the main text.

Figure A1. Flowchart: outline of the ASD’s process.
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