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Abstract: Due to the advantages of low cost and high flexibility, drones have been applied to urban
surveillance, vegetation monitoring, and other fields with the need for coverage of regions. To expand
UAVs’ coverage, we designed the Capsule Airport (CA) to recharge and restore drones and provide
take-off and landing services. Meanwhile, the combination of drones’ coverage path planning (CPP)
and the deployment of CAs is a crucial problem with few relevant studies. We propose a solution
approach to the CPP problem based on selecting scanning patterns and trapezoidal decomposition. In
addition, we construct a 0-1 integer programming model to minimize the cost of the distance between
CAs and the scanning missions. Specifically, a solution approach based on greedy and clustering
heuristics is designed to solve this problem. Furthermore, we then develop a local-search-based
algorithm with the operators of CA location exchange and drone scanning mission exchange to further
optimize the solution. Random instances at different sizes are used to validate the performance of
proposed algorithms, through which the sensitivity analysis is conducted with some factors. Finally,
a case study based on the Maolichong forest park in Changsha, China, is presented to illustrate the
application of the proposed method.
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1. Introduction

Recently, the small Unmanned Aerial Vehicle (UAV), also known as drone, has been
developed very rapidly and become a popular unmanned equipment. The drone has the
characteristics of low cost, high speed, and high mobility, which is an ideal solution for
urban surveillance, vegetation monitoring, and other tasks. In some traditional fields,
it has become a widespread trend for drones to replace human beings to complete jobs.
For example, the drones applied in high-voltage transmission inspections can improve
efficiency and accuracy and lower injuries and fatalities [1]. In addition, cleaning drones
are capable of fast and efficient disinfection operations. These applications have in common
with observing all points of a region of interest (ROI). Since the development of drones, it
has become a new research topic to solve the problem using drones.

Solving the coverage path planning (CPP) problem is essential to achieve the appli-
cations, which aim to compute a path for drones to cover the whole area. However, the
complexity of this problem is proven to be NP-Hard [2]. Currently, some studies project
the flight of drones into two dimensions to simplify this problem. Most studies analyze the
shape of the area and the flight path of the drone and propose some practical methods to
determine a pre-planned route for the drone.

However, due to the limitation of battery capacity, the flight distance and the coverage
range of drones are relatively short. This distance limitation is even more unacceptable
when faced with scenarios in large areas so that drones are often unable to complete their
pre-planned routes. Some common practices include increasing the number of drones or
changing batteries frequently. Although these approaches can solve the difficulties to some
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extent, they also take up more time and energy and inevitably increase the consumption of
human resources. In particular, the power conditions required by drones are also difficult
to meet when deployed in field environments or areas with weak electrical infrastructure.
These difficulties motivate us to find solutions to extend the range of drones.

In this paper, a capsule airport (CA) is proposed and designed as a platform for
integrated drone storage, take-off, landing, solar power generation, charging, and environ-
mental detection. As shown in Figure 1, the CA can hold several small drones inside, and
it has a solar power generation function, which can automatically store power to charge
the drones. When several CAs are deployed over a large area, these multiple drones can
depart separately, return after completing a mission to change batteries, and then quickly
execute the next mission. In this way, drones can be applied to a much larger area without
the support of human and electrical facilities.

Drone - —
| Environment monitoring system
- 156
“/‘f"/ T

I
-

Solar power system

Figure 1. Capsule airport and the subsystem components.

The deployment of CA has a significant effect on the route of the drone, and deploying
CA in some locations may allow the drones to have shorter flight distances. However, to
better utilize CAs, the decision makers must simultaneously optimize the locations for CAs
and their drones, a typical location routing problem (LRP) problem in operations research.
Thus, this paper studies drones’ coverage path planning (CPP) and the deployment of
CAs to achieve autonomous and sustainable coverage of a large area by multiple drones
at the lowest cost. Compared with traditional research on the CPP problem and LRP, the
proposed method is specially designed and efficient to deal with the relationship between
the CA deployment and scanning task allocation. In addition, it has advantages in dealing
with drone CPP problem with range limitation.

Although the CPP problem and LRP have been widely studied, there are many new
challenges to optimizing the combination of the two problems. First, the drone must take off
and land in CA, which increases the difficulty in path planning for the drone. Second, the
deployment of CAs is relatively complex, so one must consider the additional constraints
related to CAs and the assignment of their drones. Therefore, the proposed approach is to
model and solve the CA deployment and drones scanning mission assignment problem
based on the results of path planning for area coverage. This two-stage approach inherits
the general strategy of cooperative multi-drone coverage and is also a simplification of
complex constraints.

The problem of drones’ coverage path planning and deployment of CAs introduces a
new unique idea for drones applied to large-area research and motivates more practical
future studies on the practical instances. Our main contributions are as follows:

e  Anew application mode for drones is designed, which integrates them with the CA to
solve CPP problem with the capacity limitation.

e  We propose a solution approach to the CPP problem through combining the scanning
pattern, optimal sweep direction, and the trapezoidal decomposition method.



Drones 2023, 7, 457

30f25

e A 0-1integer programming model for CAs’ deployment and drones’ scanning mission
assignment is established to minimize the overall cost.

e  Two heuristic algorithms integrating the ideas of greedy and clustering methods are
developed to construct a feasible initial solution in a short time, and a local-search-
based algorithm is proposed to improve the quality of the initial solution.

e Both random instances and a practical case are used to illustrate the performance of
proposed algorithms, which indicates our methods can efficiently solve the problem.

The paper is structured as follows. Section 2 provides a review of the relevant literature.
The problem description and model are presented in Section 3. Section 4 illustrates the
heuristic algorithms in detail. The experimental studies are provided in Section 5, including
random experiments, sensitivity analysis, and the case study. Finally, Section 6 reports on
the conclusion and discusses future research.

2. Literature Review

In recent years, coverage path planning techniques for drones have received extensive
attention and research, and at the same time combining drone paths with traditional
location-routing problems is a research direction worth exploring. The relevant literature is
summarized as follows.

2.1. UAV Coverage Path Planning

The goal of coverage path planning for UAVs is normally to find the shortest path or
shortest completion time to achieve complete coverage of the area or to have all points of
interest in the area covered at least once [3,4]. However, in several studies, the objective
function is expressed differently. For example, Li et al. [5] establish a model that maximizes
coverage and minimizes task time.

According to the difference in the flight path, there are two main types of coverage
methods for drones: spiral lines and parallel lines. When we consider that drones take
parallel lines, Kuo et al. [6] summarize several common paths and refer to them collectively
as back-and-forth paths (BFP), which enable drones to reciprocate in the direction of
parallel lines. In [7], BFP is applied to the lawn mower in a farm field or the indoor
cleaning robot. Xia et al. [8] compare the total length of the spiral path and BFP for several
typical polygons, providing a workable approach to choosing the appreciable method.
Compared with the spiral path, the BFP has more effective coverage on irregular regions
but results in additional time and energy problems [6]. Therefore, when BFP scans the
area, the optimization objective usually includes minimizing the number of turns of the
drones. Maza et al. [2] mention that the minimum number of turns occurs when the drone
is perpendicular to the minimum width of the polygon. When considering the starting and
ending points outside the region, Viridiana et al. [9] improve the method and propose a
technique called rotating calipers path planner (RCPP), looking for the minimum width
from the point to the convex polygon.

In the above study, we find the general approach to the problem of dealing with convex
regions. When it comes to a more complex area that is nonconvex or has an obstacle inside,
researchers usually decompose the region into smaller sub-regions to reduce the complexity
of regions and facilitate the completion of coverage. This decomposition is called cellular
decomposition, and the sub-regions are cellular [10]. Cabreira et al. [11] summarize and
discuss the exact and approximate cellular decomposition methods which split the area
of interest into sub-areas. Trapezoidal decomposition and boustrophedon decomposition
are two exact cellular decomposition methods, and they both use back-and-forth motions
to scan all areas exhaustively. Thakar et al. [12] define boustrophedon decomposition as
two steps: split and merge. Firstly, the nonconvex polygon is divided into several convex
subregions by trapezoidal decomposition, and then the subregions are merged to reduce
the excess paths. Compared to trapezoidal decomposition, this method can reduce the
number of subregions while guaranteeing a shorter coverage path. In addition to these
two methods, the grid-based decomposition method is another common technique. For
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example, in maritime search and rescue applications, Cho et al. [13] grid the search area
planes with the size of the squares equal to the drone’s search width, so the drone must
traverse each square to complete full coverage of the area. Galceran and Carreras [7]
introduce the morse-based cellular decomposition used for scenes with obstacles or non-
polygons scenes. In addition, the grid-based method is applied to the short-distance
coverage path of a small cleaning robot. Wang et al. [14] establish a functional relationship
between grid terrain and energy consumption using a grid-based method to solve the
drone’s energy consumption and path planning problem.

As the coverage area expands and the capacity of a single drone is limited, researchers
have begun to consider a coordinated search strategy with multiple drones, which can bring
the benefits of increased efficiency and reduced losses from partial drone failures [15]. Maza
et al. [2] assign one drone to each decomposed convex polygon subregion and explore the
optimal scanning direction of the drone. Xia et al. [8] calculated the maximum number of
drones required according to the region’s total area and the maximum scanning area of the
drones and decomposed the region using boustrophedon decomposition. In [16], an upper
bound on the minimum number of drones required for full region coverage is calculated. A
path planning strategy is designed to consider the sub-regions access frequency constraint.
In addition, the cooperative search of multiple drones involves the task assignment of
drones, which has been classified and studied by some researchers [17]. An overview of
the existing literature on the Coverage Path Planning problem is shown in Table 1.

2.2. Location-Routing Problem

For multiple drones and the wide-area coverage problem, positioning capsule airports
and determining drones’ routes are two complex combinatorial optimization problems to
reduce the logistic cost in the process. When we consider the inter-dependency of these two
decisions [18], the integrated problem is commonly named the location-routing problem
(LRP). Similar to its two subproblems, LRP is shown as an NP-hard problem [19].

There are many studies regarding LRP, especially in the field of vehicle logistics and
distribution. In [20], the authors mentioned a classification of LRP problems, commonly
based on the number of depots, depots capacity, vehicle capacity, and other factors. Since
Nagy and Salhi introduced constraints with capacity on depots and vehicles [21], more
researchers have focused on this problem, called capacitated LRP (CLRP). Yu et al. [22]
establish the extended LRP model to solve multi-region and multi-depot problems.

One of the approaches to LRP is exact solution methods. Laporte et al. use a branch-
and-bound algorithm and progressively refine it by considering special constraints [23-25].
Due to the complexity of LRP, exact solution methods are limited and can only take small-
scale instances [21]. Therefore, another methodology of heuristic algorithm is widely used,
which has a better adaptability to solve large-scale problems. Tuzun et al. 19 decomposed
the LRP problem into two stages and proposed a two-stage forbidden search algorithm.
Akpunar et al. [26] propose a hybrid of Adaptive Large Neighborhood Search (ALNS) and
Variable Neighborhood Search (VNS) heuristics for solving LRP problems with capacity
constraints, and the algorithm performance is tested and evaluated. When considering the
multi-allocation LRP constrained by vehicle and hub capacity, the ALNS heuristic algorithm
is used and compared with the exact solution methods [27]. Kamyla et al. [28] use the
simulated annealing and the artificial algae algorithm to handle LRP with item packaging
and other constraints. In [21], clustering-based, hierarchical, and dynamic location-routing
methods are also introduced.

The capacity of a depot usually has a lower bound to avoid the waste of resources
in most literature cited above [29]. The heuristic algorithm performs well in solving
approximate solutions to large-scale problems and also has a shorter calculation time [30].
In addition, most of the researchers focus on traditional vehicle routing and depot location
problems, with little attention to the flight routing of UAVs and based location.

The above studies show little literature on coverage path planning for drones when
battery capacity constraints are considered. At present, there are few methods for choosing
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scanning patterns for drones and decompositions of the concave area. In this paper, we
design capsule airports (CA) to provide endurance and other services. We propose a
solution approach to the CPP problem, including selecting scanning patterns, optimal
sweep direction, and decompositions. Due to the complex interactions between the paths of
drones and the location of CAs, the existing studies about LRP have difficulty in solving this
problem. Therefore, we build the 0-1 integer programming model and propose heuristic
algorithms to optimize the paths of drones and deployment locations of CAs efficiently.

Table 1. The main literatures on Coverage Path Planning problem.

SPC::::::Sg C:fa :;zteAr;::C Decomposition Method
Ref. Problem Characteristics
Spiral Back Convex Concave Trape- Boustro-  Grid-
Lines and Forth Zoidal  Phedon Based
Kuo et al. Robotic cleaner, obstacle
(2011) [6] avoidance. % v %
Galceran and .
Coverage Path Planning
(ggige)r[a;s] methods for robots. v v v v v
Avellar et al. Minimize the number of N Y,
(2015) [17] drones and the task time.
Otto et al. Coverage Path Planning for Y. Y, Y
(2018) [4] full area.
Cabreira et al. Exact and approximate
(2019) [11] cellular decomposition. % % % % % v
p
Wang et al. Cooperative coverage of J
(2019) [15] multi-drones.
Li et al. I\/.hn.lrmze task time énd
(2020) [5] maximize coverage, weighted
targets, limited battery.
Aggarwal .
and Kumar Exact and adaP’Flve cell N V. .
(2020) [10] decomposition.
Cho et al. Minimize the size of V. Y, Y,
2021) [13] decomposed area.
p
Bezas et al. Drone swarm, lme'ar area
(2022) [3] coverage, point-of-interest Vv Vv
detection.
Vazquez- . .
Carmona et al. Re(?i(;?lg;)ef;?sirest v v
(2022) [9] ’
Thakar et al. Spray path with mobile Y Y, Y
(2022) [12] manipulator.
Feng .ar.1d Preferential coverage of
Katupitiya ial reci £ Vv
(2022) [16] partial region-ot-interest.
Xia et al. A scanning pattern selection
(2023) [8] method by calculation. v 4 % % %
y

3. Problem Description and Model Formulation
3.1. Problem Description

For the covered area, whose boundary range is known, it is assumed in this paper
that the altitude of the drones remains constant, regardless of ground buildings and terrain
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obstacles. The covered area is an irregular closed polygon, and drones fly within the area
in a pre-planned manner, using the camera to search the ground. Therefore, it is a typical
coverage path planning problem for drones, and the optimization goal is to achieve the
full coverage of the area with the shortest distance or the least time cost. The first step is
calculating the sweep width by the geometric relationship between drones and ground
and camera parameters. Since different scanning patterns can be used to obtain different
shapes and lengths of paths, the second is to determine the suitable scanning pattern. In
this regard, researchers have proposed various scanning patterns, such as spiral path and
the back-and-forth path (BFP), and the BFP is applied more often.

In addition, the shape of the covered area is also an important factor to consider. For
simple convex polygon areas, we need to find the optimal sweep direction when drones take
the BFP. Further, drones have the shortest flight distances or the smallest number of turns
in this direction. On the other hand, for complex nonconvex polygons or larger areas, it is
obvious that the path cannot be constructed directly, and we need to decompose the area.
Therefore, choosing a suitable decomposition method is commonly used as trapezoidal
decomposition, boustrophedon decomposition, etc. Firstly, we propose a decomposition
method based on the shape characteristics of the covered region. Secondly, multiple sub-
paths are obtained in the decomposed sub-regions using the coverage path generation
method for simple convex polygonal regions. Finally, we connect all the sub-paths to form
a general path.

Multiple drones working together can significantly improve efficiency, and the com-
bination of drones and CAs can effectively solve the endurance problem of drones. Since
CAs are costly to install and maintain, it is important to calculate the best number of CAs
to meet the requirement while saving costs and to have as many drones as possible at each
CAs to achieve maximum utilization. The deployment locations of CAs should have good
terrain, light, and communication conditions. In this paper, we do not study the effects
of these conditions but randomly generate candidate deployment locations to verify the
model’s and algorithm’s applicability.

After determining the general path, this path needs to be assigned to multiple drones
so that these drones can scan this at the same time. One method we used was to segment
this path to obtain a series of sub-paths. We refer to scanning a sub-path by a drone as a
scanning mission. In this way, each drone corresponds to one scanning mission, and we
make the round-trip distance between the starting and ending points of each scanning
mission and their corresponding CA locations a non-working path. Figure 2 illustrates the
positional relationship between the locations of candidate CAs and scanning missions, and
it is clear that the selection of CA location directly affects the length of the non-working
path. In this case, the travelling cost of the drones consists of two components: one is
the cost of covering the path, which is related to the length of the working path, and the
other is the length of the non-working path which means the location of CAs should be
chosen as close to the mission path as possible. Therefore, this is a typical LRP problem
with constraints including the number of drones, the number of CAs, and the number of
scanning missions. We assume that a drone is assigned to only one scanning mission, and
all scanning missions must be completed. In addition, we assume that the drone takes
off from a CA and must return to the original CA after completing the mission. Thus, we
can establish the constraint relationship between the CA-drones-scanning mission and
represent it with 0-1 integer variables. In Section 3.3, we construct a mathematical model to
minimize the sum of non-working paths to find the optimal scheme for the drone scanning
mission assignment and the CA deployment, which is similar to the LRP problem and is
designed to be solved using a heuristic algorithm due to its complexity.
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* Selected location of CA i\( Candidate location of CA
o> Non-working path of drone  e—e Scanning path of drone

Figure 2. The positional relationship between CAs and drone scanning missions.

3.2. A Solution Approach to the CPP Problem

In this section, we propose a solution approach to the CPP problem. When the area
is given, we should construct the coverage path according to the shape characteristics of
the area. Firstly, we calculate the suitable sweep width between drone paths and propose
a method for selecting the suitable scanning pattern for drones. Secondly, we study the
optimal sweep direction to obtain the scanning path for drones. Finally, we introduce a
decomposition method for the coverage area with a concave shape.

3.2.1. Sweep Width and Selection of Scanning Patterns for the Drone
1.  Sweep width

Before the drone performs a coverage scan of the ground area, we need to calculate the
sweep width between drone paths. Some researchers have built detection models for drone
mission loads [31,32]. The position relationship between the drone and the ground area is
shown in Figure 3; it can be seen that the sweep width of the drone is related to the height
of the drone and the camera perspective, and the aerial image has certain requirements for
the ground resolution. This relationship is shown in the following formula:

 fxGSD
o o

h 1)

where 1 is the height of drones, f is the focal length of the camera lens, GSD is the cell size,
and « is the required resolution of the ground, which is only related to cameras.

w

Figure 3. Camera footprint of the drone.

According to the height of drone / and the perspective of camera fov, the sweep width
of the drone is as follows:

w = 2htan( %) ()

Considering the image processing requirements, the drone’s sweep width must meet
a specific overlap rate. As shown in Figure 4, the overlap rate is divided into the heading
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overlap rate w; and the side overlap rate w,. The heading overlap rate refers to the part of
overlapping photos taken before and after when the drone moves forward in a route to
take photos, and it is related to the camera shutter time. Most cameras take photos quickly,
ensuring the overlapping part between images meets the requirements. The side overlap
rate refers to the part of overlapping aerial photos of the drone on two adjacent routes,
which is generally not less than 60% according to the research on the aerial photography [33]
and some experience from previous literatures [34,35]. Therefore, we can calculate the
advanced sweep width D of the drone by using the drone’s sweep width W and the side
overlap rate w,.

D=W(1-w,) 3)
the direction of flight
e E— the direction of flight
G
T width

% ws width we
l the direction of flight

—

s\
Figure 4. Comparison of the heading overlap and the side overlap.

2. Selection of scanning patterns

There are a few specific patterns for coverage paths, such as the lawn mowing and
spiral patterns 4. Therefore, in this paper, we consider two typical types of scanning paths
based on existing investigations: namely, the spiral path and the back-and-forth path (BFP).
A spiral path means that the drone conducts clockwise or counterclockwise spiral scanning
with a constant spiral spacing with the center of the coverage area as the spiral center. The
BFP means that the drone flies in a straight line, turns at the boundary, and then flies in the
opposite direction along a parallel straight line until the entire area is covered.

Though the spiral path and the BFP are commonly used in many kinds of literature [36,37],
there are few studies about choosing the more suitable scanning pattern for drones. The
flight path length may be significantly different for the same area with varying scanning
patterns. For example, for the area shown in Figure 5, a large portion of the spiral path
goes beyond the area’s boundaries, making it significantly longer than the BFP. It can be
assumed that the closer the covered area is to a circle, the shorter the spiral path. Otherwise,
the shorter the BFP. In general, the extent to which the covered area is close to a circle is
called roundness. In some literature, researchers have studied the definition and calculation
methods of roundness [38,39]. Yang introduced a method for calculating the roundness
of the projected images of cement particles, which is similar to calculating the roundness
of the coverage area [40]. Therefore, we use the method in this paper, and the calculation

formula is as follows:
o 4xmTxS

5 @
where ¢ is the roundness of the area, S is the area’s acreage, and L is the perimeter. When e
equals 1, the polygon is a circle, and the smaller ¢ is, the more irregular the polygon is and
the greater the difference from a circle.

Therefore, we can choose the more suitable scanning patterns according to the round-
ness of the coverage area. Xia used a comparison experiment to investigate the relationship
between the roundness and the length of the drone’s flight path 8. In this study, the two
scanning patterns were utilized to cover polygons with different roundness. The result
indicated that they have few differences in drone’s flight distance when the roundness is
0.86 and show an opposite trend with the change of roundness. In this paper, we take this
method and use the roundness of 0.86 as the criterion for selecting the scanning pattern.
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When the roundness is more significant than 0.86, we take the spiral path, and conversely,
it is better to take the BFP.

Figure 5. Two typical scanning patterns: the spiral path and the BFP.

3.2.2. Optimal Sweep Direction

The optimal sweep direction means that the drone has the shortest route when flying
in this direction. Researchers usually choose scanning directions based on the shape of
the polygon to be covered 17. When the drones take the spiral path, the convexity and
concavity of the polygon have almost no effect on the direction selection. However, when
the BFP is used, some literature studies the influence of the convexity and concavity of the
polygon on the sweep direction [41].

When the BFP is used, drones make a turn at the boundary of the polygon, and this
turning process consumes more time and energy, so we believe the number of turns must be
reduced. With a determined sweep width, the number of turns of drones in different sweep
directions can be calculated. Thus, this problem is translated into choosing the optimal
sweep direction of drones [42]. There are various methods for this process 9. Kang [43] use
a technique to choose the optimal sweep direction by the minimal width of the polygon. In
this paper, we propose a minimum span method to calculate the optimal sweep direction,
the shortest path when the drones scan along the direction perpendicular to the minimum
span. Li et al. [41] proposed a concept of the span of a convex polygon. First, for any edge
of a convex polygon, we calculate the distances between all the vertices on edges separately.
Then, the maximum of these distances is recorded as the span of this edge. Finally, the
span of each edge is calculated in turn, and the minimum span is found. In this paper,
we consider the side corresponding to the minimum span as the long axis of the convex
polygon.

In the polygon shown in Figure 6, dq,d>,d3,dy, ds are the span of each side of the
polygon, where ds is the minimum span, so the drone makes the least number of turns
when scanning along the side V; V; that is perpendicular to ds.

3.2.3. Decomposition for the Polygons

Considering a given irregular polygon region, the BFP is only adopted when the
polygon is convex. Therefore, the convexity and concavity of the polygon need to be
determined first since they will have an impact on the planning of the coverage path. Then,
the concave polygon should be decomposed into a set of convex sub-regions.

For a polygon P, suppose there are n vertices, and the vertex point set is
V = {vy,v2,v3,- -+, v, }. Vector fork multiplication can determine the positional relation-
ship between two vectors in space, so we use the vector fork multiplication method to
determine the convexity of polygons. Suppose v; is a vertex of polygon A, v;_1 and v; 1
are two adjacent vertices of v;, and the vector fork multiplication Q; can be expressed as
follows:

Qi = v;10; X VU1 &)

The convexity of polygon A can be determined by the following method: for all
vertices v;(i € {1,2,---,n}), if Q; > 0, then the polygon is convex; otherwise, if there
exists a vertex j € {1,2,---,n} and Q; < 0, then it is a concave polygon.
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Figure 6. The spans of the polygon.

When the region is a nonconvex polygon, we propose a trapezoidal decomposition
method that first decomposes the nonconvex polygon into multiple convex polygon subre-
gions and then merges some of the subregions to reduce unnecessary the back-and-forth
motions. This decomposition method makes parallel lines along the decomposition direc-
tion and divides the polygon into several subregions. The sub-regions after decomposition
are combined with the following conditions:

3. The subregions must be adjacent and have at least one edge that overlaps each other.
4. The directions of the long axes of the adjacent subregions are parallel to each other.

The trapezoidal decomposition method needs to select the decomposition direction.
Similar to the selection of the scanning pattern for the convex polygon area, we use the
minimum span method to select the decomposition direction because each convex polygon
sub-region after decomposition along this direction usually has a shorter width and fewer
turns for drones when they scan this sub-region. It is worth noting that the span concept is
for convex polygons. For nonconvex polygons, we can first generate a convex hull, and the
minimum span of the resulting convex hull is the minimum span of a nonconvex polygon.

The specific process of trapezoidal decomposition is as follows: first, a Graham Scan
algorithm is used to generate concave polygons of convex hulls. As shown in Figure 7a,
where the solid line represents the concave polygon, after adding the dashed line, it forms
a convex hull; the blue line represents the long axis of the convex hull obtained by the
minimum span method, which is also the long axis of the concave polygon. Then, the
trapezoidal decomposition method decomposes the polygon along the long axis. Figure 7b
shows the result of trapezoidal decomposition, and Figure 7c shows the result of merging
some subregions after decomposition. Finally, for each sub-region obtained after decompo-
sition, the drone scans along the optimal sweep direction of each sub-region to generate the
BFP of the drone. The result is shown in Figure 7d.

We design the drone area coverage path planning algorithm based on the solution
approach to the CPP problem above. First, we input the boundary range of the coverage
area and the sweep width of the drone to calculate the roundness of the area by Equation (4).
When the roundness is greater than or equal to 0.86, the spiral scanning pattern is selected,
and the drone sweep width is spiral pitch. Otherwise, the BFP method is selected. After
choosing the scanning pattern, we determine the covered area’s convexity by vector fork
multiplication method. If it is a concave polygon, we use the Graham Scan algorithm to
generate a convex hull of the concave polygon and then use the minimum span method to
find the long axis of the convex packet, which is the long axis of the corresponding concave
polygon. The drone is made to fly with the BFP along the long axis of each sub-region,
and the starting and ending points of the flight path in each sub-region are calculated by
traversing the whole sub-region. Finally, we connect all flight paths of different sub-regions
in proximity and obtain the drone’s total flight path.
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Figure 7. Trapezoidal decomposition and the generation of BPF. (a) The long axis. (b) Trapezoidal

decomposition. (c) Subregions merging. (d) The BFP.

The overall flow of the Algorithm 1 is as follows:

Algorithm 1. The drone area coverage path planning algorithm

Input:
Output:

— =
g N N I N

— =
W N

The vertexes (Vq, Vs, ..., V) of area A
The scanning paths U in area A and their length 4 and the start and end (sp, ep)
of the scanning paths
Compute the circumference L and the area S of area A;
C«— 4xm*S/L?%;
if C > 0.86 then

U < spiral scaning (A);

Compute the start and end (sp, ep) of the scanning paths;

d « distance (U);
else
end if

fori< 1ton—1do

Qi ¢ 0 10; X 0041 ;
end for
if 3Q; <0, then
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14 Generate the convex hull of area A by the Graham Scan method;

15 end if

16 Find the direction of decomposition based on the minimum span of the convex
hull;

17 Decompose A into multiple convex polygons (4;);

18 U < spiral scaning (A;);

19 Compute the starts and ends (sp;, ep;) of the scanning paths;

20 d < distance (U;);

21 Return U, d, sp,, ep;

3.3. Model Formulation

Using the method above, we obtained the drone paths in each subregion and connected
them to a long-distance scanning path. On this basis, the scanning path is segmented to
realize the cooperative work of multiple drones. This paper uses the simplest uniform
partitioning method to guarantee that each drone is used effectively. First, a series of
scanning missions of equal length are obtained and the positions of their start and end
points of missions are recorded and numbered. Next, a plurality of candidate deployment
locations for use as CAs is generated randomly; these candidate locations can be located
inside the region, at the boundary, or outside the region.

The size of available solution space directly affects the optimization results, which is
determined by the number of candidate locations. It is obviously that the optimization
process is easier but less stable due to the greater influence of randomly generated locations
when the number of candidates locations is small. Conversely, it is more likely to find a
better deployment solution but with higher computational complexity.

In this paper, the number of candidate locations is set as 3—6 times the number of
desired, for the consideration of solution quality and algorithm efficiency. The sensitivity
analysis experiment is designed to further analyze this factor in Section 5.2.

For the optimization problem of CAs deployment and the drone scanning mission
assignment, we construct a 0-1 integer planning model by minimizing the drones’ round-
trip distance as the objective function and considering constraints such as the number of
CAs and drones and the relationship between drones and scanning mission assignment.
The notations used in the model development process are summarized in Table 2.

Table 2. Notations and descriptions.

Sets:

M ={1,2,---,m}, the set of the location of candidate CAs;

N ={1,2,---,n}, the set of segmented trajectories of drones;

1% ={1,2,- - ,k}, the set of drones;
Parameters:
d the fight traveling distance between CA i and the start and end point of scanning missions j,

) wherei € Mand j € N;

P the number of CAs;

C the maximum number of drones for each CA;
Variables:

1 if the drone k is assigned to CA i and takes the scanning mission j, 0 otherwise, where
Xijk ieM,jeNkeV;
,JENkeV;
Yi 1 if the candidate CA is selected to use, 0 otherwise, where i € M;

If a certain drone k in CA i is designated for the scanning mission j, and the drone
takes off from CA i, enters operation from the beginning of that path of scanning mission
J, completes it at the end, and returns to CA i finally, then the distance d;; traveled by the
drone k on the round trip is as follows:

dij = d‘jj + d;’j (6)
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where d?j is the flight distance between the start point of mission j and the CA i, and df-;
denotes the flight distance between the end point of mission j and the CA i.

The objective function is to minimize the sum of all drones’ round-trip distances, so
the mathematical model is constructed as follows:

Min) jEN Ykev diji @)
s.t.
ZieM yi=P ®)
Yicm jen Yijk < LkeV ©)
Yoicm kev Xik =L Vi €N (10)
ZieM Zkevxifk <CyvieM (11)
Xijk,Yi € {0,1},Vi€M,j€N,k€ %4 (12)

Constraint (8) indicates that the total number of deployed CAs at each candidate
location sums to a constant value P. Constraint (9) indicates that each drone is used at most
once in a mission. Constraint (10) indicates that each scanning mission must be assigned to
one and only one drone. Constraint (11) indicates that the number of drones configured at
each CAs does not exceed its maximum capacity. Finally, constraint (12) indicates the range
of variable values to be taken.

4. Heuristic Algorithm

In this section, two heuristic initial feasible solution construction algorithms and
a local-search-based optimization algorithm are designed to solve the CAs setting and
drones scanning mission assignment problem. In the first step, the initial feasible solution
construction algorithm is used to obtain the initial CAs deployment, and the scanning
mission assignment scheme based on the starting and ending points of scanning missions
and the locations of candidate CAs. Here, we design two heuristic construction algorithms,
the Greedy Match-based Heuristic Algorithm (GMH) and Trajectory Clustering-based
Heuristic Algorithm (TCH). We run the two algorithms separately and compare the results
to analyze the performance of the algorithms. In the second step, a local-search-based
(LS) optimization algorithm is used to improve the initial solution. Here, we design two
operators, CA location swapping and the drone scanning mission swapping. These two
operators are run sequentially, and the loop iterates to continuously optimize the solution
until it satisfies the termination condition. Finally, we output the most satisfactory CAs
deployment and drone scanning mission assignment scheme at this time.

4.1. Initial Solution Generation Algorithm

In this section, two heuristic algorithms are integrating the ideas of greed or cluster-
ing are designed to solve the CAs deployment and drone scanning mission assignment
problem—the Greedy Match-based Heuristic (GMH) Algorithm and Trajectory Clustering
based Heuristic (TCH) Algorithm. The main solving procedure is shown in Algorithm 2.
First, the flight distances between the candidate locations of CAs and the start and end
points of drones scanning missions are calculated (line 3). Second, the initial feasible
solution is constructed by two heuristic algorithms (line 4). Finally, a local-search-based
algorithm is designed to improve the initial solution (line 5).



Drones 2023, 7, 457

14 of 25

Algorithm 2. The heuristic algorithm

Input M, N, C
Output the optimal CAs deployment and drone assignment scheme 1, piyq1
the flight distance d;; between the candidate locations of CAs and the start and end

Calculate . . .
points of scanning missions of drones
1 Obtain the initial solution ;;4;,; by Algorithm 3 and Algorithm 4.
2 Improve ¥jyjsiq by Algorithm 5 and get P, ptimar

5. Greedy Match-based Heuristic (GMH) Algorithm

The GMH algorithm is first to obtain the nearest candidate CA-mission pairings for
all the scanning missions (line 5), then to select the shortest CA between the candidate
CA-mission pairings (line 6). Secondly, we assign the selected CA to the nearest C-1 of
the remaining missions (line 7). Thirdly, we select a CA randomly among the remaining
candidate CAs and assign it to the closest C missions until all the scanning missions are
distributed (lines 11-16). Finally, we obtain the optimal scheme of CAs deployment and
drones scanning mission assignment. The algorithm detail is shown in Algorithm 3.

Algorithm 3. Greedy Match-based Heuristic (GMH) Algorithm
Input: M, N, C, dij

Output: q)%\gﬂ
1 forj < 1tondo
2 fori < 1tom do
3 Obtain the nearest candidate CA mission—pairings for all the scanning missions
based on d;;
4 end for
5 end for
6 Select the shortest CA between the candidate —mission pairings
7 Assign the selected CA to the nearest C-1 of the remaining missions
8 Update the set of remaining candidate CAs and missions
9 m < the number of remaining candidate CAs
10 n < the number of remaining missions
11 Whilen >0
12 Select a CA randomly among the remaining candidate CAs
13 assign the selected CA with the closest C missions
14 Update the set of remaining candidate CAs and missions;
15 m < the number of remaining candidate CAs;
16 n < the number of remaining missions;
17 end while
18 Obtain 1/]?%15 by the selected CAs and the assigned missions.
19 Return lpinitiz

6.  Trajectory Clustering-based Heuristic (TCH) Algorithm

The paths of scanning missions are presented as trajectories here. The trajectory
Clustering-based Heuristic Algorithm (TCH) in Algorithm 3 is to use the candidate CAs as
clustering centers to find the closest C trajectories to them and keep repeating the process.
Firstly, obtain the nearest C of trajectories for all candidate CAs (line 6) and calculate the
sum of the distance of trajectories for all candidate CAs (line 9). Secondly, select the CA
with the shortest sum of distance, and the corresponding C trajectories are assigned to it
(line 10). Thirdly, update the set of remaining candidate CAs and trajectories (lines 9-11).
Finally, repeat the process above until all the trajectories are distributed. Finally, we can
obtain the optimal scheme of CAs deployment and drone scanning mission assignment.
The algorithm detail is shown in Algorithm 4.
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Algorithm 4. Trajectory Clustering-based Heuristic (TCH) Algorithm

Input: M, N, C, d,-]-
Output: ¢

initial
1 Whilen >0
2 fori < 1tom do
3 forj <~ 1ton do
4 Obtain the nearest C of trajectories for all candidate CAs
5 end for
6 end for
7 Calculate the sum of the distance of trajectories for all candidate CAs
3 Select the CA with the shortest sum of distance and the corresponding C
trajectories are assigned to it
9 Update the set of remaining candidate CAs and trajectories
10 m <— the number of remaining candidate CAs
11 n < the number of remaining trajectories
12 end while
13 Obtain l,bgl%%l by the selected CAs and the assigned trajectories
14 Return ¢, -,

4.2. Local Search-Based Optimization Algorithm

After the initial feasible solution is obtained, the non-working distance between CAs
and the drone scanning missions is often largely due to the limitations of the initial solution
construction algorithm, which can increase the power consumption of drones. More
seriously, the excessively long non-working path can prevent the drone from completing
the mission before it must return. Therefore, it is important to optimize the initial solution.
In this paper, two domain Local-Search operators (LS) are designed to determine the
optimal CAs deployment and drone scanning mission assignment scheme.

7. CAs position exchange operator

Deploying CAs and assigning drones at the corresponding locations based on feasible
solutions can achieve coverage of all trajectories. However, there are cases when other CAs
are closer to the assigned trajectories. Therefore, we design the CAs position exchange
operator, which refers to randomly selecting one of the selected CAs from the initial
solution, closing it, and then randomly selecting one of the unselected sets of candidate
CAs to replace the closed one. Then, we assign each trajectory in the selected trajectory
set to the closest CA in the selected CAs set. Suppose the number of trajectories assigned
to the CA reaches the maximum number. In that case, the trajectories are assigned to the
closest of the remaining CAs until all assignments are completed, at which point the new
solution is obtained. As shown in Figure 8, CA 11 is closed and replaced with CA 7. In this
way, the drones’ scanning trajectories can potentially be assigned to closer CAs.

Exchange of CAs position

1

Y the selected CAs

the unselected CAs

Figure 8. Schematic diagram of CAs position exchange operator.

8. Scanning mission exchange operator

The scanning mission exchange is performed after the CAs position exchange. We
randomly choose two CAs from the CAs selected for deployment and exchange their
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corresponding scanning missions to obtain a new solution. As shown in Figure 9, CA 1
and CA 2 are selected, and their assigned scanning tasks are exchanged. From the results,
the total distance of the drones’ non-working path is represented by the dashed line, and
its length is significantly reduced.

Exchange of
scanning missions

* the selected CAs @ the start and end points of mission
— round-trip path of UAV  ----  BFP path of UAV

Figure 9. Schematic diagram of scanning mission exchange operator.

In the algorithm, the local search is to update the solution by integrating CAs position
exchange operator and scanning mission exchange operator. The termination condition
is designed to reach the maximum number of iterations. To reduce the cost of time, if
the solution did not improve for 50 iterations, we suppose the solution would have been
optimal. The local-search-based algorithm is shown as Algorithm 5. With the above
heuristic algorithm, the satisfactory solution and the objective function value are obtained:
the CAs deployment and drone scanning mission assignment scheme and the total non-
working distance of drones.

Algorithm 5. The local-search-based optimal algorithm.

Input: Yinitial, eV max
Output: l/)aptimal

1 Initialization: Yoptimar = Yinitia, flag =1, iter =1

2 whileiter < itery, do

3 Improve the solution by the CAs position exchange operator and obtain 3’
4 ify' < Yoptimal then Yoptimal = ¥’

5 end if

6 Improve the solution by the scanning mission exchange operator and obtain ¢
7 i Y" < Poptimar then Yopimar = "

8 else flag = flag + 1

9 iter = iter + 1

10 end if

11 if flag > 50 and then

12 Returniy iyl

13 end if

14 end while

15 Return,ptimal

5. Experiments and Results

In this section, we analyze the performance of the proposed GMH-LS and TCH-LS in
terms of time and solution quality, and all experiments are run on python 3.7. Randomly
generated instances and practical cases demonstrate the effectiveness of the proposed
algorithm. The experiments based on randomly generated instances are carried out to
explore the performance of the algorithms at different scales. In addition, we further
validate the algorithms with a practical case of Maolichong Forest Park in Changsha, China.
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In the experiments, we refer to the performance parameters of the DJI “Spirit 4 RTK”
drone. The camera image sensor adopts 1-inch CMOS, the lens angle of view is 84°, the
focal length is 8.8 mm, the maximum photo resolution is 5472 x 3468, and the ground
sampling distance GSD is (H/36.5) cm/pixel. In 1:500 aerial topographic map mapping,
the ground resolution is required to be 4-5 cm/pixel. The calculated flight height of the
drone is between 146.0-182.5 m, so the flight height is set at 160 m. According to equation 2
and equation 3, the sweep width of the drone is about 200 m. In addition, the maximum
flight range is 25 km, and the power consumption efficiency is 1.2:1 when the camera is on
and off. Therefore, the working path is 15 km and the non-working path is 7 km when the
flight speed is maintained unchanged.

5.1. Random Experiment
5.1.1. Experiment Design

As shown in Figure 10, we consider different numbers of CA, including 3, 4, and 5.
Accordingly, 9, 20, and 25 candidate locations of CAs are set. Three polygon regions of
different shapes are randomly generated under each scale, with nine random instances in
total. The candidate locations of CAs are randomly generated, and each CA is equipped
with a maximum of four drones. Further, the scanning path of drones obtained by the
CPP method in Section 3 is divided into several sub-paths in each randomly generated
experiment. The number of sub-paths does not exceed the maximum number of drones
owned by CAs, and each sub-path does not exceed 15 km in length.
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Figure 10. Scanning paths of drones and candidate locations of CAs in random instances.

According to the initial feasible solution generation algorithm and the local search
optimization algorithm mentioned in Section 4, there are four solution algorithms. We
compare the results and solution times obtained by these four algorithms and analyze the
algorithms’ characteristics during the experiments. The results of the four solution methods
are as follows:



Drones 2023, 7, 457

18 of 25

—_

The result generated by the GMH algorithm and not optimized;

The result generated by the TCH algorithm and not optimized;

3. The result generated by the GMH algorithm and further optimized through lo-
cal search;

4. Theresult generated by the TCH algorithm and further optimized through local search.

N

In the local search process, considering the size and solving efficiency, the maximum
number of iterations of CA position exchange and scanning mission exchange is set as
1000. If the result is not improved 50 consecutive times, it will be considered as the optimal
solution and exit the iteration process.

5.1.2. Experiment Results

The computational results for nine random instances with the algorithms of GMH and
GMH + LS, TCH, and TCH + LS are presented in Tables 3 and 4. The first column is the
number of instances. In the second column, (m-M-n) refers to the number of selected CAs,
the number of candidate CAs, and the scanning missions of drones. The algorithms of GMH,
TCH, GMH + LS, and TCH + LS have been run 10 times. Their best, worst, and average
round-trip distances of 10 runs and the average cost time are displayed. To compare the
improvement of the local-search-based optimization algorithm on the two initial solutions,
we record the improvement of the average round-trip distance of GMH + LS and TCH + LS
relative to GMH and TCH.

Table 3. Results of nine random instances with the algorithms of GMH and GMH + LS.

Size GMH GMH + LS
Num (m-M-n) Best Worst Ave Time Best Worst Ave Time Impro
(km) (km) (km) (s) (km) (km) (km) (s) (%)
1 3-9-11 37.65 60.63 49.56 1x1074 34.25 34.25 34.25 0.053 30.89%
2 3-9-11 40.98 62.25 50.31 1x 1074 37.76 38.87 38.09 0.046 27.18%
3 3-9-11 35.93 64.00 50.54 1x 1074 34.85 34.85 34.85 0.052 31.05%
4 4-20-16 81.58 113.25 95.16 1x 1074 69.34 70.85 69.75 0.054 26.70%
5 4-20-15 7221 144.03 101.31 1x 1074 54.37 56.43 55.28 0.079 45.44%
6 4-20-15 50.88 98.96 71.83 1x 1074 34.94 41.28 35.81 0.064 50.14%
7 5-25-19 85.09 119.19 100.75 1x 1074 65.97 68.81 67.33 0.084 33.17%
8 5-25-19 104.88 133.80 119.54 1x1074 77.02 80.55 78.25 0.071 34.54%
9 5-25-20 99.06 176.15 120.74  2x107* 75.99 81.99 77.36 0.088 35.93%
Table 4. Results of 9 random instances with the algorithms of TCH and TCH + LS.
Size TCH TCH + LS
Num (m-M-n) Best Worst Ave Time Best Worst Ave Time Impro
(km) (km) (km) (s) (km) (km) (km) (s) (%)
1 3-9-11 37.65 37.65 37.65 1x 1074 34.25 34.25 34.25 0.046 9.03%
2 3-9-11 32.25 38.25 3.825 1x 1074 37.76 38.29 37.87 0.043 1.11%
3 3-9-11 43.88 43.88 43.88 1x 1074 34.85 38.08 35.17 0.040 19.84%
4 4-20-16 72.50 72.50 72.50 1x1073 69.34 69.34 69.34 0.057 4.36%
5 4-20-15 57.74 57.74 57.74 3x107* 54.37 57.74 56.30 0.060 2.49%
6 4-20-15 37.73 37.73 37.73 3x1074 34.94 34.94 34.94 0.081 7.39%
7 5-25-19 67.08 67.08 67.08 1x1074 65.45 67.08 66.10 0.066 1.46%
8 5-25-19 81.64 81.64 81.64 7 x 107* 77.02 81.59 79.92 0.080 2.10%
9 5-25-20 77.12 77.12 77.12 8§ x 1074 77.12 77.12 77.12 0.052 0.00%

We can see that the TCH algorithm can obtain a better initial solution than the GMH
algorithm, and this solution’s value is always close to the optimal solution. The two
algorithms GMH + LS and TCH + LS can obtain a very short round-trip distance after many
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optimization times. It shows that the two algorithms can overcome the local optimal and
find optimal solutions. However, due to the differences in initial solutions, it is obvious
that the GMH + LS has a more significant improvement on the initial solution, from 30% to
50%. In contrast, the TCH + LS algorithm has a small improvement on the initial solution,
mostly within 10%.

As for the calculation time, the two initial solution generation algorithms (GMH and
TCH) can complete the calculation efficiently, and the time is less than 0.0001-0.001 s. When
local-search-based algorithms are used to optimize the solution, the calculation time of
the GMH + LS algorithm and the TCH + LS algorithm is also short, ranging from 0.04 s
to 0.09 s, which indicates that these two methods have high efficiency and can complete
the convergence quickly. With the increasing number of drones and CAs, the time of the
TCH + LS algorithm is about 0.02-0.03 s shorter than that of GMH + LS. Therefore, it is
acceptable and does not affect the solution.

5.2. Sensitivity Analysis

The sensitivity test is conducted on one of the random experiments in Figure 10 with
two critical factors: the number and distribution density of candidate locations of CA. Both
factors directly impact the selection of CAs’ deployment locations. In this experiment, the
number of selected CAs is 4, while the number of candidate locations includes 16, 20, and
24. The distribution density of candidate locations of CA is measured by the ratio of the
average distance to the area in this paper, which is defined by the following formula:

1 v-My
Yy d
o= (13)

where p is the distribution density of candidate locations of CA, M is the number of
locations, S is the distribution area, d; represents the average distance between the candidate
locations i and the others.

By randomly generating different candidate locations of CA, the distribution density
is varied from 0.045 to 0.080, and the result of comparison experiments are presented
in Figure 11. As the boxplot is shown, the flight distance of drones decreases at all the
values of distribution density when the number of candidate locations are 16, 20, and 24.
It can be inferred that when the candidate locations increase, more nearby locations are
available to choose from, which can save the overall round-trip distance. Furthermore,
when the distribution density is large than 0.060, the flight distance rises slightly. In
this situation, due to the extension of the average distance between candidate locations,
CAs are deployed more dispersed, which increases the length of non-working routes for
multi-drone collaborative scanning missions.

5.3. Case Study
5.3.1. Case Description

A case is built based on the part of Maolichong Forest Park in Changsha, China. The
area is about 8 km long from east to west and 7 km wide from north to south, giving it the
right shape and size. However, the park has an undulating terrain; trees mainly cover the
surface. Therefore, it is difficult to monitor by human means, but drones can be effective.
Therefore, CAs and drones can be deployed in this area. All data in this case experiment
are from the open-source information of Amap.

We smooth the irregular boundary of the forest park and then outline the polygon on
this basis, as shown in Figure 12. Then, the actual position of each vertex of the polygon is
obtained by extracting the latitude and longitude coordinates. We set up a plane rectangular
coordinate system and transformed the latitude and longitude of the polygon vertices into
x and y coordinates.
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Figure 11. Computational results under different distribution densities and number of candidate CAs.

MLC Forest Park

Figure 12. The map and abstract polygon of Maolichong (MLC) Forest Park in Changsha.

Similarly, we use the CPP method in Section 3: first, we calculate that the perimeter
of the polygon is 30.22 km and the area is 45.63 km?. The roundness is calculated by
Equation (4) to be 0.43 < 0.86, so the BFP method should be adopted.

In addition, the polygon is an irregular concave polygon, so it can be processed using
our proposed trapezoidal decomposition method. The blue dashed line in Figure 13a
indicates the optimal decomposition direction and the optimal scanning direction of the
drone, and Figure 13b shows the obtained optimal drone scanning path. The total length
of this path was calculated to be 152.46 km. Since the scanning distance of each drone
is about 15 km, the path is divided into 11 segments; that is, 11 scanning missions, and
each mission corresponds to one drone. As shown in Figure 14, the coordinates of the
starting and ending points of each segment of the trajectory are calculated and marked
with green dots, and a different color represents each segment of the trajectory. Since each
CA is equipped with up to four drones, the number of CAs is set to three to reduce CA
construction and maintenance costs and improve utilization. Considering the need for
multiple alternatives, nine candidate CA deployment locations are randomly generated. In
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Figure 14, the numbers 1-9 indicate the serial numbers of the nine candidate CAs, and the
red pentagrams indicate their positions.

(a) (b)

Figure 13. The optimal sweep direction and coverage path of drones generated by the BFP method.

Figure 14. The candidate locations of CAs and the segmented scanning trajectories.

5.3.2. Results Analysis

The maximum, minimum, and average values of the objective function values (the
minimum round-trip distance) and the average calculation time are recorded in Table 5
for each of the four algorithms (GMH, TCH, GMH + LS, and TCH + LS) run 10 times
consecutively.

Table 5. The results of case experiments.

Algorithms GMH TCH GMH+LS TCH+LS
Best 41.83  38.21 37.02 37.99
Values of round-trip distance (km) Worst 71.59 38.21 37.99 37.99
Ave 50.08  38.21 37.87 37.99
Time (s) 0.0001  0.0003 0.044 0.055
Improve (%) 24.38% 0.58%

It can be observed that the average objective function value of the feasible solution
obtained by the GMH algorithm is 50.08 km, and the average calculation time is about
1.0 x 104 s; the TCH algorithm obtains a better feasible solution with 38.21 km for all 10
runs, but the average solution time is longer at 3.0 x 104 s.

Considering the improvement of the feasible solution by the local-search (LS)-based
optimization algorithm, the average objective function value of the optimized solution
obtained by the GMH + LS algorithm is 37.87 km, with an average improvement of 24.38%
compared to the GMH algorithm and an average solution time of 0.044 s. In addition, the
optimized solution obtained by the TCH + LS algorithm has an average objective function
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value of 37.99 km, is slightly less effective than the GMH + LS algorithm, and has almost no
improvement (0.58%) compared to the TCH algorithm. Furthermore, the average running
time of the algorithm is 0.055 s and also increases only very slightly.

Figure 15 visualizes and compares the optimal CA deployment and drone scanning
mission assignment schemes generated by the four algorithms. And the large red penta-
grams and their numerical numbers indicate the locations of the selected CAs. Table 6 shows
the four different optimal CAs deployment and scanning mission assignment schemes
calculated by the four algorithms. The candidate locations of CAs are numbered from 1 to
9, and the scanning missions are numbered from 1 to 11. The CA column indicates that the
location is selected, and the Task column shows the missions assigned to the UVAs owned
by these CAs. For instance, the result of the GMH algorithm indicates that locations 1, 4,
and 7 are selected to deploy several 3, 4, and 5 CAs and that these CAs need to complete
missions numbered (1,3,4), (7,8,9,11), and (2,5,6,10), respectively. From the results, the
GMH + LS algorithm and TVH + LS algorithm obtained the same optimal results, in which
the deployment locations are 1, 4, and 8, and the scanning missions are (2,3,4,10), (7,8,9,11),
and (1,5,6), respectively, with an optimal objective function value of 37.99 km. Similar to the
randomly generated experiment results, the TCH algorithm has a similar result compared
to the other two algorithms optimized with local search at 38.21 km. It is significantly
better than the solution of the GMH algorithm with a more reasonable deployment scheme
and smaller objective function values. It once again proves that the TCH algorithm has a
significant advantage over the GMH algorithm in finding a better initial solution.

(c) TCH (b) TCH + LS

Figure 15. Comparison diagram of the four algorithms to generate the optimal solution.
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Table 6. The CAs deployment and scanning mission assignment scheme.

CAs

GMH

Missions

TCH GMH + LS TCH + LS
CAs Missions CAs Missions CAs Missions

1
4
7

1,34
7,8,9,11
2,5,6,10

1 1,2,34 1 2,3,4,10 1 2,3,4,10
4 7,89,11 4 7,8,9,11 4 7,8,9,11
8 5,6,10 8 1,5,6 8 1,5,6

Values
(km)

425

Values Values Values
(k) 38.21 (km) 37.99 (km) 37.99

References

6. Conclusions

To overcome the limitations of battery capacity and range of drones, the CA with
automatic power generation and autonomous power charging is introduced to provide
take-off, landing, and power supply for drones to complete surveillance missions. The
problem that integrates the deployment of CAs and drone coverage path planning is
investigated and formulated. We propose a solution approach to the CPP problem and a
mathematical model for CA deployment and scanning mission assignment to solve this
problem. The GMH and TCH heuristic algorithm is designed to obtain the initial solution,
and then a local-search-based algorithm is developed to improve it.

Random test experiments with different scales are conducted and indicate the effi-
ciency of the proposed algorithm. Furthermore, we apply the algorithm to solve a practical
case. The results show that the overall algorithms can efficiently obtain the optimal solution
when dealing with small-scale application scenarios.

The application of drones to undertake operations such as search and surveillance over
a wide area has recently attracted a lot of attention. It is a new concept to expand the range
of drones by integrating with the CA. There are many interesting research topics worth
further exploring, such as the interaction between CAs, the collaboration and relay between
drones, and more advanced regional decomposition methods. Due to the complexity of
location-routing problems, especially for large-scale problems, more efficient algorithms
are valuable for studying in future works.
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