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Abstract: Forest fires are one of the most serious natural disasters that threaten forest resources.
The early and accurate identification of forest fires is crucial for reducing losses. Compared with
satellites and sensors, unmanned aerial vehicles (UAVs) are widely used in forest fire monitoring
tasks due to their flexibility and wide coverage. The key to fire monitoring is to accurately segment
the area where the fire is located in the image. However, for early forest fire monitoring, fires captured
remotely by UAVs have the characteristics of a small area, irregular contour, and susceptibility to
forest cover, making the accurate segmentation of fire areas from images a challenge. This article
proposes an FBC-ANet network architecture that integrates boundary enhancement modules and
context-aware modules into a lightweight encoder–decoder network. FBC-Anet can extract deep
semantic features from images and enhance shallow edge features, thereby achieving an effective
segmentation of forest fire areas in the image. The FBC-ANet model uses an Xception network as
the backbone of an encoder to extract features of different scales from images. By transforming the
extracted deep semantic features through the CIA module, the model’s feature learning ability for
fire pixels is enhanced, making feature extraction more robust. FBC-ANet integrates the decoder into
the BEM module to enhance the extraction of shallow edge features in images. The experimental
results indicate that the FBC-ANet model has a better segmentation performance for small target
forest fires compared to the baseline model. The segmentation accuracy on the dataset FLAME is
92.19%, the F1 score is 90.76%, and the IoU reaches 83.08%. This indicates that the FBC-ANet model
can indeed extract more valuable features related to fire in the image, thereby better segmenting the
fire area from the image.

Keywords: forest fires; semantic segmentation; boundary enhancement; contextual information
awareness; encoder–decoder

1. Introduction

Forest fires are one of the most destructive and widespread natural disasters in the
world, causing huge ecological and economic losses to forest resources and human soci-
ety [1,2]. Especially in recent years, with the impact of global warming, forest fires have
been constantly occurring. For instance, the data released by the Chilean Disaster Preven-
tion and Response Center show that, in March 2023, the forest fires in multiple areas in the
central and southern of Chile severely affected 438 thousand hectares of land, destroying
more than 2500 houses and affecting 7770 people in total. With the impact of global climate
warming, the frequency of forest fires has been significantly increasing. Thus, recognition
and detection for early warning are of great significance. The early detection of forest fires
is an effective way to reduce losses.
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Traditional fire monitoring methods use lookout towers equipped with surveillance
cameras and other sensors to monitor and locate fires or a surge in temperature in the
forest through visual imaging, or use high-altitude helicopters satellites to evaluate large
fires on a broader scale [3,4]. Remote sensing satellites have the advantages of a strong
continuity and wide coverage, and can continuously track and detect large-scale forest
fires. Especially in remote and sparsely populated areas, remote sensing satellites can
provide important data sources for identifying forest fires. However, satellite images may
be affected by atmospheric conditions, such as cloud or fog interference. Meanwhile, the
resolution of satellite images is limited, making it difficult to identify small or hidden fire
spots. In the early stages of a fire, the range of fire points is usually small. If the fire points
can be identified and put out in a timely manner, it will effectively prevent the spread of
the fire and reduce the losses caused by forest fires.

In recent years, the application of UAVs equipped with various sensors and cameras
to monitor forest fires using their low-altitude flight characteristics is increasingly favored
by forestry personnel and firefighters. UAVs provide new solutions for fire monitoring due
to their powerful flexibility, high maneuverability, and adjustable field of view [5–9]. Note
that UAV images exhibit different attributes, such as high-resolution microscopic images
from low altitudes, which are significantly different from macroscopic images captured
by high-altitude helicopters or satellites. The UAV has the advantage of a flexible aerial
patrol as the remote distance of UAVs is approximately 4 to 7 km. This allows firefighters
and forestry managers to quickly monitor the forest fire without blind space by operating
UAVs without delving deep into the forest, thereby reducing the risks that firefighters and
forestry managers face. With the rapid development of machine vision and deep learning,
real-time classification and detection based on images are widely applied in this field of
forest fires [10–15]. Modern UAVs can be equipped with small CPUs and GPUs, as well
as pre-trained deep network models onboard [16,17], in order to detect fires as early as
possible. Some supervised learning methods such as [18,19] rely on the use of public fire
dataset CorsicanFire [20]. However, this dataset is based on ground fire images and loses
its significance in helping firefighters detect the occurrence of fires. In the current research,
we utilized the dataset FLAME [21], the abbreviation for Fire Luminosity Airborne Machine
Learning Evaluation, to train and validate the proposed semantic segmentation model. To
our knowledge, the FLAME dataset is the only fire analysis dataset captured and imaged by
multiple UAVs. This dataset is a set of fire video and image data collected by unmanned aerial
vehicles during the combustion of prescribed combustion deposits in Arizona pine forests,
containing videos captured by thermal infrared cameras from different angles, scales, and
camera types. In addition, FLAME is equipped with a deep network model for fire detection
and segmentation, which can serve as a benchmark model for fire semantic segmentation.

Semantic detection and segmentation on image or video frames is a classic problem and
also a hot topic in the field of computer vision research, the purpose of which is to separate
the diverse objects from an ambient background in the image; in addition, it is widely used
in image understanding, video surveillance, medical image analysis, and other applications.
Semantic detection is to identify all interested objects in an image and determine their
categories and positions, while semantic segmentation, as a downstream task of semantic
detection, is a pixel-level classification, meaning that the categories have semantics in real
world, such as cars, trees, and a crowd of people. The semantic detection and segmentation
of forest fires is a challenging and difficult task. The shape, color, brightness, and other
features of flames have strong uncertainty and variability, making it difficult to accurately
segment the flame region from images. In addition, there are a large number of interference
factors such as smoke and dust in fire scenes, which makes it difficult to extract flame
features in real time and to segment flames. Researchers has proposed some deep-learning-
based models for the semantic detection and segmentation of forest fires. Recently, Norkobil
Saydirasulovich et al. [22] and Avazov et al. [23] proposed a series of improved fast fire
detection learning methods based on the family of YOLO framework deep networks to
accurately detect fires from fire-like surroundings in complex scenes [22,23]. The MaskSU R-
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CN [24] was proposed, which combines mask scoring R-CNN [25] and a U-shaped network
to detect and locate wildfires. U-shaped models based on Transformer [18,26] are also
proposed to improve the segmentation accuracy of flame edges in complex backgrounds.
Inspired by various encoder–decoder architectures, this study proposes a new semantic
segmentation model FBC-ANet based on the encoder–decoder architecture that combines a
boundary enhancement module and a context awareness module to identify and segment
forest fires from UAVs. The main contributions of this paper are as follows:

(1) Xception [27] is used as the backbone network of the encoder. In the decoder section, a
boundary enhancement module is proposed to generate enhanced features to restore
boundary information in order to improve the effectiveness of semantic segmentation
for forest fires.

(2) With regard to the bottleneck part, the proposed contextual information awareness
module is utilized to perform segmentation,which enhances the feature learning
ability of the fire pixels and makes feature extraction more robust.

(3) In the experimental environment, we verified that the FBC-ANet model obtained
a prediction accuracy of 0.9219, an IoU of 0.8308, and an F1 score of 0.9076 on the
FLAME dataset.

2. Related Works

There are many types of objects detection and semantic segmentation models, which
can be divided into different categories based on different network structures. In this
study, we are chiefly concerned with the models using fully convolutional networks with
an encoder–decoder architecture, such as FCN [28], U-Net [29], PSPNet [30], and Re-
fineNet [31], as well as DeepLabV3+ [32], which are widely used in the tasks of objects
detection and semantic segmentation. Among them, FCN [28] opened a new age of image
segmentation, where it was the first instance of end-to-end deep full convolutional net-
works being applied to the community of semantic segmentation by using deconvolution
layers to restore image resolution and achieve end-to-end pixel-level classification. U-
Net [29] is a method based on the improvement of FCN and is proposed for medical image
segmentation, adopting up-sampling and jump connection to achieve high-precision medi-
cal segmentation and solving the problem of partial pixel spatial information loss through
the encoder–decoder structure. PSPNet [30] is a semantic segmentation model based on a
pyramid pooling network that uses pooling layers of different scales to extract and fuse the
global context and local information, improving the semantic segmentation performance.
RefineNet [31] is a multi-path refining network that utilizes multi-level abstract features for
high-resolution semantic segmentation and recursively extracts low-resolution features to
generate high-resolution features. Unlike U-Net, which directly cascades the feature map
of the encoder after upsampling, RefineNet uses the features generated by the encoder and
the output of the previous stage of the encoder as inputs simultaneously and performs a
series of convolutions, resulting in the fusion of multiscale features. DeepLabV3+ [32] is
an improved version of DeepLabV3. It uses multi-scale dilated convolution and atrous
spatial pyramid pooling (ASPP) modules to capture multi-scale context information while
using deep separable convolution to reduce the number of parameters and computations.
DeepLabV3+ also uses a decoder module to further improve the segmentation performance,
manifesting a remarkable advancement in several benchmarks [33–36]. FastFCN [37] is
a fast semantic segmentation network based on dilated convolution and separable con-
volution, using the joint pyramid upsampling module to accelerate the feature fusion
process.

3. Materials and Methods

In this section, the forest fire dataset used for training, validation, and testing in this
work was first introduced. Then, the structure of the FBC-ANet model for the semantic
segmentation of forest fires was presented.
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3.1. Datasets

The publicly available dataset FLAME (Fire Luminosity Airborne-based Machine
learning Evaluation) (the dataset is available at https://ieee-dataport.org/open-access/
flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs) was used to validate
the effectiveness of the FBC-ANet model in semantic segmentation of forest fires in UAVs.
FLAME is a fire video dataset collected by different types of UAVs and cameras during the
burning of sediment in a pine forest in Arizona. The videos in the FLAME dataset were
captured by Phantom 3 PRO and Matrice 200 V1 equipped with Vue Pro R and Phantom
3 cameras. The Vue Pro R cameras were used to capture the thermal infrared (TIR) data
(i.e., videos in whitehot, greenhot, and fusion palettes) with a resolution of 640 × 512 pixels
under a frame rate of 30 FPS, while the Phantom 3 cameras were used to capture the
normal visible spectrum data (i.e., videos in RGB palettes). Figure 1 shows a couple of
frames as examples of the two types of data. Analyzing thermal infrared images can also
be used as a means of detecting flames, as thermal infrared images are more sensitive to the
temperature characteristics of flames. With the help of TIR data, it will greatly facilitate the
design of forest fire segmentation models [38–40]. Unfortunately, the FLAME dataset does
not provide annotations for the TIR data. However, the fire videos in RGB palette were
converted into a collection of frames with a resolution of 3840 × 2160 pixels for the purpose
of semantic segmentation. Tables 1 and 2 report more information about the diverse types
of data as well as the UAVs used in the dataset FLAME. For simplicity, we refer to the
collection of frames for semantic segmentation as “FLAME-Seg”. FLAME-Seg consists
of 2003 images that have been annotated with masks as the groundtruth for each image.
Due to the videos in TIR palette not exactly corresponding to those in RGB palette, we can
only use the annotated RGB flames; that is, the sub-dataset FLAME-Seg. In the current
work, 85% of the images in the sub-dataset FLAME-Seg were used for training and 15% for
testing.

RGB WhiteHot GreenHot Fusion

Figure 1. Examples of frames in normal visible spectrum and 3 kinds of thermal infrared (TIR) palettes.

Table 1. Information about the various kinds of data in dataset FLAME [21].

Type Format Palette Duration FPS Resolution Label Shot by

Video MOV WhiteHot 89 s 30 640 × 512 - Vue Pro R, FLIR
Video MOV GreenHot 305 s 30 640 × 512 - Vue Pro R, FLIR
Video MOV Fusion 25 min 30 640 × 512 - Vue Pro R, FLIR
Video MOV RGB 17 min 30 3840 × 1920 - Phantom, DJI
Image JPEG RGB 2003 frames - 3840 × 1920 Fire Phantom, DJI
Mask PNG Binary 2003 frames - 3840 × 1920 Fire -

https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
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Table 2. The technical parameters of the UAVs used [21,41,42].

Type Horizontal Speed Remote Distance Wheelbase Weight

PHANTOM 3 <61.2 km/h 3500 m to 5000 m 350 mm 1.28 kg

MATRICE 200 <57.6 km/h 4000 m to 7000 m 643 mm 3.80 kg

As is well known, the training of deep convolutional networks largely relies on
sufficient datasets. In the case of limited annotated images, it is necessary to use data
augmentation techniques to increase the amount of data. Data enhancement is mainly
achieved by performing photometric or geometric transformations on the image, as well as
mosaic augmentation (synthesis). The FLAME dataset is enhanced by flipping, rotating,
translating, and clipping images. It is worth noting that flipping the fire image horizontally
is reasonable. However, vertical flipping is not allowed because there is no inverted flame in
the real world. Similarly, the rotation of the image is not allowed to exceed 90 degrees. Based
on the same requirements, masking operations were performed to generate augmented
masks. Table 3 provides a schematic diagram of the data enhancement process for two
images as examples.

Table 3. The examples of data augmentation.

Raw Flipping Rotating Translating Clipping

Image

Mask

Image

Mask

3.2. Feature Extraction Module (FEM)

In the FBC-ANet model that we proposed, Xception [27] is used as the backbone
network of the encoder. This section first briefly reviews the basic ideas of Xception, and
then discusses the details of the feature extraction module based on Xception.

Xception is a lightweight neural network based on InceptionV3 [43] and is considered
a high-end version of the Inception series [43–45]. Xception uses depthwise separable con-
volution to extract features from spatial convolution and channel convolution, respectively.
Research has confirmed that the feature extraction performance of Xception is superior to
Inception V3 on ImageNet [46]. Therefore, Xception was used to extract the characteristics
of fires in UAVs in the current work.

Depthwise separable convolution decomposes ordinary convolution operations into
two processing processes: depthwise operation and pointwise by point operation. Depth-
wise operations perform spatial convolution on each input channel separately to obtain
the same number of output channels, so as to reduce the computational workload and
parameters in the spatial dimension. The pointwise operation performs 1 × 1 convolu-
tion on the output of the depthwise operation to increase the number of output chan-
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nels and enhance the expression ability in the channel dimension. For instance, with
regard to an input H ×W × Cin, the output is H ×W × Cout, and the kernel size of
convolution layer is k × k. Ordinary convolution requires k × k × Cin × Cout param-
eters and H ×W × k × k × Cin × Cout instances of multiplication operation; however,
depthwise separable convolution only requires k× k× Cin + Cin × Cout parameters and
H ×W × (k× k + Cout)× Cin instances of multiplication operation. Thus, compared with
ordinary convolution, depth-separable convolution can greatly reduce the parameters
and calculation amount of operation, which means that depth-separable convolution can
effectively reduce the redundancy and overfitting risk in the training process. Xception
also adopts the idea of deep separable convolution. However, in Xception, the order of
depthwise convolution and pointwise convolution is swapped as shown in Figure 2. We
compared these two depthwise separable convolution schemes in the experiment.

(a) Ordinary Convolution

(b) Depthwise Separable Convolution

(c) Depthwise Separable Convolution in Xception

Figure 2. Schematic diagrams of three convolution strategies, among which (a) provides the
process of ordinary convolution; (b) provides the process of depthwise separable convolution;
(c) provides the process of depthwise separable convolution used in Xception. It can be seen
that ordinary convolution involves convolution of all input channels in both spatial and channel
dimensions to obtain the output of each channel. Depthwise separable convolution first per-
forms spatial convolution on each input channel, and then performs 1 × 1 convolution on all
output channels. In Xception, the order of depthwise convolution and pointwise convolution is
swapped.

In an image semantic segmentation model with an encoder–decoder framework, the role
of the decoder is opposite that of the encoder. The encoder downsamples the image through
convolutional layers, thereby reducing the size of the feature map and increasing the number
of channels. The decoder uses deconvolution or upsampling operations to restore the feature
map extracted by the encoder to the size of the original image, while classifying each pixel.
Table 4 lists the details of each layer in the proposed encoder–decoder framework.
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Table 4. The detailed layers of feature extraction module in our proposed encoder–decoder framework.

Block Operation Kernel Size Stride/Padding Output Size

1© Conv + ReLU 3 × 3 × 32 2 × 2/1 1920 × 1080 × 32
Conv + ReLU 3 × 3 × 64 1 × 1/2 1920 × 1080 × 64

2©
Residual 1 × 1 × 128 2 × 2/0 960 × 540 × 128

SeparableConv 3 × 3 × 128 1 × 1/2 1920 × 1080 × 128
ReLU + SeparableConv 3 × 3 × 128 1 × 1/2 1920 × 1080 × 128

MaxPooling 3 × 3 × 128 2 × 2/1 960 × 540 × 128

3©
Residual 1 × 1 × 256 2 × 2/0 480 × 270 × 256

ReLU + SeparableConv 3 × 3 × 256 1 × 1/2 960 × 540 × 256
ReLU + SeparableConv 3 × 3 × 128 1 × 1/2 960 × 540 × 256

MaxPooling 3 × 3 × 256 2 × 2/1 480 × 270 × 256

4©
Residual 1 × 1 × 728 2 × 2/0 240 × 135 × 728

ReLU + SeparableConv 3 × 3 × 728 1 × 1/2 480 × 270 × 728
ReLU + SeparableConv 3 × 3 × 728 1 × 1/2 480 × 270 × 728

MaxPooling 3 × 3 × 728 2 × 2/1 240 × 135 × 728

5©– 12©
ReLU + SeparableConv 3 × 3 × 728 1 × 1/2 240 × 135 × 728
ReLU + SeparableConv 3 × 3 × 728 1 × 1/2 240 × 135 × 728
ReLU + SeparableConv 3 × 3 × 728 1 × 1/2 240 × 135 × 728

13©
Residual 1 × 1 × 1024 2 × 2/0 120 × 67 × 1024

ReLU + SeparableConv 3 × 3 × 728 1 × 1/2 240 × 135 × 728
ReLU + SeparableConv 3 × 3 × 1024 1 × 1/2 240 × 135 × 1024

MaxPooling 3 × 3 × 1024 2 × 2/1 120 × 67 × 1024

14© SeparableConv + ReLU 3 × 3 × 1536 2 × 2/1 120 × 67 × 1536
SeparableConv + ReLU 3 × 3 × 2048 1 × 1/2 120 × 67 × 2048

15©

UpSampling – – 240 × 135 × 2048
SeparableConv + ReLU 3 × 3 × 1024 2 × 2/1 240 × 135 × 1024

Residual 1 × 1 × 1024 1 × 1/0 240 × 135 × 1024
SeparableConv + ReLU 3 × 3 × 728 1 × 1/2 240 × 135 × 728
SeparableConv + ReLU 3 × 3 × 728 1 × 1/2 240 × 135 × 728

16©

UpSampling 3 × 3 × 728 2 × 2/1 480 × 270 × 728
SeparableConv + ReLU 3 × 3 × 728 2 × 2/1 480 × 270 × 728

Residual 1 × 1 × 728 1 × 1/0 480 × 270 × 728
SeparableConv + ReLU 3 × 3 × 728 1 × 1/2 480 × 270 × 728
SeparableConv + ReLU 3 × 3 × 728 1 × 1/2 480 × 270 × 728

17©

UpSampling – – 960 × 540 × 728
SeparableConv + ReLU 3 × 3 × 256 2 × 2/1 960 × 540 × 256

Residual 1 × 1 × 256 1 × 1/0 960 × 540 × 256
SeparableConv + ReLU 3 × 3 × 256 1 × 1/2 960 × 540 × 256
SeparableConv + ReLU 3 × 3 × 256 1 × 1/2 960 × 540 × 256

18©

UpSampling – – 1920 × 1080 × 256
SeparableConv + ReLU 3 × 3 × 128 2 × 2/1 1920 × 1080 × 128

Residual 1 × 1 × 128 1 × 1/0 1920 × 1080 × 128
SeparableConv + ReLU 3 × 3 × 128 1 × 1/2 1920 × 1080 × 128
SeparableConv + ReLU 3 × 3 × 128 1 × 1/2 1920 × 1080 × 128

19©
Conv + ReLU 3 × 3 × 64 1 × 1/2 1920 × 1080 × 64
UpSampling – – 3840 × 2160 × 64
Conv + ReLU 3 × 3 × 32 1 × 1/2 3840 × 2160 × 32

Conv + Sigmoid 3 × 3 × 2 1 × 1/2 3840 × 2160 × 2

In the FBC-ANet model, the decoder network consists of 22 convolutional layers,
which are divided into 4 blocks. Each block starts from the upper sampling layer to double
the size of the feature map. There are linear residual connections between the encoder
and the decoder. It is worth noting that the residuals transformed by a 1 × 1 convolution
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kernel have a stride of 1 × 1 rather than 2 × 2 like the encoder because the feature size has
been zoomed in twice. As in the encoder, the same depthwise separable convolution layer
was adopted in decoder to replace ordinary convolution. However, unlike the encoder,
the depthwise separable convolution operation was performed followed by ReLU to form
a structure symmetrical to the encoder. Lastly, the decoder network outputs a 2-channel
feature map of the original image size activated by sigmoid function to determine whether
each pixel belongs to a forest flame or backgrounds.

3.3. Boundary Enhancement Module (BEM)

Boundary information is crucial for improving the performance of semantic segmen-
tation. The shallow network can better extract the boundary information of the target
in the image, while the deep network can help to obtain semantic information. Deep
semantic information can optimize shallow boundary and contour information. Therefore,
effective fusion of shallow and deep information can avoid the loss of image information.
In FBC-ANet model, a boundary enhancement module (BEM) was designed to enhance
shallow features with deep features to obtain more boundary information, guide or con-
strain segmentation results, and better locate target boundaries to improve the accuracy of
semantic segmentation results.

Figure 3 shows a schematic diagram of the boundary enhancement module (BEM).
First, 1 × 1 convolution was performed to connect the shallow layer of the encoder and
the upsampling layer of the decoder to achieve a linear combination of the information,
so as to obtain the fused features (labelled as Input). Then, residual structure was used to
obtain boundary-enhanced features.The residual network can strengthen the recognition
ability of each stage, inspired from the architecture of ResNet [47], which added batchnorm
to prevent overfitting and accelerate the convergence rate and added Relu to avoid the
disappearance of gradient, can learn the difference between output and input features,
and can amplify the gradient flow through skip layer connections, which can alleviate
the degradation problem of the neural network and make deep training possible. The
enhanced feature is output as the following formula:

Output = ReLU(Input + Conv3×3(BN(ReLU(Conv3×3(Input))))). (1)

Figure 3. The diagram of the boundary enhancement module (BEM).

3.4. Contextual Information Awareness (CIA) Module

A contextual information awareness (CIA) module was designed in FBC-ANet model
to capture features of different scales in the image feature map so as to enhance the feature
extraction ability and help to identify fire source targets of different sizes. The input features
of the CIA module are from the encoder of the feature extraction module, represented
as I ∈ RH×W×C. Firstly, an adaptive average pooling operation was used to convert
input features into features of a specific scale size. The adaptive average pooling can
generate features into tensors of a specified size. Inspired by the spatial pyramid pooling
in PSPNet [30], a pooling layer was used to halve and quarter the resolution of feature
maps. The original feature size was reduced by 1/2 as well as by 1/4, and the different
scales of feature maps are indicated as I1, I2 and I3, respectively. A 3× 3 convolution
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operation was performed followed by a batch-normalization layer and an ReLU layer on
each scale of feature maps. Next, a convolution layer of 1× 1 learns the linear combination
of input channels by projecting tensors into a higher-dimensional space, thereby generating
the feature U ∈ RH×W×C′ , where C′ > C. After owning the effective receptive field of
H ×W, the network also needs to model the long-distance non-local dependence. In order
to enable the network to learn the global representation, the characteristic U ∈ RH×W×C′

was divided into N blocks with the size of h× w× C′ pixels, and all blocks were flattened
through reconstruction to obtain the feature V ∈ RM×N×C′ , where M = wh, N = HW/M,
and h, w are the height and width of each block, respectively. Non-local self-attention
mechanism encodes the relationship among the pixels of each block and generates the
feature N ∈ RM×N×C′ . Non-local modules are a self-attention mechanism that can capture
the global dependencies of input features [48]. As shown in the following formula, the
function of non-local modules is to calculate the similarity between each position and other
positions, obtain the weight of each position, and then sum the weighted features to obtain
the output features.

NonLocal(X)i = ∑
∀j

SoftMax

(
φ(Xi)

Tψ(Xj)√
M

)
θ(Xj) =

1

∑∀j e
1√
M

φ(Xi)Tψ(Xj)
∑
∀j

e
φ(Xi)

Tψ(Xj)√
M θ(Xj), (2)

where φ, ψ, and θ are three kinds of linear embeddings attained by different 1× 1 convolu-
tion kernels that operate on each slice indexed by subscript i of the feature maps X. For
simplicity, the three types of linear embeddings are labelled as V1, V2, and V3 respectively.
Non-local modules can be embedded into any convolutional neural network as a compo-
nent to improve the expression ability of the network. The above operation enables the
network to simultaneously encode the relationships between local pixels and between each
pixel block without losing the spatial order between pixels or the sequential association
between pixel blocks. Since each pixel can sense other pixels, the overall effective receptive
field of the module is H ×W. Next, the features were reshaped to their respective scales
and restored to the original feature size through 1× 1 convolutional layer. Then, the trans-
formed features O2 at quarter scale and O3 at half scale were upsampled to the same size
as O1. Finally, a 3× 3 convolutional layer was used to fuse local and global features from
different scale tensors, as shown in Figure 4.

Figure 4. The diagram of our proposed contextual information awareness module.

In this way, the output features contain global information, and the contribution of
different positions to the current position is adjusted according to the similarity.

3.5. Loss Function

The aim of forest fire segmentation is to classify every pixel into two semantic cat-
egories, the fire or the surrounding backgrounds, according to its region that the pixel
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belong to. Therefore, the loss function composed of two kinds of losses was used to train
the model. The first is binary cross entropy (BCE) loss, whose formula is as follows:

LBCE = − 1
N

N

∑
i=1

log P[i] · I{Y[i] = 1}+ log(1− P[i]) · I{Y[i] = 0}, (3)

where N = H ×W is the number of pixels of the image to be input and i is the position
index of each pixel; Y[i] represents the ground truth labeled as 1 or 0, meaning that it is
annotated as a part of fire or not; P[i] denotes the probability that the predicted pixel i
belongs to the fire area. In order to further improve the performance of the model, dice
loss [49] was introduced as the second kind of loss, as shown below:

LDice = 1− 2
∑N

i Y[i] · P[i]
∑N

i Y[i] + P[i]
, (4)

Finally, the ensemble loss L was computed as:

L = λLBCE + (1− λ)LDice, (5)

where λ is a trade-off factor between the binary cross entropy loss and the Dice loss. In the
subsequent section, we will conduct corresponding experiments on the value of λ. We set
λ to 0, 1, and 0.5, which means using only Dice loss and only BCE loss, as well as both to
participate in the supervision of our networks training, respectively.

3.6. Overall Architecture of the FBC-ANet Model

Figure 5 shows the overall architecture of the FBC-ANet model proposed in this article,
where FEM, BEM, and CIA correspond to the three proposed improvement modules. The
FBC-ANet model also has an encoder–decoder architecture. The encoder level is used to
extract features from images. Decoder level conducts upsampling to restore the feature
map output by the encoder to the approximate size of the original image. Compared with
the faster UNet model, the FBC-ANet model has mainly improved in the following aspects.

First of all, the encoder part consists of the full convolution part of the Xception network.
Except for the first two convolution layers, which reduce the input image to the 1/2-sized
feature graph, the remaining convolution modules are replaced by the conventional convolu-
tion to simplify the parameters of the model by deep separable convolution. Four layers of
undersampling are interspersed with thirteen depth-separable convolution modules, and the
input feature size is reduced to 1/16, which reaches its bottleneck, and residuals are associated
with adjacent undersampling to fuse features of different sizes.

Secondly, it adds a CIA module to a bottleneck section, which transforms deep semantic
features. Through CIA, it can capture features of different sizes in the image feature graph,
enhance its feature extraction ability, and help to identify fire source targets of different sizes.

Again, corresponding to the encoder, the decoder part also goes through four layers of
upper sampling to restore the input feature size. Unlike UNet, PSPNet and other methods
use concatenation to merge information from encoder. Here, we used ‘add’ to merge
residual error, which is opposite to encoder. It is worth noting that, since the size has been
doubled after upsampling, in order to maintain the same size, the residual in the decoder
part uses the convolution kernel with a stride of 1, while the residual in the encoder part
uses the convolution kernel with a stride of 2.

Finally, after the fusion of residuals, a BEM module was added to strengthen the
shallow edge features. This module can obtain boundary information from the low-order
network and semantic information from the high-order network, and can then fuse them
to avoid the absence of certain information. Higher-order semantic information can
optimize lower-order edge information.

In addition, it needs to be noted that the output feature was restored to the input
image size through the 5th upper sampling layer and the conventional convolution layer in
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the decoder part, and sigmoid function was executed to determine whether each pixel is a
flame or the surrounding background.

Figure 5. Overall architecture of the FBC-ANet model.

4. Results and Discussion

This section will display the semantic segmentation results of forest fires on the
FLAME-Seg dataset. Table 5 lists the experimental environments for the training and
testing stages.

Table 5. Experimental environments.

Environment Type

Operating System Ubuntu 18.04
Framework TensorFlow 2.6.0 and Keras 2.6.0
Language Python 3.7

CPU Intel(R) Xeon(R) Silver 4110
GPU GeForce RTX 2080Ti

Table 6 shows the parameter configuration when the FBC-ANet model achieves the
best semantic segmentation results.

Table 6. Training configuration.

Configuration Value

Batch Size 32
Optimizer Adam

Learning Rate 1 × 10−3

UpSampling bi-linear
Epochs 50
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4.1. Evaluation Metrics

In order to demonstrate the performance of the FBC-ANet model in detail, accuracy,
precision, recall, F1 score, and intersection over union (IoU) [28] were selected as the
evaluation indicators for a comprehensive analysis. The following are the calculation
formulas for these indicators: Accuracy is used to calculate the ratio of the number of
correctly segmented pixels to the total number of image pixels. The specific formula is
shown as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
. (6)

Precision is used to calculate the ratio of all correctly retrieved pixels of fire to all actu-
ally retrieved pixels of fire. Like Accuarcy, a value closer to 1 means a better performance.
The specific formula is shown as follows:

Precision =
TP

TP + FP
. (7)

Recall, also known as sensitiveness, indicates the proportion of all correctly retrieved
pixels of fire to all actually retrieved pixels of fire. Like Precision, the closer its value is to 1,
the better the performance of the model. The specific formula is shown as follows:

Recall =
TP

TP + FN
. (8)

F1 score is the harmonic mean of the Precision and the Recall, namely

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
=

TP
TP + (FP + FN)/2

. (9)

IoU is the intersection-over-union ratio, which is an indicator used to measure the
similarity of the overlap between the predicted pixels of fire and the ground truth, which
are the most commonly used and most frequent evaluation metrics in the community
of semantic image segmentation. The higher the IoU metric, the better the semantic
segmentation effect. The specific formula is shown as follows:

IoU =
TP

TP + FP + FN
. (10)

Among them, TP is the abbreviation for true positive, representing the number of pixels
predicted to belong to a fire and the actual number of pixels belonging to a fire; FP is the
abbreviation for false positive, indicating the number of pixels predicted to belong to a fire
but actually belonging to the background; FN is the abbreviation for false negative, indicating
the number of pixels predicted to belong to the background but actually belonging to the fire;
TN is the abbreviation for true negative, which refers to the number of pixels predicted to
belong to the background and actually also belonging to the background.

4.2. Parameters Settings and Ablation Experiments

Figure 6 shows the loss curve and accuracy curve of the FBC-ANet model. It can
be seen that the loss curve of the FBC-ANet model shows a stable convergence state
after 10 epochs, both in the training and validation sets. Correspondingly, its accuracy
curve also reaches stability after 10 epochs, with accuracy values close to 1 on both the
training and validation sets. Figure 7 shows the precision and recall curve of the FBC-ANet
model. In the first 30 epochs, the precision curve and recall curve of the model show
significant fluctuations in the validation set, although they are smooth in the training set.
This indicates that, as the number of epochs increases, the FBC-ANet model exhibits a
similar stable performance in the validation set as in the training set; that is, the FBC-ANet
model does not produce overfitting on the training set, which reflects its relatively reliable
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generalization ability. However, it should be pointed out that, due to the limitations of
the dataset size, the performance may not be satisfactory in other practical environments.
However, given the good performance on the FLAME dataset, we believe that training and
testing on larger datasets can still achieve a good performance.

Figure 6. The plots of loss and accuracy regressing on the training set and the validation set.

To demonstrate the contribution of each module to the performance of the FBC-ANet
model, ablation experiments were conducted. Table 7 shows the performance of the seman-
tic segmentation of forest fire images under different model architectures. Among them,
model 0 represents the baseline method PSPNet [30], and its feature extraction backbone
is ResNet50 [47]. Model 1 is a model that uses Xception [27] as the feature extraction
backbone network. Model 2 and Model 3 add a boundary enhancement module (BEM)
and context information awareness (CIA) module based on Model 1, respectively. Model 4
is a model that includes all improved modules, namely the FBC-ANet model proposed
in the current work. Comparing the effectiveness of various models in the semantic seg-
mentation of UAVs fire images, it can be seen that using Xception instead of ResNet50 as
the feature extraction backbone network significantly improves the effectiveness of the
semantic segmentation of fire images. Continuing to add BEM and CIA modules on top of
the Xception module can also help to improve the performance of semantic segmentation.
The FBC-ANet model generated by integrating three modules achieves the best semantic
segmentation performance, with an F1 value of 90.76% and an IoU value of 83.08%. In the
FBC-ANet model, each module complements each other and has a beneficial additive effect
on the semantic segmentation performance of the model.
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Figure 7. The plots of precision rate and recall rate on the training set and the validation set.

Table 7. Comparison of segmentation performance among different models. The best is shown in
bold font.

Model FEM BEM CIA Precision (%) Recall (%) F1 Score (%) IoU (%)

0 87.89 85.02 85.91 76.43
1 X 91.62 87.59 89.56 81.09
2 X X 91.91 86.94 89.36 80.76
3 X X 91.76 87.48 89.57 81.11
4 X X X 92.19 89.37 90.76 83.08

There are multiple optional settings during the training process of the FBC-ANet
model. Comparative experiments were conducted on various settings to select the optimal
configuration parameters.

Three loss functions and two upsampling modes were compared when training
the FBC-ANet model. The segmentation performance on the FLAME-Seg dataset is
shown in Table 8. The three kinds of loss function are: binary cross entropy loss LBCE ,
dice loss LDice , and the loss function combining them. The two upsampling modes
are bi-linear interpolation (Bi-Linear) and deconvolution operation (DeConv). The
results show that, regardless of whether Bi-Linear or DeConv is used for upsampling,
the FBC-ANet model with joint loss function achieves the best semantic segmentation
performance. Using LDice alone will bring adverse effects on backpropagation and
lead to unstable training. Therefore, the combination of LBCE and LDice can achieve
the highest segmentation performance. In addition, Bi-Linear has a slight advantage
in indicators of precision and F1 score, while DeConv is better in recall and IoU. In
order to reduce the number of training parameters, Bi-Linear with fewer parameters
was selected for up-sampling in the FBC-ANet model.
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Table 8. Comparison of different upsampling strategies and loss functions. The best is shown in bold font.

UpSampling Loss Function Precision (%) Recall (%) F1 Score (%) IoU (%)

Bi-Linear
LBCE 91.93 89.17 90.53 82.70
LDice 91.92 89.53 90.71 83.01

LBCE + LDice 92.19 89.37 90.76 83.08

DeConv
LBCE 91.83 89.06 90.44 82.56
LDice 91.99 89.19 90.57 82.77

LBCE + LDice 92.02 89.57 90.74 83.11

Table 9 shows the semantic segmentation performance of the FBC-ANet model under
different batches. Generally, the larger the batch size, the more accurate the descent
direction of the loss function. The smaller the batch size, the stronger the generalization
ability of the model, but it is also prone to falling into local optimization. It can be seen
that, when the batch size is set to 32, the FBC-ANet model achieves the best semantic
segmentation performance. It is worth noting that the batch size is also related to the
selection of the learning rate. Choosing an appropriate learning speed also helps the model
to achieve a better semantic segmentation performance.

Table 9. Effect of different batch sizes on the performance of forest fire semantic segmentation. The
best is shown in bold font.

Batch Size Precision (%) Recall (%) F1 Score (%) IoU (%)

4 92.08 88.22 90.11 81.99
8 92.13 89.02 90.54 82.76
16 91.92 89.45 90.67 82.94
32 92.19 89.37 90.76 83.08

Figure 8 shows the experimental results of two depth-separable convolution strate-
gies applied to the test set. Among them, Mask1 represents the results of adopting the
depthwise separable convolution, and Mask2 represents the strategy of first pointwise
convolution and then depthwise convolution adopted in Xception. Each image contains
512 × 512 pixels, most of which are background pixels, where only a small portion
are flame pixels. Figure 8 shows that both depth-separable convolution strategies can
accurately divide the area of forest fires. We compared the two constructions of deeply
separable convolution in order to exclude the effect of structural differences because
Xception is an extreme version of a natural extrapolation from the inception network’s
perspective. Except for some differences in fire details, the performance of the two
strategies is almost the same.

Figure 9 shows the confusion matrix on the test set. It can be seen that the TP and
the TN are much higher than the FP and the FN. This result strongly demonstrates the
powerful ability of the FBC-ANet model in distinguishing and segmenting fire pixels,
demonstrating its effectiveness in solving difficulties such as an imbalanced class distribu-
tion and complex environmental backgrounds.

Figure 10 shows the PR curve and ROC curve to further validate the performance of
the FBC-ANet model. PR curves and ROC curves are commonly used graphical tools for
evaluating the classifier performance. In the PR curve, the horizontal axis represents the
recall rate and the vertical axis represents the accuracy rate, giving the model the ability
to recognize the correct samples. In Figure 10, average precision (AP) is defined as the
area enclosed by the coordinate axis under the PR curve. The closer the AP is to 1, the
better the classification performance of the model. In the ROC curve, the horizontal axis
represents the false positive rate and the vertical axis represents the true positive rate,
which can be used to characterize the classifier’s ability to distinguish between positive and
negative samples. The area under curve (AUC) in Figure 10 is defined as the area under
the ROC curve around the coordinate axis. The closer the AUC is to 1, the stronger the



Drones 2022, 7, 456 16 of 21

discriminative ability of the model. The PR curve focuses more on positive samples, while
the ROC curve considers both positive and negative samples. When the ratio of flame
to background is similar, the difference between the two is not significant. However, in
the FLAME-Seg dataset, the ratio of flame to background is extremely unbalanced; that is,
the ratio of background pixels is extremely high. From Figure 10, it can be seen that the
FBC-ANet model can still correctly identify the relatively small ratio of fire pixels. The AP
value of the FBC-ANet model is 0.9662, which intuitively demonstrates the model’s ability
to recognize and distinguish fire pixels.

Figure 8. The results of adopting two schemes of separable convolution. Mask1 represent the results
of adopting the depthwise separable convolution, while Mask2 represent the results of adopting
separable convolution in Xception.

Figure 9. Confusion matrix.
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Figure 10. PR curve and ROC curve.

Comparison with Other Segmentation Methods

Table 10 shows the semantic segmentation performance of the FBC-ANet model and
the baseline model on the FLAME-Seg dataset. In Table 10, the first five models are five
classic semantic segmentation models, Mask SU-RCNN [24] is a recently proposed SOTA
semantic segmentation model specifically for forest fires, where a dual semantic attention
(DSA) mechanism is proposed and the DSA module is merged into ResNet as the backbone
network to enhance the representation ability of feature channels. From Table 10, it can be
seen that, compared with various baseline models, the model outperforms the classical
segmentation model, and the FBC-ANet model achieves the best semantic segmentation
performance, demonstrating competitive advantages under all evaluation indicators. Com-
pared to these baseline models, the outstanding advantages of the FBC-ANet model in
forest fire semantic segmentation tasks come from the three core modules of the model:
the feature extraction module, boundary enhancement module, and context information
perception module. It is precisely the mutual supplementation and strengthening of in-
formation among these three modules that enables the FBC-ANet model to accurately
segment fire pixels from complex fire backgrounds, which will lay an important technical
foundation for the construction of subsequent forest fire monitoring systems.

Table 10. Quantitative comparisons of FBC-ANet with other SOTA methods on FLAME dataset. w/o
means without, w/means with. The best is shown in bold font.

Method Precision (%) Recall (%) F1 Score (%) IoU (%)

UNet 84.75 76.22 80.82 67.23
SegNet [50] 85.21 78.65 81.80 71.12
RefineNet 88.80 82.95 85.78 76.22

PSPNet 87.89 85.02 85.91 76.43
DeepLab 90.01 85.10 87.01 80.20

FLAME 91.99 83.88. 87.75 78.17
MaskSU R-CNN

(w/o DSA) 88.63 88.89 88.76 80.77

MaskSU R-CNN
(w/DSA) 91.85 88.81 90.30 82.31

FBC-ANet 92.19 89.37 90.76 83.08

4.3. Visualization of Segmentation Results

Figure 11 shows the visualization results of fire semantic segmentation for each model
on the FLAME dataset. It can be seen that the FBC-ANet model can clearly recognize
the position of flames and accurately segment flame pixels even in complex backgrounds
obscured by thick smoke. Relatively speaking, the PSPNet model, which serves as the main
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reference for the FBC-ANet model, may lead to discontinuity in target prediction and fail
to recognize small forest fire areas hidden behind trees, such as the second row of flames
(image #561). Therefore, the FBC-ANet model can more accurately locate the fire source
target and can have a clearer target contour after introducing a boundary enhancement
module and a context information perception module.
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Figure 11. Visualization of forest fire image segmentation results.

5. Conclusions

Forests are the green treasure trove of humanity and the material foundation for
human survival. However, at the same time, forest resources are also seriously threatened
by fires. The early monitoring and prevention of forest fires based on UAVs is an effective
means to avoid the spread of fires and significant losses. The current work proposed an
FBC-ANet model based on an encoder–decoder framework for the semantic segmenta-
tion of fire images to accurately segment fire pixels in UAV images, thereby providing
technical support for the timely identification of fires. The FBC-ANet model uses depth-
wise separable convolution as the backbone feature extraction network combined with a
boundary enhancement module and context information perception module to enhance
the model’s recognition and segmentation performance for forest fire pixels. Compared
with classic semantic segmentation models such as U-Net, PSPNet, SegNet, RefineNet,
and DeepLabv3+, as well as the recently proposed SOTA model specifically for forest
fire semantic segmentation such as FLAME and MaskSU R-CNN, the FBC-ANet model
has shown strong competitive advantages. FBC-ANet can effectively overcome challeng-
ing issues such as small fire areas and background complexity, and has the ability to more
accurately segment fire pixels and detect the precise shape of fires. Nowadays, deep learning
technology is widely applied to the field of sensing and discovering forest fires. There are
still some challenging research directions in this field. In future research, we would engage in
expanding our model to classify whether flames occur in forests at night and dawn, even in
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complex urban environments, and to determine how to accurately detect and segment them
assisted by TIR images as well.
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