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Abstract: Utilizing drones for delivery is an effective approach to enhancing delivery efficiency and
lowering expenses. However, to overcome the delivery range and payload capacity limitations of
drones, the combination of trucks and drones is gaining more attention. By using trucks as a flight
platform for drones and supporting their take-off and landing, the delivery range and capacity can
be greatly extended. This research focused on mixed truck-drone delivery and utilized reinforcement
learning and real road networks to address its optimal scheduling issue. Furthermore, the state and
behavior of the vehicle were optimized to reduce meaningless behavior, especially the optimization
of truck travel trajectory and customer service time. Finally, a comparison with other reinforcement
learning algorithms with behavioral constraints demonstrated the reasonableness of the problem and
the advantages of the algorithm.

Keywords: reinforcement learning; drone; path planning; road network

1. Introduction

An unmanned aerial vehicle (UAV) is an automatic or remotely controlled flying vehi-
cle that can be classified by its wing type, power source, and other features. With the rapid
progress of science and technology, the use of UAVs has become increasingly extensive [1,2].
The applications of UAVs have expanded beyond national defense and security to include
industries such as agriculture, transportation, and photography. With the rapid growth of
e-commerce and logistics worldwide, time and manpower costs have become key factors
hindering further expansion. Efficient and fast transportation is needed to address this
problem, hence the proposal and study of drone-truck joint delivery [3]. Currently, many
large companies, including Amazon and Alibaba, are exploring the use of drones for fast
delivery. With the advancement of drone payload and positioning technology, some proto-
types and experimental studies have received further research [4,5]. In this article, UAV
and drone both refer to unmanned aerial vehicles and will not be distinguished further in
the following text.

The practical significance of truck-drone delivery lies in its potential to expand the
distribution mode, which can help establish new logistics methods. Currently, logistics
distribution faces challenges such as high labor costs, low efficiency, and poor transportation
safety. The combination of truck and drone can solve these problems effectively. On the
one hand, it can reduce labor costs and improve efficiency. Drones can reach remote areas,
such as mountains and islands, that are difficult for trucks to access, thereby reducing
delivery time and cost. On the other hand, truck-drone delivery can address the rising
cost of human resources and the aging population in developed countries. Drones can
reduce the workload and risks of delivery personnel, ensuring their health and safety.
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Moreover, truck-drone delivery can improve distribution safety and reduce the impact
of human factors on distribution. Overall, truck-drone delivery is an important direction
for the future of logistics distribution. It is expected to become a representative of new
logistics methods, promote the transformation and upgrading of the logistics industry,
and contribute to economic development and social progress.

Reinforcement learning is a popular direction in the field of AI in recent years [6–8].
Based on behaviorism psychology, it influences the decision-making of intelligent agents
by providing feedback rewards for their behavior, in order to achieve the final goal. Al-
though various algorithms and mechanisms have been developed to study the carrying ca-
pacity and time efficiency of truck-drone transportation, few have employed reinforcement
learning technology to simulate and systematically study the application of truck-drone in
the field of transportation logistics. In this study, reinforcement learning was used to solve
a truck-drone combined logistics delivery problem, and the effectiveness of the results
was enhanced by introducing different reinforcement learning algorithms for comparison.
The driving state of the delivery problem was divided into different categories, and rein-
forcement learning algorithms and mathematical models were used to solve the problem.
An attempt was made to build a reinforcement learning environment by introducing truck
routes and drone delivery times based on real maps and models, and to solve the problem
from the perspective of reinforcement learning.

The integration of reinforcement learning with the environment provides a more
effective means to simulate vehicle movement trajectories, road network conditions, and the
dynamic effects of decision-making in real road network environments. In the context
of driving trajectories and customer distribution, reinforcement learning enables direct
learning through simulation environments, whereas traditional heuristic algorithms often
rely on encoding or complex mathematical mappings for calculations. This approach
allows for a more intuitive and adaptable learning process, as the algorithm learns and
adapts to different scenarios without relying on explicit rules or extensive pre-defined
models. By leveraging the power of reinforcement learning, the algorithm can effectively
navigate and optimize vehicle movements in complex road networks, leading to improved
performance and more efficient decision-making.

Based on an analysis of the delivery problem under real road network conditions, this
study attempted to establish a unique reinforcement learning environment. This was carried
out by introducing truck routes and drone delivery times, among other attributes, based
on real maps and models, and solving the problem from the perspective of reinforcement
learning. The environment included the direction selection of vehicles at each intersection
and the drone delivery behavior at the parking point. The truck served as the mobile
launch and recovery site for the drone, achieving optimal transportation routes from
the perspective of a single target problem. The goal of solving the delivery problem
was to minimize customer waiting time, which was modeled as a single-target integer
programming problem. Reinforcement learning algorithms were then used to optimize
route selection by randomly generating customers in the fixed road network environment.
A new Gym-based general environment was created to support reinforcement learning.

The specific contributions of this article are as follows: (1) The use of deep reinforce-
ment learning to study the truck-drone problem, which expands the research ideas for
solving this problem; (2) for deep reinforcement learning, a general simulation environ-
ment for the truck-drone delivery problem was established for the first time using the Gym
library, providing a basic comparative case for future related research; (3) this research
focused on enhancing the learning efficiency of the agent in the context of truck-drone
delivery. By reducing the action space, the algorithm can focus on selecting more mean-
ingful and efficient actions, improving overall learning efficiency. The aim was to address
the truck-drone delivery problem more effectively and provide faster and more efficient
delivery solutions for customers.

The rest of the paper is organized as follows. Section 2 introduces the relevant research
and technical approaches in the field of truck-drone delivery in recent years. Section 3
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elaborates on the mathematical model of the problem and the simulation environment.
Section 4 introduces the reinforcement algorithm and element definition. Section 5 com-
pares the performance of the algorithm. Finally, Section 6 summarizes this paper and
proposes prospects for future research.

2. Related Work

The distribution problem has always been a major concern in academic and industrial
circles, particularly as the logistics industry becomes increasingly developed and important.
Currently, logistics distribution within a single city typically relies on trucks for large-scale
transportation to specific distribution sites, after which couriers transfer the goods through
small vehicles or customers pick them up at home. However, this traditional logistics
distribution mode has difficulty meeting the needs of efficient, convenient, and safe modern
logistics. Furthermore, as the cost of manpower and time continues to rise, academia and
industry have begun exploring the use of drones for distribution to solve the last kilometer
distribution difficulties. Many solutions have been proposed in the literature, such as
optimizing distribution routes, utilizing unmanned vehicles, and updating distribution
methods to minimize last-mile logistics expenditure. As a new logistics distribution tool,
drones offer the advantages of small size, high flexibility, fast speed, wide distribution
range, and low cost, and are considered to be an important development direction for
logistics distribution in the future. Consequently, academia and industry are actively
exploring the research and development of drone delivery technology to achieve intelligent
and automated logistics distribution [9,10].

In recent years, with the development of technology and cost reduction, drone technol-
ogy has rapidly progressed and the feasibility of applying drones to the logistics industry
has been extensively researched. Numerous optimization models have been developed
for various purposes, such as surveillance [11,12], disaster relief activities [13], and pack-
age delivery [14]. The drone delivery problem model is a modified version of the vehicle
routing problem. Drones possess higher speed, maneuverability, and fast positioning
capabilities compared to ground vehicles, making them more predictable in route trajec-
tories and faster in delivery capabilities. However, drones also have certain limitations,
such as the problem of flight radius affected by energy, restrictions on carrying capacity,
and potential dangers caused by malfunctions, which are currently facing challenges for
large-scale applications of drones. Therefore, researchers have proposed a truck-drone
delivery model that uses trucks as mobile platforms for launching drones and carriers for
large-scale transportation of goods. This model coordinates the fast transportation capabil-
ity of drones with the loading capacity of trucks to achieve fast, low-cost, and convenient
characteristics [15–17].

Similarly, the combined truck-drone delivery model has different constraints and
requirements to similar tasks in traditional trucking. In particular, the truck-drone distri-
bution model requires more consideration of drone flight distance, drone route planning,
drone safety, and other parameters. Compared to traditional human delivery, the truck-
drone delivery problem requires more consideration of the combined location of the parking
or drone launch point and the customer, rather than the distance between the two. There-
fore, the truck-drone joint distribution mode requires a more intelligent and automated
scheme to meet the real-time scheduling, path planning, and flight safety requirements in
the distribution process. In short, as a new logistics distribution mode, the truck-drone joint
distribution mode requires in-depth research and exploration in many aspects to achieve
efficient, safe, and sustainable distribution.

John Gunnar Carlsson et al. [18] determined a logistics system in which drones serve
as service providers, traveling back and forth on moving trucks. By combining Euclidean
plane theory with simulated real road network data, they determined the superiority of
this method in terms of efficiency and related formulas. Some researchers used a mixed
integer linear programming (MILP) model for transport route optimization planning in
multimodal systems combining truck and drone operations and proposed an effective
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truck-drone routing algorithm (TDRA). Based on various problem cases, they confirmed
that the truck-drone scheme is better than the pure truck delivery scheme.

The study conducted by Mohammad Moshref-Javadi et al. focused on the utilization
of drones to address the Traveling Salesman Problem (TSP) [19]. Some research focused
on a scenario where both a drone and a truck were utilized [20]. The authors assumed
that the truck could park at the customer’s location and deploy the drone for multiple
deliveries while in a stationary state, effectively extending the Traveling Repair Problem
(TRP). To address this problem, a mixed taboo search simulated annealing algorithm was
employed, and extensive experiments and comparisons were conducted .

Pedro L. Gonzalez-R et al. studied the “last mile” problem in urban logistics distri-
bution and took into account the energy constraints of drones, as well as the truck-drone
delivery problem when drones require battery replacements or charging. They utilized
a greedy heuristic algorithm for optimization [21] and proposed a mathematical model
to address the energy limitations of drones, which expanded the use of drones in urban
logistics. Furthermore, researchers investigated a new truck-drone collaborative delivery
system in response to the COVID-19 pandemic. This system eliminates contact transmission
and reduces the risk of disease spread. The researchers implemented an encoder-decoder
framework combined with reinforcement learning to solve the routing problem without
the need for manual heuristic design, resulting in improved generality.

A comprehensive study addressing the joint allocation problem of drones and ve-
hicles is presented in reference [22]. Unlike general research on the combination of two
transportation tools, this study introduced a third tool, consisting of drones and vans for
delivery, while trucks were responsible for transporting goods and related equipment to
designated stations. The study aimed to reduce the total delivery cost, with the fixed cost
of each drone parking lot corresponding to the cost of using a drone station. Additionally,
the study proposed a discrete optimization model for the problem, in addition to using a
two-stage heuristic algorithm. The test results evaluating the applicability and efficiency of
the algorithm demonstrated that combining traditional delivery methods with drones and
drone stations can significantly reduce costs and increase profit margins.

Most of the articles mentioned above employed heuristic algorithms, such as tradi-
tional genetic algorithms, to optimize the truck-drone joint delivery model [23,24]. How-
ever, this paper innovatively adopted reinforcement learning and the Gym environment
library to simulate and optimize the truck-drone joint distribution model based on basic
road network information. Compared to traditional algorithms, the proposed method can
better handle real-time scheduling and path planning requirements in the actual situation
and can be carried out multiple times in the simulation environment to obtain more ac-
curate and reliable results. Specifically, the reinforcement learning algorithm used in this
paper can constantly adjust the strategy during practical operations to achieve optimal
delivery results. Furthermore, the Gym environment library provides an open simulation
environment based on reinforcement learning, which facilitates simulation experiments
and parameter adjustments.

Currently, routing for pure truck delivery with waiting time as the indicator is referred
to as the Minimum Latency Problem (MLP) or the TRP [25,26]. They are customer-centric,
with the goal of minimizing customer waiting time. As businesses and logistics organiza-
tions increasingly focus on customer satisfaction and faster delivery lead times, and with
the special advantages of drones in speedy delivery, this study aimed to minimize cus-
tomer waiting time. By adopting a truck-drone joint delivery model, customer waiting
time can be effectively reduced and delivery efficiency and customer satisfaction can be
improved [27,28].

3. Problem Statement and Mathematical Model

In this section, we will introduce the delivery model and road network situation of
the truck-drone joint delivery model considered in this article and explain the differences
to traditional truck delivery systems. At the same time, we will also explain in detail the
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assumptions made by the model and provide a preliminary explanation of the generation
and setting of the environment.

3.1. Problem Description

In the truck-drone delivery model, a hybrid delivery system consists of a truck and
a set of drones is used. The truck acts as a cargo loading platform and a drone launch
platform, leveraging its high load capacity and characteristics as a freight transportation
vehicle. As a drone launch platform, the truck provides energy, maintenance, command,
and drone positioning services. As a cargo loading platform, it compensates for the limited
transport capacity of drones and reduces transportation costs compared to pure drone
transport. The drones are launched from the truck at specific locations such as warehouses
or parking lots, allowing the truck to effectively expand the service radius of the drones.
The objective of this study was to minimize customer waiting time by determining the
truck’s traveling path in a stochastic environment.

Figure 1 clearly illustrates the research problem addressed in this article. The figure
depicts a delivery environment composed of elements such as parking spots, distribution
centers, and road networks. The truck initially departs from the distribution center and
travels along city roads. Upon reaching a designated parking spot, the vehicle stops,
and the drone is launched for delivery based on customer location information. Due to
the characteristics of the drone, we can consider the straight-line distance between the
parking spot and the customer as the drone’s flight trajectory. Additionally, considering
the limited flight radius of the drone, we set a radius around the truck as a constraint to
confine its flight behavior and prevent the drone from going beyond the control range.
After completing the delivery tasks within the designated area, the truck carries the drone
and proceeds to make action selections at the available turning points, determining the
direction of travel until the tasks are completed.

Figure 1. Truck-drone distribution model.

Figure 2 shows the road network information of a Chinese city obtained using the
SUMO software and OpenStreetMap satellite image. This study evaluated population
density and set up customer distribution areas with several residential points as distribution
centers using one truck and five drones in this road network environment. This simulation
scheme is practically significant and useful for reinforcing the decision-making skills
of reinforcement learning agents in exploration. By defining parking points, this study
determined the flight strategy of the drones while minimizing other influencing factors
during the flight process of the drones.
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Figure 2. Road network information map.

This study compressed the action space by combining the characteristics of vehicle
transportation and compressing the selection time and early learning costs. This avoids
falling into the “dimension disaster” and better integrates the algorithm characteristics.
The Deep Q-Network(DQN) algorithm used in this study uses the memory pool to help the
intelligent agent estimate the number of customers and the time it takes, to some extent.

On the basis of the constraints and objective function, the model developed in this
study was based on the following assumptions: the velocities of both drones and trucks
were assumed to be constant and the impact of weather factors, such as wind speed and
temperature, on drones was not considered. Additionally, any failures of vehicles or drones
were not taken into account. Building upon these assumptions, this research addressed the
truck-drone delivery problem through simulation-based optimization. By formulating a
mathematical model and transforming it into a reinforcement learning environment, we
aimed to optimize vehicle routes within the simulated environment to minimize customer
waiting time.

3.2. Notations

The model proposed in this paper was based on existing mathematical models re-
ported in various studies, such as [29,30], and considered additional parameters related to
truck traveling speed and other aspects of the TSP. However, based on the algorithm and
simulation scenarios presented in this paper, we have made extensions and innovations
to certain formulas and definitions, enabling the model to better adapt to a reinforcement
learning environment and making it more suitable for applications involving a fixed-point
launch of UAVs and customer distribution.

3.2.1. Mathematical Notations

1. P The number of parking points;
2. C Number of customers;
3. U Number of vehicle-mounted drones;
4. Umax

d Maximum flight distance of drone (flight radius);
5. Vs Truck speed;
6. Us Drone flight speed;
7. dV

i,j The distance of the truck from parking point i to parking point j, where i, j ∈ P;

8. dU
i,k The distance of drone from parking point i to customer k, where i ∈ P , k ∈ C ;

9. tT
i,j = dV

i,j/Vs ,the travel time of the truck from parking point i to parking point j,
where i, j ∈ P;

10. tD
i,k = 2 ∗ dU

i,k/Us ,the flight time of the drone from parking point i to customer k,
where i ∈ P , k ∈ C;
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11. Ua If drone a in the truck is used, it is 1; otherwise, it is 0, where a ∈ U;
12. PT

i Total time spent at parking point i, where i ∈ P;
13. Cmax

k Maximum waiting time limit for an individual customer k, where k ∈ C;
14. Ci,k Waiting time for an individual customer k receiving delivery service at parking

spot i, where k ∈ C , i ∈ P;
15. CT

k Total waiting time for customers, where k ∈ C.

3.2.2. Decision Variables

Pi =

{
1, Parking spot i is visited

0, otherwise.

3.2.3. Objective Function

min CT
k CT

k = ∑
i∈P

Pi ∗ (∑
i∈P

∑
j∈P

tT
i,j + ∑

i∈P
∑
k∈C

tD
i,k).

3.2.4. Constraints

(1) The customers to be serviced should be within the flight radius of the drone taking
off from the parking spot.

dU
i,k ≤ Umax

d ;

(2) A drone can only be occupied by one customer for the duration of its service.

max ∑
a∈U

Ua ≤ U;

(3) A parking spot has only one truck docking.

Pi ≤ 1;

(4) It must be delivered within the customer’s waiting time limit, or it will be punished
for exceeding the time limit.

Cmax
k −Ci,k

{
> 0, award

< 0, punishment.

The objective of the objective function is to minimize the total waiting time for all
customers. The drone will deliver packages as much as possible within the customer service
time limit and try to visit each customer. Constraint (1) ensures that the drone will not
cause adverse effects due to exceeding the control distance or flight radius. Constraint (2)
ensures that the drone only serves one corresponding customer at the same time to avoid
safety issues. Constraint (3) is used to ensure that only one truck is parked at each parking
spot to avoid efficiency losses caused by arbitrary parking. Constraint (4) is used to specify
the service time and corresponds to the reward in reinforcement learning.

Due to the utilization of reinforcement learning in a simulated Gym environment
for testing purposes in this study, it is important to note that the obtained results may
not necessarily represent the optimal solution but rather an approximation of it. This is
attributed to the considerable computational resources required to solve the problem within
this simulation environment. The research was constrained by hardware limitations and
computational power, thus preventing the attainment of an optimal solution, particularly
concerning the trajectory problem for UAVs. In this study, UAVs were employed solely as
delivery vehicles, simplifying the flight trajectory to a direct Euclidean distance between
two points. Nonetheless, as evidenced in Tables 1–3, the solving capability of reinforcement
learning progressively improves and converges towards the optimal solution by increasing
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the number of test steps. The simulation environment offers various advantages, including
the ability to conduct generic algorithm testing, generate random customer scenarios,
and make informed decisions regarding truck speed and driving trajectory based on real-
world conditions.

Table 1. Action constraint contrast.

Action Constraints Withput Action Constraint

Turning Point Non-Turning Point Turning Point Non-Turning Point

N-N,S,W,E S-S N-N,S,W,E S-S,N
N-N,S,W,E N-N N-N,S,W,E N-N,S
N-N,S,W,E W-W N-N,S,W,E W-W,E
N-N,S,W,E E-E N-N,S,W,E E-E,W

Table 2. Experimental results of DQN algorithm.

No Number of Test
Rounds

Number of Steps
per Game Memory Pool Attenuation

Coefficient Run Time (S) Maximum Reward

1 200 600 1500 0.8 321.3 3102
2 200 600 500 0.999 305.7 2768
3 200 600 1500 0.999 310.3 2533

4 100 800 800 0.999 199.9 5257
5 100 800 2000 0.8 200.8 5214
6 200 800 2000 0.999 416 5476

7 100 1200 2000 0.9999 306.3 11,108
8 100 1200 8000 0.9999 290.6 12,795
9 100 1200 16,000 0.9999 280.2 13,686
10 100 2000 16,000 0.9999 498.8 28,790

Table 3. Comparison of DQN with A3C algorithm.

Test Rounds Steps per Game
Maximum Reward Running Time

DQN A3C DQN A3C

100 600 2325 1735 135.6 s 133.6 s
200 600 3806 3525 284.9 s 237.3 s
400 600 2678 2565 608.8 s 455.0 s
100 1200 14,152 8246 277.2 s 245.4
200 1200 14,442 9237 617.0 s 459.4 s
100 2000 28,790 22,364 498.8 s 409.6 s

4. Reinforcement Learning for the Truck-Drone Delivery Problem

In this section, we will explain the characteristics and application of reinforcement
learning algorithms that have been utilized to solve the problem. We will also introduce the
origin of the road network information and discuss the issues regarding the environment
setup. This study employed deep reinforcement learning technology, which involves intro-
ducing neural networks into basic reinforcement learning and expanding and improving
them according to the problem characteristics. The action space and decision-making
quantity are compressed so that the agent can make decisions based on specific states.
Moreover, a universal environment was constructed using the third-party library Gym,
which allows for different deep reinforcement learning algorithms to be universally tested,
improving code utilization and enabling more detailed comparisons between various
models and algorithms.
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4.1. Reinforcement Learning and Deep Q-Network

Reinforcement learning is a machine learning paradigm that takes inspiration from
behaviorist psychology. It focuses on enabling intelligent agents to learn through explo-
ration and interaction with their environment to obtain rewards. The ultimate goal is
to discover the optimal behavior pattern that maximizes rewards or achieves objectives
within the environment. The most common and fundamental model of reinforcement
learning is derived from Markov decision processes. Early deep reinforcement learning
was initially used to perform comparative experiments in simple games and achieved
excellent results [31]. By introducing neural networks, deep reinforcement learning can
leverage their technical characteristics to perform various functions, such as parallel testing,
memory pooling, adversarial generation, and policy evaluation. In this study, we utilized
the characteristics of deep reinforcement learning and the high generality offered by the
Gym environment. Through testing multiple algorithms, we implemented a solution to the
truck-drone delivery problem based on deep reinforcement learning.

In the early experiments, the study gave the agent full decision-making power over
the entire route and only provided certain basic rules based on the driving model. This
environment with fewer action constraints produced some initial solutions but caused a lot
of wasted time during the exploration and learning phase, with the truck often making U-
turns and traveling back and forth to find the correct path. Based on this situation, the study
made certain improvements to the action space by specifying that, after one decision, if there
were no available turning nodes, the action would be forcibly changed to continue driving
until a turning node was encountered for the agent to make the next decision. This method
effectively reduced the action and state space, reduced the exploration and learning time,
and greatly improved the feasibility of road network simulation testing.

Reward objective function:

max(
P

∑
i=1

Cmax
k − ∑

k∈C

P

∑
i=2

Ci,k −
P

∑
i=1

CT
i ).

This study primarily adopted the DQN algorithm in deep reinforcement learning [32].
DQN is a value-based reinforcement learning algorithm derived from the Q-Learning
algorithm, chosen for its advantageous features in simulation environment testing. Firstly,
as a value-based approach, DQN is well-suited to addressing the objective function and
constraints of this study. Secondly, DQN has undergone extensive discussions and ex-
perimentation by researchers, demonstrating a remarkable performance in routing and
logistics domains. Additionally, DQN introduces a memory pool mechanism that, when
combined with neural networks, enables optimized recording of actions, such as turning at
intersections, surpassing other algorithms such as A3C. Furthermore, the powerful process-
ing capability of neural networks helps alleviate the “dimension disaster” and enhances
generalization ability. In the following section, we will provide a brief overview of the
underlying principles of the DQN algorithm.

A Q-Learning algorithm is value based. The Q value, Q(St, At), determines how
good an action At, taken at state St, is. When the agent takes some action At(At ∈ A),
the environment E will give feedback to the new state reached by the action and reward
r obtained by the action. Therefore, the main idea of this algorithm is to obtain the
corresponding Q table through the state S and behavior A to store Q values. Research and
selection are made according to the Q values obtained.

At the same time, both DQN and Q-Learning solve the optimal sequence in the Markov
decision process through the Bellman equation, which is consistent with the form of our
research object. The state value function Vπ(s) is used to determine the value of the current
state, and the value of each state is not only determined by the value of the current state
itself but also by the reachable states that follow. Therefore, the expected cumulative reward
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of the requested state can guide the state value of the current state. The Bellman equation
for the state value function is as follows:

Vπ(s) = Eπ [rt+1 + γV(St+1)|St = S]. (1)

In Formula (1), γ is the attenuation coefficient. When the attenuation coefficient
approaches 1, it means that the corresponding agent can see the value of the future state
more clearly. Pay more attention to the cumulative value of subsequent states.

Although Q-Learning can quickly solve problems with relatively small state and action
spaces [33], once the problem becomes complex or has a complex state or action space, it
becomes difficult to construct the Q-table, especially for the value matrix disassembled
from the input object, where too many parts or operations will lead to an exponential
increase in time cost and data, resulting in the “dimensional disaster”.

As illustrated in Algorithm 1, DQN is a combination of Q-Learning and neural network
algorithms. When confronted with the “dimensional disaster” arising from large state
and action spaces, neural networks are employed to replace the Q table and circumvent
memory limitations.

As shown in Figure 3, the basic idea is to utilize the memory of a neural network and
process a large amount of data using a deep convolutional neural network approximation
function. The DQN algorithm then learns from old or processed data using the experience
replay mechanism, using the estimated Q value to approach the target Q value.

Figure 3. Agent and environment interaction diagram with DQN.

The pseudo-code for DQN training is listed below:

Algorithm 1 DQN training.

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ− = θ
for episode 1,M do Initialize sequence S1= {x1} and preprocessed sequence φ1 = φ(s1)

for t=1,T do
With probability ε, select a random action at
Otherwise, select at = argmaxaQ(φ(st), a; θ)
Execute action at in the emulator and observe the reward rt and image xt+1
Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)

Store experience (φt, at, rt, φt+1) in D
Sample random minibatch of experiences (φt, at, rt, φt+1) from D

Set yj= {
rj if episode terminates at step

rj + γmaxa′ Q̂(φj+1, a′; θ−) otherwise

Perform a gradient descent step on (yi −Q(φj, a; θ))2 for the weights θ

Every C steps reset Q̂ = Q
end for

end for
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The DQN method for solving the problem of a large state space is value function
approximation (function approximation). The principle is to represent the function instead
of the Q-table. This function can be linear or nonlinear.

v̂(s, w) ≈ vπ(s) or q̂(s, a, w) ≈ qπ(s, a),

Where w is the weight used to extract the feature values of the input state using
a neural network or regression algorithm, and the output is calculated using TD. Then,
the function is trained and converged to the point where the estimated value and the true
value are close enough.

For the exploration of trial-and-error behavior mentioned above, the solution is greedy
exploration. Every time the agent selects an action, it randomly selects an action with a
certain probability ε and, in other cases, it selects the action with the maximum Q value
among the currently available actions.

4.2. Case Description

The test case used in this article was based on a road network file generated from
satellite images. Using the information from the road network file, the article converts it
into a Gym environment for testing the algorithms.

Considering the real-world situation of the “last mile” problem, the research test
environment is a city district in a certain city in China, which is also the residence of some
of the researchers. This helps to set the distribution area and density of customers in the
environment. At the same time, considering that many countries and regions have strict
regulations on the entry of large trucks into urban areas, this article takes into account
some real situations and considers the test vehicle as a small to medium-sized truck with a
load of five drones and approximately 80 packages. It is assumed that the weight of the
packages is within the load range of the drones.

The following is the setting of the case and environment in this article.

4.2.1. Environment

The use of the Gym library for building the reinforcement learning environment in this
paper is beneficial in several ways. Firstly, it provides a high degree of versatility, allowing
the environment to be used with most numerical calculation libraries. This flexibility makes
it easier to integrate the environment with different machine learning algorithms and
frameworks. Secondly, Gym provides a shared interface, allowing for the easy comparison
and experimentation of different algorithms. This can help to identify the strengths and
weaknesses of different approaches and guide further research [34].

The environment itself is designed to be realistic, incorporating road network in-
formation, parking points, and customer generation based on normal distribution. This
makes the simulation more representative of real-world scenarios and can help to avoid
overfitting or ineffective learning caused by unrealistic or uniform data. Overall, the com-
bination of a realistic environment and the flexibility provided by the Gym library creates
a strong foundation for tackling logistics and distribution problems using reinforcement
learning techniques.

In this study, we made certain simplifications and assumptions regarding the flight
aspects of UAVs. Due to hardware and practical limitations, we did not take into account
factors such as airspace restrictions, wind speed, and flight control systems that can affect
the UAV’s flight path. Therefore, during the simulation and testing process, we assumed
that the UAV would fly along the shortest distance between two points after takeoff.
These simplifications were made for the sake of practical feasibility and computational
complexity. In real-world environments, UAV flights involve numerous factors, such as
airspace regulations, wind speed, and the operational status of flight control systems.
Precise calculation and planning of UAV routes would require considering these factors,
which are beyond the scope and feasibility of this study.
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4.2.2. State

For different application problems, the definition of state also varies. Based on the
characteristics of the truck-drone delivery mode and the road network information, most
current research discretizes the continuous time when the truck moves in the environment
and defines the discretized time slots as states. However, the definition of time slots
varies depending on different scenarios, and is limited by environmental factors such as
speed, stops, and distance. For example, some traditional heuristic algorithms treat the
truck’s movement between nodes as the basic state, while most reinforcement learning-
based research defines a fixed time period as the state. At the same time, the composition
of states is also an important distinguishing point. In this study, the entire map was
represented as a two-dimensional plane using Gym and corresponding mathematical
libraries, and Euclidean geometry was used to represent the coordinates of the truck, drone,
and customers, which were set as part of the state.

In this study, the state S in reinforcement learning consisted of several elements,
including coordinates x and y, time t, score s, and driving direction d. The updates of
x and y coordinates are determined by built-in parameters such as velocity and driving
direction. The time t is updated with each algorithm step. The score s is determined by the
formula Cmax

k − Ci,k, Cmax
k represents the maximum waiting time for customers, while Ci,k,

represents the current waiting time for a specific customer.

S = ((x, y), s, d, t ).

The coordinates x and y provide spatial information about the agent’s position in the
environment. They help determine the agent’s position relative to other entities such as
the truck, drone, or customers. The time t captures the temporal aspect of the environment
and allows the agent to track the progress and sequence of events during the delivery
process. The score s represents the performance or utility of the agent’s actions. It reflects
the difference between expected and actual outcomes, guiding the agent to make more
optimized decisions.

The driving direction d indicates the expected direction of the agent’s movement. It
plays a crucial role in determining the next state and subsequent actions that the agent will
take. By combining these elements into the state representation, the agent can effectively
perceive and interpret the environment, making wise decisions based on the current spatial
and temporal context.

Speed is the main parameter of the truck-UAV distribution problem. In this paper,
the truck speed was set as a fixed value under certain road conditions, without considering
the influence of traffic lights or traffic accidents. At the same time, in order to get closer
to the distribution model in the real business environment, this study set a maximum
waiting time for the customer and used the time limit as the intermediate point to train the
agent with two modes of reward and punishment. Figure 4 shows the state changes in the
simulated environment in this article.

The environment depicted in Figure 4 is consistent with Figure 5, allowing us to
determine the locations of parking spots and approximate customer distribution through
a comparison between the two figures. In Figure 4a, the truck has just departed and
has not yet passed any parking spots or launched the drone. As the system operates
and the state progresses to Figure 4b, we can clearly observe that the truck has passed
four rectangular boxes representing the parking spots and served a significant number of
customers, as evidenced by the reduction in pixel points representing customers along the
route in Figure 4b. Additionally, arrows have been roughly annotated to indicate the initial
direction of travel for the truck and its subsequent trajectory. The state in Figure 4a can be
represented as S = ((1425, 650), 0, N, 20), while the state in Figure 4b can be represented
as S = ((320, 760), 920, W, 280).
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(a) (b)

Figure 4. States. (a) The state after 20 timesteps of training; (b) The state after 20 timesteps of training.

Figure 5. Simulated environment.

Overall, the composition of the state S with coordinates x and y, time t, score s,
and driving direction d enables the agent to capture relevant information about its position,
temporal progress, performance, and expected movements. This comprehensive state
representation aids the agent’s decision-making process and enhances its ability to navigate
effectively and interact with the delivery environment.

4.2.3. Action

The ability to select and plan actions is a critical metric for evaluating reinforcement
learning algorithms. An agent transitions from one state to the next through its behavior.
In many reinforcement learning studies on driving, each individual time slice has a distinct
control action or even multiple actions combined. However, this paper’s primary research
objective was the truck-drone distribution mode. Therefore, certain constraints were
implemented on the movement space based on the original driving trajectory model to
avoid problems caused by a large number of movements. The truck’s driving path is
constrained to an individual lane to avoid complications in the environment. Additionally,
the vehicle’s action choice is unrestricted at intersections to enable the agent to make better
decisions in specific states. This reduction in motion space also promotes the consistency of
state transitions, improving the DQN algorithm’s memory pool advantage for decision-
making in a specific state.

4.2.4. Reward

In the model establishment phase, the study added drone elements based on the early
truck delivery research and considered some relevant parameters based on some truck
delivery models and UAV logistics research ideas. The simulation system was optimized
as much as possible and the number of parameters with smaller impact coefficients was
minimized. In addition to treating all parking points and turning intersections in the entire
traffic network as one type of action to adapt to deep reinforcement learning, this study
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also used early random exploration strategies for testing to compare the advantages of
reinforcement learning techniques.

Regarding the objective function, through some social surveys and related literature
research, the study set the objective value to minimize the waiting time of all customers
within a certain time limit; specifically, each customer has a fixed time limit. When the
truck and drones complete the delivery within the time limit, the customer feedback will be
positive and the reward will be the difference between the time limit and the delivery time.
When the truck and drones fail to complete the delivery within the time limit, the feedback
from each customer will be negative and the punishment will be determined by how much
the delivery time exceeds the time limit. This setting is not only more realistic than the
traditional approach of minimizing the total waiting time of customers but also facilitates
the setting of rewards in reinforcement learning and accelerates the learning efficiency of
the agent.

5. Experiment and Results

In this section, we tested the constructed Gym environment. First, we studied the
learning efficiency and results with and without action constraints. Secondly, we conducted
multiple tests on the model to obtain the impact of different parameters on the results.
Finally, we evaluated the effectiveness of the environment and algorithm used, compar-
ing them with constrained random exploration and the A3C algorithm to evaluate the
algorithm’s ability. All experiments were conducted using a unified environment, with a
hardware environment of CPU AMD R7-5800H-3.2GHz, RAM of 16 GB DDR4 3200MHz,
and a graphics card of RTX3060 8 GB. The software environment was Python 3.7.12 and
Gym 0.21.0.

As shown in Figure 5, we proposed a Gym environment for testing delivery algo-
rithms. Based on a third-tier city in China with a residential population of approximately
1.06 million, we designed a specific case with 19 parking points, seven customer gather-
ing points, 200 customers, one truck, and five drones. These customers were randomly
distributed in a square area centered on seven gathering points, following a normal distri-
bution. As the flight radius of the drones was relatively large, the delivery areas centered
on the 19 parking points overlapped to some extent. In this case, the truck started delivery
from a fixed location.

Using the Gym environment, we were able to simulate a real logistics delivery sce-
nario, test different delivery algorithms, and compare their performance through simula-
tions. In this environment, we were able to observe the running status and effects of the
algorithm in real-time and adjust and optimize parameters accordingly. Through such
simulation experiments, we were able to gain a better understanding of the performance
and optimization direction of the algorithm, providing better support for logistics delivery
in real scenarios.

The following is the simulated environment generated for this study:
After multiple rounds of testing using the algorithm on the proposed model and

environment, the results were as shown in Table 1. When using the DQN algorithm,
expanding the memory pool and approaching a decay factor of 1, to some extent, increases
the efficiency of learning by increasing the probability of a greedy strategy. Meanwhile,
in terms of the environment, increasing the total number of steps or providing more time
for delivery can also affect the results.

In the road network environment set up for this case, In the road network environment
set up for this case, as demonstrated in Table 2 and Figure 6, the use of action constraints
can increase the efficiency of the agent’s learning. as demonstrated by tests 1–3, increasing
the memory pool effectively improves the results and saves time. Furthermore, comparing
tests 7–10 with the same number of test rounds, it can be observed that increasing the
maximum number of steps per test allows the agent to better search for and serve customers,
enabling it to find and serve more customers within the service time limit. In situations
where the agent is limited by a finite number of steps and cannot explore the entire global
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map, it will still strive to find the optimal solution within its feasible range. The comparison
of tests 4–6 indicates that, even with a limited number of steps, the algorithm demonstrates
the ability to approximate the optimal solution within a certain activity range.

Figure 6. Effect of action constraints.

As can be seen from the comparison in Figure 7, without action constraints, the algo-
rithm accumulates rewards much more slowly and the estimation of future value is not
stable enough. This is because the agent spends too much time exploring and backtracking
and cannot effectively explore other locations.

(a) (b)

Figure 7. Action constraint comparison. (a) Reword with action constraints; (b) Reword without
action constraints.

From analyzing the single-round reward curve and the total reward curve, it is evident
that the environment with action constraints displays a faster and more stable upward
trend. In the last 20 rounds, it even achieves five times the total gain of the environment
without action constraints. The single-round reward curve also confirms this, with the
environment with action constraints showing a smoother increase while the environment
without action constraints often enters a plateau period. Therefore, action constraints play
a crucial role in the agent’s learning process and can aid the agent in learning faster and
achieving better results.

After demonstrating the superiority of the DQN algorithm over other algorithms, we
tested its scalability. To address the problem of difficult convergence in random environ-
ments, we conducted 1200 games of 2000 steps each and 100 games of 3000 steps each
using the DQN algorithm. We found that, although the DQN algorithm cannot guarantee
long-term stable convergence, it can obtain stable and good results within a certain period
and gradually improve its solving ability as the number of steps increases. Finally, we
compared the DQN and A3C algorithms in Table 2 and demonstrated the effectiveness of
the DQN algorithm in our research environment.
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Overall, the experimental results of this case show that using the DQN algorithm
for intelligent vehicle-drone delivery has significant advantages. Further improvements
in algorithm learning efficiency and performance can be achieved through parameter
adjustments and the use of action constraints and other techniques. These experimental
results have significant reference value for the development and optimization of future
intelligent vehicle-drone delivery systems [35].

6. Conclusions and Future Research

In this article, we created a simulation environment that is based on a truck-drone
combination and uses real road network information to consider delivery tasks performed
by a truck-drone combination in a fixed-point environment. We created a truck-drone
delivery model with the objective of minimizing the total customer waiting time based
on the original truck delivery model. We used the DQN algorithm to learn the optimal
delivery schedule. Action constraints were proposed based on the problem characteristics
to reduce action space, improve DQN learning efficiency, and reduce time cost.

Our comparative experiments yielded important conclusions regarding the DQN
algorithm and its results. We found that an environment with action constraints can
effectively improve the algorithm’s learning efficiency and solution ability compared
to an environment without action constraints. In an environment that minimizes total
customer waiting time, we found that the DQN algorithm is better than the A3C algorithm.
Additionally, when facing a large state space, amplifying the memory pool and decay
coefficient in the DQN algorithm parameters helps the agent better estimate future rewards.
Our results also showed that serving more customers does not necessarily mean getting
more rewards when minimizing total customer waiting time. Therefore, further research
on customer location, vehicle driving trajectory, and service methods under the truck-drone
delivery mode will be valuable [36–41].

In terms of the environment, the Gym environment enables reinforcement learning to
more universally test the environment, making it easier to compare and adjust different
algorithms. The construction of the Gym environment also facilitates the combination of
algorithms and mathematical models, as well as the introduction of dynamic environments.
It is believed that more and more researchers will construct more universal and valuable
reinforcement learning environments in the future [42].

With the continuous development of e-commerce and the logistics industry, the truck-
drone delivery model will become increasingly valuable for research. Based on the current
research situation, we will explore several possible research directions for the truck-drone
transportation model in the future. Firstly, we can consider more complex and general envi-
ronments by introducing a professional road network simulator, such as SUMO, based on
the Gym environment. This will greatly enhance the feasibility and realism of this research
direction and simplify the difficulties in environment construction for certain research
aspects. Secondly, introducing multi-agent reinforcement learning algorithms for multiple
trucks and drones delivery could be a breakthrough, especially when considering the coor-
dinated delivery of multiple drones, which is beneficial for the practical implementation of
the truck-drone delivery model. Finally, combining the truck-drone delivery model with
reinforcement learning can leverage the advantages of reinforcement learning, particularly
multi-agent reinforcement learning, to further investigate the multiple-agent delivery mod-
els mentioned earlier. Specifically, using multi-agent algorithms such as Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) and Nash Q-Learning can help us delve deeper
into the research direction of cooperative game theory in the delivery problem.
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