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Abstract: Uncrewed Aerial Vehicles (UAVs) are instrumental in advancing the field of remote sensing.
Nevertheless, the complexity of the background and the dense distribution of objects both present
considerable challenges for object detection in UAV remote sensing images. This paper proposes a
Multi-Branch Parallel Network (MBPN) based on the ViTDet (Visual Transformer for Object Detection)
model, which aims to improve object detection accuracy in UAV remote sensing images. Initially, the
discriminative ability of the input feature map of the Feature Pyramid Network (FPN) is improved
by incorporating the Receptive Field Enhancement (RFE) and Convolutional Self-Attention (CSA)
modules. Subsequently, to mitigate the loss of semantic information, the sampling process of the
FPN is replaced by Multi-Branch Upsampling (MBUS) and Multi-Branch Downsampling (MBDS)
modules. Lastly, a Feature-Concatenating Fusion (FCF) module is employed to merge feature maps
of varying levels, thereby addressing the issue of semantic misalignment. This paper evaluates the
performance of the proposed model on both a custom UAV-captured WCH dataset and the publicly
available NWPU VHR10 dataset. The experimental results demonstrate that the proposed model
achieves an increase in APL of 2.4% and 0.7% on the WCH and NWPU VHR10 datasets, respectively,
compared to the baseline model ViTDet-B.

Keywords: UAV remote sensing images; object detection; self-attention; sampling; feature fusion

1. Introduction

The evolution of Uncrewed Aerial Vehicle (UAV) technology has facilitated the ac-
quisition of high-resolution remote sensing images. Object detection within UAV remote
sensing images holds promise for applications in various sectors including urban planning,
land monitoring, precision agriculture, updates to geographic information systems, and
military operations, among others [1]. Nevertheless, the complexity of the background and
the variability in size and orientation of objects in UAV remote sensing images introduce
substantial challenges to object detection in UAV remote sensing images [2].

The advent of Convolutional Neural Networks (CNN) has significantly advanced the
field of object detection. Current mainstream detection methodologies can be classified
into two categories: one-stage and two-stage detection methods. The one-stage YOLO (You
Only Look Once)-series algorithm prioritizes speed, directly regressing and classifying the
object box of feature map predictions across various scales to enhance inference speed [3,4].
On the other hand, the two-stage RCNN-series algorithm excels in accuracy, utilizing the
Region Proposal Network (RPN) to generate candidate boxes, which are then classified
and regressed [5]. Inspired by these approaches, numerous researchers have integrated
deep learning techniques into UAV remote sensing image object detection. To address
the challenge of small-scale object detection, several novel methods have been proposed.
Zeng et al. [6] proposed the SCA-YOLO (Spatial and Coordinate Attention enhancement
YOLO) algorithm. A hybrid attention module with associated coordinate attention was
designed by the algorithm to enhance the feature extraction of small objects. Further-
more, improvements were made to the SEB (Simple and Efficient Bottleneck) to further
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distinguish the foreground and background characteristics. Zhou et al. [7] developed the
ADCSPDarknet53 backbone network based on YOLOV4, modifying the regression loss
function to enhance the model’s ability to locate small objects. Zhuang et al. [8] proposed
a one-stage detection model with multi-scale feature fusion, integrating different levels
of feature maps for improved detection accuracy with small objects. Lan et al. [9] intro-
duced a novel method for detecting small objects in optical remote sensing images. The
proposed method constructs a spatial transformer that incorporates spatial attention and
self-attention mechanisms. This facilitates the extraction of key features from relevant
areas within the image space and mitigates the issue of small object leakage. Liu et al. [10]
proposed the YOLO-extract algorithm, which is based on YOLOv5. The algorithm inte-
grates coordinated attention into the network by adopting the concept of residual networks.
Moreover, by combining the hybrid expansion convolution with the redesigned residual
structure, the algorithm optimizes the model’s feature extraction power for objects at vari-
ous scales. Despite these advancements, CNN-based methods appear to have reached a
performance plateau in detection tasks [11].

In recent years, numerous researchers have explored the representation of images.
Considering images as a collection of patches has opened new avenues for research in
object detection. Dosovitakiy et al. [12] proposed that transformers, possessing a capability
for global-context information modeling and spatial adaptive aggregation, surpass the
constraints of CNN and are widely employed in computer vision tasks [13–15]. The
ViTDet [13] model utilizes the native ViT model as its backbone network for object detection.
Notably, the ViTDet model is divided into four stages. The first few blocks of each stage
use the window self-attention to improve computational efficiency, and the last block
uses global self-attention to facilitate information exchange between different windows.
This design renders the ViTDet model suitable for object detection tasks. Following this
approach, Zhu et al. [16] proposed TPH-YOLOv5, a network that replaces the original
prediction head with Transformer Prediction Heads (TPH). Simultaneously, a prediction
head is added to detect objects at varying scales, thereby augmenting the model’s object
recognition capabilities. Zhang et al. [17] introduced the Transformers for Remote Sensing
(TRS) model, incorporating self-attention into the ResNet network to improve the model’s
capacity to learn the overall features of the image and attain superior detection accuracy.
Jiang et al. [18] presented the RAST-YOLO (You Only Look Once with Region Attention and
Swin Transformer) algorithm. The algorithm uses the Region Attention (RA) mechanism
combined with a Swin Transformer as the backbone to extract features to enhance the
detection accuracy of objects in complex backgrounds. Subsequently, the C3D module is
employed to fuse deep and shallow semantic information, thereby enhancing the detection
accuracy of small targets. Wang et al. [19] introduced the MashFormer model, which
combines a CNN with a transformer to enhance its representational ability in complex-
background scenarios. Additionally, a multi-level feature aggregation module with cross-
level feature alignment is designed to mitigate the semantic discrepancy between features
extracted from shallow and deep layers.

The aforementioned method enhances the model’s capability to extract object features
through the use of a transformer, thereby effectively improving the detection performance.
However, due to the advancements in UAV technology, high-resolution UAV remote
sensing images have become easily obtainable. High-resolution UAV remote sensing
images result in small objects that occupy fewer pixels within the image and are surrounded
by complex background information. The network faces difficulty in extracting effective
features from small objects, thereby impeding the model’s ability to accurately locate and
recognize them [20]. Furthermore, the process of multiscale prediction using an FPN
(Feature Pyramid Network) [21] encounters the challenge of missing feature information.
These challenges leave room for improving the detection performance of UAV remote
sensing images.

To address the aforementioned issues, this paper employs the transformer structure
to enhance the model’s feature-encoding capability and mitigate the loss of semantic
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information through the integration of diverse features. Specifically, this paper presents a
Multi-Branch Parallel Network (MBPN) based on the ViTDet model. Initially, the object
features from different feature maps input to FPN undergo enhancement through Receptive
Field Enhancement (RFE) and Convolutional Self-Attention (CSA) modules. The RFE
module is well-suited for shallow feature maps, enabling the extraction of features of
varying sizes through convolutions with diverse kernel sizes. The resulting feature maps
are concatenated along the channel dimension, while the original feature maps undergo
convolutional and Softmax operations to generate attention maps. The CSA module is
well-suited for deep feature maps, as it maps the feature maps to three distinct linear spaces
(Q, K, V) through diverse convolution operations. Specifically, similarity calculations
are performed by Q and K to derive the attention map, followed by weighting V to
yield the final result. Additionally, the utilization of Multi-Branch Upsampling (MBUS)
and Multi-Branch Downsampling (MBDS) modules yields diverse feature maps, which
are then concatenated along the channel dimension and ultimately compressed through
1 × 1 convolution. Finally, the Feature-Concatenating Fusion (FCF) module is employed
to merge the feature maps. This process involves sampling small-scale feature maps and
concatenating them with large-scale feature maps, which are subsequently compressed
through convolutional operations to yield the fused feature maps.

In summary, this paper contributes in the following ways:

(1) The introduction of the RFE and CSA modules into FPN enhances shallow and
deep features, respectively, aiming to highlight the foreground and suppress noise
interference.

(2) The MBUS and MBDS modules acquire diverse features through multiple paths,
reducing the loss of feature information during the sampling process of the FPN.

(3) The FCF module fuses small-scale and large-scale feature maps, enriches feature
information representation, and augments the semantic information of feature maps.

2. Related Work

The FPN employs a top-down structure with lateral connections to construct high-level
semantic feature maps across multiple scales, thereby enhancing the flexibility of multi-
scale representation and enjoying wide application in various detectors. However, it still
presents certain limitations. For instance, there are semantic differences between layers, and
direct fusion may diminish the power of multi-scale representation. Furthermore, feature
information might be lost during the FPN network’s sampling process. In this section,
two key aspects will be explored: enhancing the ability of multi-scale representation and
minimizing feature information loss.

Enhancing the Ability of Multi-scale Representation. Addressing the issue of the
FPN difficulty in adapting to changes in object scale. Tang et al. [22] introduced the Scale-
Aware Feature Pyramid Network (SARFNet). This approach employs 3-D convolution
to establish a scale equilibrium pyramid convolution, enhancing the correlation between
different feature levels and allowing flexible matching with objects exhibiting varying
appearance changes. Additionally, Zhao et al. [23] proposed a multi-scale feature fusion
module, named BFPCAR, which mitigates the imbalance of attention in non-adjacent layers
of the FPN network. Dong et al. [24] innovatively replaced the lateral connection of the FPN
with a deformable convolution lateral connection module to facilitate multi-scale object
detection. Furthermore, Sun et al. [25] developed a Multi-Scale Feature Pyramid Network
(MS-FPN) that amplifies shallow and deep features through the Atrophy Convolution
Pyramid (ACP) module, while adaptively learning and selecting crucial feature maps using
multi-scale attention modules.

Minimizing Feature Information Loss. To mitigate the loss of information during
feature sampling and fusion, Chen et al. [26] introduced a Parallel Residual Dual Fusion
Pyramid Network (PRB-FPN), designed to gather more comprehensive contextual infor-
mation through bidirectional fusion. Furthermore, Guo et al. [27] applied the Residual
Feature Augmentation module to counteract the loss of semantic information resulting from
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channel reduction. This issue is addressed in this study through channel concatenation.
Content-Aware Feature Reorganization (CARAFE) [28] generates multiple features in each
feature map through various groups of content perception methods. Feature upsampling is
then achieved by rearranging the generated features into a spatial block. This paper obtains
multiple features through a variety of methods, concatenates the resulting features, and
finally derives the final feature map using convolution operations. Zheng et al. [29] pro-
posed the Gating Path Aggregation (GPA) network, asserting that different feature layers
have varying degrees of importance. This network enhances the capability of information
filtering during feature fusion.

3. Method

Figure 1 illustrates the structure of the object detection model presented in this study.
Initially, the input image undergoes division into multiple image patches using the Patch
operation. These image patches are subsequently fed into ViT with a block count of 12,
resulting in the output feature layers L1, L2, L3, and L4 corresponding to blocks 3, 6, 9,
and 12, respectively. In the next step, the shallow feature maps L1 and L2, as well as the
deep feature maps L3 and L4, are separately fed into the RFE module and the CSA module.
Thereafter, the application of MBUS and FCF modules yields four output feature layers,
namely, {P1–P4}. Additionally, the P4 feature layer undergoes input into the MBDS module
to generate a deeper feature map, denoted as P5, which aids in predicting larger objects.
Afterwards, the feature map {P1–P5} is fed into the RPN network to generate the candidate
box, and ultimately both the candidate box and feature map {P1–P5} are passed to the
ROIHead module to obtain the classification and localization results.
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3.1. RFE and CSA

UAV remote sensing images often contain noise originating from complex scenes,
which can interfere with detection outcomes [2]. Additionally, the large feature map
resolution of shallow networks tends to produce a lower level of feature abstraction and
weaker semantic information, thereby containing more fine-grained details. On the other
hand, deep networks further condense image information, enhancing the abstraction and
semantics of features to better capture the image’s overall characteristics. Hence, distinct
foreground enhancement modules must be designed for different feature layers to suppress
the impact of background information. Inspired by [30], this paper broadens the feature
map’s receptive field through convolutions of varying sizes, acquires object features as
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weights, and subsequently applies these weights to the shallow feature map. Furthermore,
this paper incorporate residual concepts [31] to bolster the model’s generalization capacity.
Deep features, characterized by high abstraction, necessitate the consideration of global
information. Drawing inspiration from [12,32], this paper amplifies effective features by
computing self-attention. The following sections provide a more detailed description of
these two modules.

RFE. The specific design of the module is depicted in Figure 2. Given an input feature
map, X ∈ RC×H×W , this paper first acquire features X1 ∈ RC×H×W , X2 ∈ RC×H×W , and
X3 ∈ RC×H×W—representing small, medium, and large objects—through 3 × 3, 5 × 5, and
7 × 7 convolutions, respectively. Subsequently, X1, X2, and X3 are concatenated along the
channel dimension. By applying a 1× 1 convolution to reduce the channel count from 3C to
C and using the Softmax function to generate the attention map, attn ∈ RC×H×W . Following
this, point-wise multiplication of attn ∈ RC×H×W and X ∈ RC×H×W is performed to derive
the enhanced feature map, Y ∈ RC×H×W . Finally, a residual branch is introduced to add
Y ∈ RC×H×W and X ∈ RC×H×W to yield the final feature map, Z ∈ RC×H×W . This process
strengthens the attention of shallow networks towards multi-scale objects. The associated
formula for the aforementioned procedure is presented below:

X1, X2, X3 = Conv3(X), Conv5(X), Conv7(X)

attn = Softmax(Conv1(Cat([X1, X2, X3])))

Z = attn ∗ X + X

(1)

where Conv3, Conv5, Conv7 are convolution operations with kernel size 3, 5, 7; Cat
operation is concatenating in the channel dimension; and ∗ represents point multiplication.
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CSA. The deep feature enhancement module is shown in Figure 3. Initially, the input
feature map X ∈ RC×H×W undergoes a convolution with three 3 × 3 kernels, resulting
in three spatial feature maps: Q ∈ RC×H×W , K ∈ RC×H×W , and V ∈ RC×H×W . In the
subsequent step, Q ∈ RC×H×W and K ∈ RC×H×W are adjusted to generate new feature
maps Q ∈ RL×C and K ∈ RC×L(L = H ×W), respectively. Following this, Q and K
perform matrix multiplication and the Softmax function is applied to yield the attention
map attn ∈ RL×L. In the third phase, the dimension of V ∈ RC×H×W is adjusted to produce
a new feature map V ∈ RC×L(L = H ×W), which then undergoes matrix multiplication
with ‘attn’ in conjunction with V to generate Y ∈ RC×L. Lastly, Y ∈ RC×L employs a linear
mapping layer, adjusts its dimension, and merges it with the residual branch X ∈ RC×H×W

to generate the final feature map Z ∈ RC×H×W . The formula representing the above
procedure is presented below:
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Q, K, V = Conv3(X), Conv3(X), Conv3(X)

Q, K = Q.reshape( C, L).permute (1, 0), K.reshape( C, L)
attn = Softmax(Q @ K)

V = V.reshape( C, L)
Z = (Linear(V @ attn)).reshape(C, H, W) + X

(2)

where Conv3 represents convolution operations with kernel size 3 × 3, and the three
convolutions in the formula do not share parameters; @ is matrix multiplication; and Linear
is a linear mapping layer.
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3.2. MBUS and MBDS

In the domain of remote sensing image object detection, multi-scale features enhance
the model’s detection accuracy [2]. However, some semantic information is lost during the
sampling operation performed for feature fusion. Drawing inspiration from [33], this paper
designed multi-branching paths in this study to extract multiple features from feature
map, thereby mitigating the loss of semantic information during the upsampling process.
Provided below is a comprehensive description of the upsampling and downsampling
modules devised in this paper.

MBUS. The most prevalent upsampling methods include nearest interpolation, bilin-
ear interpolation, and transposed convolution. The upsampling kernel is determined by
the spatial position of the pixels in the nearest or bilinear upsampling. The two regions of
interest measure 1 × 1 and 2 × 2, respectively [28], and characteristics of objects of varying
sizes are captured through these different-sized regions. Additionally, features are also ex-
tracted via learnable transposed convolution upsampling. This study considers these three
methods of characteristic extraction to alleviate the issue of information loss. The detailed
design of this method is depicted in Figure 4. For the input feature map X ∈ RC×H×W , three
feature maps (X1 ∈ RC×2H×2W , X2 ∈ RC×2H×2W , and X3 ∈ RC×2H×2W) are generated
via transposed convolution, nearest interpolation, and bilinear interpolation. These are
then concatenated in the channel dimension, and finally, through a 1 × 1 convolution, the
upsampled feature map Y ∈ RC×2H×2W is obtained. The formula to express this operation
is presented below:

X1, X2, X3 = ConvT(X), Nearest(X), Bilinear(X)

Y = Conv1(Cat([X1, X2, X3]))
(3)

where ConvT is transposition convolution, Nearest is nearest interpolation, Bilinear is
bilinear interpolation, Cat is concatenated in the channel dimension, and Conv1 is 1 × 1
convolution operation.
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MBDS. The design principles for downsampling mirror those of upsampling. This
paper incorporates three downsampling methods, namely, convolution downsampling,
maximum pooling, and average pooling. These methods generate multiple features for the
newly created feature maps. The intricate design of this procedure is illustrated in Figure 5.
For the input feature map X ∈ RC×2H×2W , three distinct feature maps (X1 ∈ RC×H×W ,
X2 ∈ RC×H×W , and X3 ∈ RC×H×W) are produced through the convolution operation with
a kernel size of 3 and a stride of 2, maximum pooling, and average pooling. Subsequently,
these maps are concatenated in the channel dimension, and through a 1x1 convolution, the
downsampled feature map Y ∈ RC×H×W is obtained. The formula to express this operation
is presented below:

X1, X2, X3 = Conv3_2(X), MaxPooling(X), AvgPooling(X)

Y = Conv1(Cat([X1, X2, X3]))
(4)

where Conv3_2 is a convolution with kernel 3 and step size 2, Cat is stitched in the channel
dimension, and Conv1 is a convolution with 1 × 1.
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3.3. FCF

Common fusion methods encompass addition and concatenation. While the dimen-
sion of the feature map remains unchanged with additive fusion, the information within
the feature map increases. On the other hand, concatenative fusion expands the dimension
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to describe more features. During multiscale fusion, the information varies across different
layers, making concatenative fusion a more reasonable choice than additive fusion. The
detailed design of this module is illustrated in Figure 6. Here, the two input feature maps
are concatenated in the channel dimension, followed by the interaction of the information
from the two feature maps via a 3× 3 convolution. The process concludes with a dimension
reduction using a 1 × 1 convolution. The corresponding formula is expressed as follows:

Y = Conv1(Conv3(Cat([X1, X2]))) (5)

where Cat is a concatenate operation, Conv3 is the convolution of kernel 3, and Conv1 is
the convolution of kernel 1.
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4. Experiment

This section provides an overview of the datasets used in this study, the applied
evaluation metrics, and experimental details. Subsequently, ablation experiments were
performed on each module developed in this work to determine the contribution of each
module to the performance enhancement. Finally, to validate the detection performance of
the proposed model, this paper compares it with multiple methods on WCH and NWPU
VHR10 datasets.

4.1. Datasets and Evaluation Metrics

In this paper, experiments are conducted on our own dataset WCH and the publicly
available dataset NWPU VHR10 [34–36], the details of which are as follows:

WCH. This dataset’s images are derived from aerial drone photography of Caidian
District, Wuhan, suitable for UAV remote sensing image object detection. Due to the
high resolution of the captured images, this paper cropped them to generate 1344 new
640 × 640 resolution images. After annotating the cropped images, a total of 32,349 in-
stances covering one category are obtained, with each image containing multiple instances
of arbitrary size and orientation. This paper randomly divided this dataset in an 8:2 ratio,
resulting in 1075 images for training and 269 images for validation.

NWPU VHR10. This dataset’s images are sourced from Google Earth and the Vaihin-
gen dataset, which consists of aerial drone photography from Vaihingen, Germany. The
latter is a subset of the test data used by the German Association of Photogrammetry and
Remote Sensing (DGPF) for digital aerial cameras. The NWPU VHR-10 dataset, annotated
using Horizontal Bounding Boxes (HBB), is publicly accessible and suitable for object
detection in UAV remote sensing images. This paper omits unlabeled images from the
NWPU VHR-10 dataset, retaining 650 images and 3896 instances across ten categories. The
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images range from 400 × 500 to 1100 × 1800 in size. The dataset, characterized by variable
object sizes and orientations, presents significant challenges. Given that the NWPU VHR10
dataset does not segregate training and validation sets, this paper calculated the image
count for each category, dividing the images in an 8:2 ratio, resulting in 521 training images
and 129 validation images.

Moreover, this paper used the AP, AP50, AP75, APS, APM, and APL metrics to evalu-
ate the detection performance of the model. AP represents the average precision across
10 intersection over union (IoU) thresholds ranging from 0.5 to 0.95, with intervals of
0.05. AP50 denotes the average precision at an IoU threshold of 0.5. AP75 represents the
average precision at an IoU threshold of 0.75. APS indicates the average precision for
small objects. APM signifies the average precision for medium objects. APL represents the
average precision for large objects. Among these metrics, AP corresponds to the area under
the precision–recall (P-R) curve, where P stands for precision and R stands for recall, as
defined by the following formula:

P = TP
TP+FP

R = TP
TP+FN

AP =
∫ 1

0 P(R)dR

(6)

where TP, FP, and FN represent the number of true positives, false positives, and false
negatives, respectively; P(R) is the precision–recall curve.

4.2. Implementation Details

This study’s experiments employ ViTDet, which is implemented based on the MMDe-
tection framework, as the baseline model. The proposed model used the pretrained weights
on the ImageNet [37] dataset and initialized the remaining model parameters randomly.
During training, the input image size was adjusted to 704 × 704 as part of data preprocess-
ing, followed by random image cropping and flipping. The batch size is set to 2, the initial
learning rate is 0.0001, and a linear warm-up strategy is used for the first 500 iterations.
The model was trained for 30 epochs with a learning rate decay by a factor of 10 at the 15th
and 25th epochs. The AdamW optimizer was used with beta coefficients set at (0.9, 0.999)
and a weight decay of 0.1. All experiments were executed on an Ubuntu 20.0 system, with
training accelerated by an NVIDIA GeForce RTX 4080 graphics card.

4.3. Ablation Experiments

Ablation experiments were conducted on the WCH dataset to assess the effectiveness
of the proposed modules in this paper. To ensure a fair comparison, the hyperparameters
for all ablation experiments were set according to the specifications outlined in Section 4.2.
Subsequently, the RFE, CSA, MBUS, MBDS, and FCF modules were individually added to
the baseline model (ViTDet-B) for experimentation. The results of the ablation experiments
are presented in Table 1. In Table 1, “

√
” indicates that the module was added, while “×”

indicates its absence. The first row displays the results of experiments conducted on the
baseline model. In this table, the red font signifies a decrease in the indicator, while the
green font signifies an increase in the indicator.

Table 1. Ablation experiments for all design modules in this paper on the WCH dataset.

RFE CSA MBUS MBDS FCF AP AP50 AP75 APS APM APL

× × × × × 60.0 86.8 68.1 37.5 68.2 64.8√ × × × × 59.6 (−0.4) 86.9 (+0.1) 67.7 (−0.4) 36.8 (−0.7) 68.0 (−0.2) 65.2 (+0.4)
× √ × × × 59.5 (−0.5) 87.0 (+0.2) 67.7 (−0.4) 36.9 (−0.6) 67.6 (−0.6) 63.6 (−1.2)
× × √ × × 59.8 (−0.2) 87.0 (+0.2) 68.4 (+0.3) 37.0 (−0.5) 68.0 (−0.2) 66.1 (+1.3)
× × × √ × 59.1 (−0.9) 86.8 (+0.0) 67.2 (−0.9) 36.5 (−1.0) 67.4 (−0.8) 64.5 (−0.3)
× × × × √

59.6 (−0.4) 87.0 (+0.2) 68.2 (+0.1) 37.1 (−0.4) 67.7 (−0.5) 65.6 +(0.8)
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Ablation on RFE module. The RFE module is applied to the shallow feature layers
L1 and L2. Convolution operations with varying kernel sizes are performed to obtain
feature maps with multi-scale information, enabling adaptation to multi-scale objects in
UAV remote sensing images. The results in the second row of Table 1 demonstrate that
the utilization of the RFE module leads to an increase of 0.1% and 0.4% in AP50 and
APL, respectively. This indicates that the RFE module significantly enhances the detection
accuracy of large objects. However, the APS and APM of this module still fall behind those
of the baseline model. This could be attributed to the disturbance caused to the features of
small and medium objects in the shallow layer when the deep features are fused additively
with the shallow features.

Ablation on CSA module. The module is applied to the deep feature layers L3 and
L4 to enhance feature expression through self-attention calculation and spatial position
weighting of the feature map. The utilization of the CSA module results in a 0.2% increase
in AP50, as observed in the third row of Table 1. This indicates that the model achieves
improved accuracy in classifying and locating certain objects. Nevertheless, other indicators
remained below the baseline level. This could be attributed to CSA enhancing both object
features and noise features, particularly in complex scenes where the background occupies
a significant portion of the area in UAV remote sensing images. Subsequently, a top-down
fusion path is employed, which extends the distribution range of noise features, resulting
in an unsatisfactory detection effect of the model.

Ablation on MBUS module. The purpose of this module is to upsample a smaller-
sized feature map into a larger-sized feature map. Specifically, multiple feature-extraction
branches are employed to acquire diverse feature information from high-level feature maps,
which are subsequently utilized to construct high-level feature maps. The fourth row of
Table 1 reveals that the utilization of the MBUS module leads to a 0.3% and 1.3% increase in
AP50 and APL, respectively. These improvements can be attributed to the combination of
diverse abstract features and positioning information. However, there was a slight decrease
in APS and APM. This is because the MBUS module introduces additional background
noise to the shallow feature layer, thereby impeding the model’s localization ability and
degrading its performance.

Ablation on MBDS module. The purpose of this module is to replace the original
pooling operation and mitigate the loss of semantic information during pooling. The
findings from the fifth row of Table 1 indicate that incorporating additional semantic
information into the construction of the P5 feature map does not enhance the model’s
performance. This could be attributed to the introduction of significant background noise
into the P5 feature map by MBDS, thereby resulting in an unsatisfactory detection effect of
the model. In contrast, the baseline model employs the pooling operation to generate the
P5 feature map. While this approach results in the loss of certain semantic information, it
also discards some noise information, mitigating the impact of noise on the model.

Ablation on FCF module. This module concatenates two feature maps along the chan-
nel dimension and utilizes convolutional operations to facilitate the interaction between
spatial and channel information. The results from the sixth row of Table 1 demonstrate
that the inclusion of the FCF module in the baseline model leads to an improvement of
0.2%, 0.1%, and 0.8% in AP50, AP75, and APL, respectively. The effectiveness of the FCF
module is confirmed. However, there was a slight decrease in APS and APM. This could be
attributed to the FCF module covering the features of small and medium objects during the
information exchange process, while the features of large objects are retained due to their
larger spatial coverage.

4.4. Comparisons Experiments

Comparisons experiments were conducted on the WCH and NWPU VHR10 datasets
to assess the performance of the proposed object detection model in this paper. This
paper compare the proposed model with various object detection models, including one-
stage mainstream models YOLOv7 and YOLOv8, two-stage classical models Faster RCNN
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and Cascade RCNN, and representative transformer-series models Swin Transformer and
ViTDet (the baseline model in this paper). The hyperparameters of the proposed model
align with those described in Section 4.2, while the comparison models are implemented
based on MMDetection and MMYOLO, respectively.

4.4.1. Comparison on the WCH Dataset

Table 2 presents the experimental outcomes obtained from the proposed model and
the comparative model when applied to the WCH dataset. The proposed model demon-
strates an increase of 0.1% and 2.4% in AP and APL, respectively, compared to the baseline
model (ViTDet-B). These results indicate that the model proposed in this study enhances
object positioning ability and exhibits improved perception of large objects. The ablation
experiment results in Table 1 further confirm these observations, attributing them to the
utilization of the RFE, MBUS, and FCF modules. The RFE module enhances object features,
the MBUS module enables the acquisition of diverse features, and the FCF module effec-
tively fuses these diverse features. Notably, the proposed model achieves an AP50 increase
of 1.4% and 1.5% when compared to Faster RCNN and Cascade RCNN, respectively. This
improvement can be attributed to the powerful encoding capabilities of the transformer.
While the proposed model outperforms the one-stage object detection model—namely,
YOLOv7—a significant gap remains between the proposed model and YOLOv8. Addition-
ally, the proposed model surpasses Swin Transformer in terms of detection performance,
specifically by improving the APL by 5%. This is potentially due to the fact that Swin Trans-
former employs local self-attention to reduce computational overhead and uses sliding
windows for information propagation between different windows, whereas the proposed
model employs global attention to propagate information, thereby surpassing the spatial
information propagation limitations for enhanced performance.

Table 2. Comparison of detection performance in the WCH dataset. “*” denotes unpublished papers.

Model AP AP50 AP75 APS APM APL

YOLOv7 [4] 57.9 84.3 65.8 34.7 66.9 52.1
YOLOv8 * 65.3 87.5 74.1 41.8 74.1 71.6

Faster RCNN [5] 55.8 85.2 63.9 35.0 63.6 60.2
Cascade RCNN [38] 60.5 85.1 68.7 38.1 68.6 61.7

Swin Transformer [14] 59.3 87.4 67.4 37.2 67.4 62.2
ViTDet-B [13] 60.0 86.8 68.1 37.5 68.2 64.8

Proposed 60.1 86.6 68.2 37.2 68.2 67.2

Figure 7 presents the visualization of the detection results achieved by the proposed
model and the comparative model on the WCH dataset. The first column presents scenes
characterized by a sparse background and a dense distribution of objects. The second
column showcases scenes with a more prominent background. The third column displays
scenes with objects of varying colors, and the fourth column depicts scenes where the
background and objects exhibit similarities. Each row corresponds to the detection results
of a specific model. The presence of a red circle indicates a missed detection object, whereas
yellow circles indicate objects that the proposed model successfully detects but other models
fail to identify. Additionally, the prediction results have been obtained with a confidence
level set to 0.8. Figure 7 reveals that all models encounter the issue of missed detections.
Notably, the YOLOv8 model outperforms other models in quantitative analysis, yet its
visual detection results are unsatisfactory. This observation can be attributed to the low
confidence level of YOLOv8 predictions, which is understandable considering its emphasis
on detection speed. Moreover, the proposed model demonstrates stronger competitiveness
compared to other models, particularly in scenarios involving occluded objects. This
finding highlights the ability of the proposed model to enhance feature perception.
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4.4.2. Comparison on the NWPU VHR10 Dataset

The experimental results of the model proposed in this paper and the comparison
model on the NWPU VHR10 dataset are presented in Table 3. The model in this paper
demonstrates an improvement over the baseline model ViTDet-B, with an increase of 1.8%
and 0.7% in AP75 and APL, respectively, indicating enhanced detection performance for
large objects. This finding aligns with the experimental results in Tables 1 and 2. However,
there has been a decline in other indicators, particularly a 1.0% decrease in APS. The ablation
experiment reveals that this decline can be attributed to the limited perception ability of
the improved module in this paper when detecting small objects in UAV remote sensing
images. In comparison to YOLOv7, YOLOv8, Faster RCNN, and Cascade RCNN, the model
proposed in this paper exhibits slight advantages in AP50, AP75, and APL. In contrast to
Swin Transformer, the model in this paper achieves a slightly lower AP50 score, which
could be attributed to the advantage of Swin Transformer’s local self-attention mechanism.

Table 3. Comparison of detection performance in the NWPU VHR10 dataset. “*” denotes unpublished
papers.

Model AP AP50 AP75 APS APM APL

YOLOv7 [4] 55.4 89.0 64.7 55.1 53.7 58.1
YOLOv8 * 62.4 95.3 70.6 48.5 58.0 71.0

Faster RCNN [5] 55.4 93.4 59.1 33.9 51.0 61.3
Cascade RCNN [38] 65.3 93.9 78.7 51.5 60.6 69.5

Swin Transformer [14] 65.9 97.1 77.1 45.1 62.0 71.8
ViTDet-B [13] 64.9 95.7 78.0 51.5 60.0 71.9

Proposed 64.6 95.5 79.8 50.2 59.5 72.6

Figure 8 presents the visualized detection results of the model proposed in this paper
and the comparison model on the NWPU VHR10 dataset. The figure consists of four
columns: the first column depicts scenes with a large object distribution, the second column
portrays scenes with complex backgrounds and dense objects, the third column illustrates
scenarios with small object distribution, and the fourth column represents scenes with large
object distribution and redundant background information. Each row corresponds to the
detection results of a specific model. The presence of a red circle denotes a missed detection
object, while a yellow rectangle signifies that the model proposed in this paper detects
it, while most other models do not. Furthermore, the prediction results are evaluated
with a confidence level set to 0.8. Figure 8 reveals that the models from the transformer
series exhibit a lower rate of missed objects. The third column of Figure 8 demonstrates
that, in comparison to the baseline model ViTDet-B, the proposed model performs better
in detecting objects in shadowed scenes, but its performance is suboptimal in scenes
where the object closely resembles the background. This discrepancy may arise from the
superior capability of the RFE and CSA modules in distinguishing objects from dissimilar
backgrounds, while struggling to differentiate backgrounds that closely resemble objects.
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5. Discussion

Ablation experiments on the WCH dataset are conducted to examine the influence of
the modules proposed in this paper on the detection performance of the model. The results
of the ablation experiments indicate that the designed module exhibits improvements in
AP50 but leads to declines in other indicators. This could be attributed to the deliberate
design of each module to focus on improving specific indicators rather than multiple
indicators simultaneously. The comparative experiments in Section 4.4 demonstrate that
the model presented in this paper outperforms the comparison model in detecting large
objects. Furthermore, the proposed model exhibits impressive detection performance in
scenes featuring occluded objects (Second column in Figure 7) and shadowed scenes (Third
column in Figure 8). This can be attributed to the RFE module’s successful expansion of
the object’s receptive field in the shallow feature map and the CSA module’s enhancement
of the weight of the object feature.

Nevertheless, the model presented in this paper is suboptimal for detecting small
and medium objects. This could be due to the presence of noise information in the L1, L2,
L3, and L4 feature layers generated by the backbone network. While the RFE module is
capable of filtering out certain noise from the shallow features through convolution, the
CSA module inadvertently amplifies the eigenvalue of the noise when assigning weights
to the object features in the deep feature map. Consequently, during the top-down fusion
process, a portion of the noise from the deep feature maps is reintroduced into the shallow
feature maps, thereby impacting the model’s detection performance.

Based on the above observations, in the task of detecting objects in UAV remote
sensing images, it is imperative to progressively reduce the noise information within the
deep feature map as the network becomes deeper, thereby enhancing the model’s detection
performance.

6. Conclusions

The presence of complex background information and densely distributed objects in
UAV remote sensing images can adversely affect the model’s detection performance. To
address this issue, the present paper introduces the MBPN model, which enhances the
FPN by making improvements. Initially, the RFE and CSA modules enhance the feature
representation of foreground objects. Subsequently, the MBUS and MBDS modules mitigate
the loss of semantic information during FPN sampling. Lastly, the FCF module alleviates
the problem of semantic information misalignment during the feature fusion process.

Ablation experiments validate the efficacy of the proposed module in this study.
Furthermore, comparative experiments conducted on the WCH and NWPU VHR10 datasets
demonstrate the high competitiveness of the proposed method. Nevertheless, the model
presented in this paper still exhibits certain limitations. For instance, in the ablation
experiment, the enhanced module displays improvements in some evaluation indicators
while experiencing decreases in others. Additionally, in the comparative experiment, the
model demonstrates suboptimal detection performance for small and medium objects.

Subsequent research will involve conducting more comprehensive investigations
aimed at enhancing the model’s detection accuracy for small objects.
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