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Abstract: Wildland conservation efforts require accurate maps of plant species distribution across
large spatial scales. High-resolution species mapping is difficult in diverse, dense plant communities,
where extensive ground-based surveys are labor-intensive and risk damaging sensitive flora. High-
resolution satellite imagery is available at scales needed for plant community conservation across
large areas, but can be cost prohibitive and lack resolution to identify species. Deep learning analysis
of drone-based imagery can aid in accurate classification of plant species in these communities
across large regions. This study assessed whether drone-based imagery and deep learning modeling
approaches could be used to map species in complex chaparral, coastal sage scrub, and oak woodland
communities. We tested the effectiveness of random forest, support vector machine, and convolutional
neural network (CNN) coupled with object-based image analysis (OBIA) for mapping in diverse
shrublands. Our CNN + OBIA approach outperformed random forest and support vector machine
methods to accurately identify tree and shrub species, vegetation gaps, and communities, even
distinguishing two congeneric shrub species with similar morphological characteristics. Similar
accuracies were attained when applied to neighboring sites. This work is key to the accurate species
identification and large scale mapping needed for conservation research and monitoring in chaparral
and other wildland plant communities. Uncertainty in model application is associated with less
common species and intermixed canopies.

Keywords: chaparral; deep learning; drone; machine learning; neural network; object-based image
analysis; photogrammetry; remote sensing; shrubland; uncrewed aerial vehicle (UAV)

1. Introduction

Accurately mapping, assessing, and monitoring terrestrial vegetation is central to
ecological and global change research [1]. Current methods are too costly or laborious
to cover large areas. Remote sensing constructs images of the physical characteristics
of an area by measuring its reflected and emitted radiation at a distance using special
sensors [2]. Land cover of vegetation or other physical objects is commonly mapped
using those remote sensing data to then construct classification models based on observed
spectral and structural relationships, validating the land cover classifications based on
a minimum mappable unit, determined by the available resolution of remotely sensed
imagery. Satellites and aircraft provide valuable remote sensing data that are used in plant
ecological research at regional and global scales but these systems are often limited in
their capacity to provide images at the spatial, temporal, and spectral resolution needed to
support research at finer ecological scales (i.e., species, populations) [3]. Affordability can
also be an issue when researchers need high resolution satellite or aerial imagery across
large areas [4]. Plant ecological research at finer scales often relies on approaches that
use handheld sensor systems mounted to ground-mounted systems (e.g., poles, cranes,
towers). The logistics of these ground-based measurements is often too time consuming
and physically challenging to collect more than a limited number of samples or to apply
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them to more complex systems or over large geographic ranges. Additionally, such ground-
based surveys are arduous, dangerous, and risk damaging sensitive flora in wildland
habitats with diverse, dense plant communities [5]. Such challenges mean that ground-
based sensing surveys in shrubland and forest communities are often very labor intensive,
limited in spatiotemporal resolution, and prone to under-sampling.

Lightweight uncrewed aerial vehicles (UAVs), also called drones, are increasingly
used as a remote-sensing platform in plant ecology. Their flexibility, reduced cost, reliability,
autonomous capability, and high-resolution multispectral and structural data contribute to
their usefulness in a variety of wildland systems at finer scales than spaceborne satellite
or crewed aircraft imagery [6–8]. UAV data can also complement data collected using
ground-based observations [9], satellites [10,11], and crewed aircraft surveys [12].

Advances in UAV hardware, coupled with developments in three-dimensional (3D)
point cloud modeling of landscape structure using structure-from-motion (SfM) algorithms
are providing an alternative to expensive LiDAR platforms for structural mapping [13].
Light detection and ranging (LiDAR) sensor systems are among the most accurate for
measuring structural attributes at the stand and individual canopy levels [14,15], but the
high equipment costs can make LiDAR sensors difficult to procure. Structure-from-motion
(SfM) photogrammetry is a computer vision technique that constructs a 3D model from a set
of overlapping two-dimensional (2D) digital photographs [16]. UAV-derived photogram-
metric point clouds (PPCs) generated from drone photographs and structure-from-motion
(SfM) algorithms provide an analogous three-dimensional (3D) structural measurement and
are gaining popularity as a low-cost and accurate alternative to characterize ecologically
relevant landscape structure, including the shapes and sizes of trees and shrubs [13,14].
SfM approaches coupled with spectral analysis have been used to identify tree species [17],
assess small-scale tree canopy gaps [18], and estimate biomass in low-stature grassland
vegetation [19].

Shrublands have gained attention because of the ecosystem services they provide [20–23],
their increased vulnerability to global change (i.e., drought, fire, land use change) [24–26],
and efforts to conserve and actively restore degraded shrublands in Mediterranean-type
ecosystems [27–29], subtropical regions [30], and deserts [31]. This has spurred interest
in applying UAV surveys in shrublands, but advances have been limited by the set of
challenges related to quantifying the spatial distribution of species. Canopies in these
ecosystems should be readily accessible given their low stature, but in many of the more
diverse and spatially heterogeneous shrublands, dense and impenetrably overlapping
canopies can limit physical access, increase risk to workers, and risk significant damage to
sensitive flora. In more arid, spatially diffuse desert shrublands, mapping species distribu-
tion and quantifying biomass with satellite imagery is possible but with large uncertainties
and logistically challenging field validation [32]. UAVs have been successfully used in sensi-
tive shrubland habitats to map plant community structure [23,33], estimate biomass [34,35],
map species distribution in highly dynamic environments [36], and augment the assessment
of restoration success [37].

Chaparral shrublands are the dominant wildland vegetation type in Southern Califor-
nia and one of the most extensive ecosystems in California, with evergreen sclerophyllous
shrubland cover making up approximately 9% of the state [38]. Satellite remote sensing
has been used for vegetation classification in California coastal shrublands at the stand
and community scale [39], for distinguishing perennial woody from herbaceous annual
vegetation within a shrubland community [40], and for estimating aboveground biomass of
dominant species [29]. Recent work utilized aerial imagery and LiDAR data from airplane
flights to classify coastal scrub communities in terms of vegetation alliances and associated
species with limited success due to interference from variable topography and available
light conditions [41] No studies have explored the use of UAVs data and machine learn-
ing approaches to classify woody plant species at the level of individuals or patches in
chaparral and scrub communities, as required to support ecological research.
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Conventional land-cover classification maps are constructed from remotely sensed
data using one of two general image analysis approaches: pixel-based classifiers and geo-
graphic object-based image analysis (OBIA) methods. Pixel-based classification approaches
use spectral information associated with individual pixels, irrespective of their spatial dis-
tribution and land cover context to assign land cover classes. Pixel-based methods of image
classification can further be separated into two classification approaches—unsupervised
or supervised. Unsupervised pixel-based approaches group pixels into clusters based
on their properties and classify each cluster with a land cover class independent of the
researcher. Unsupervised pixel-based methods can be computationally faster and the
automated nature of the approach does not require the researcher to provide contextual
samples to constrain the classification process. Although faster, unsupervised pixel-based
classification approaches often produce unsatisfactory results, especially when remote
sensing data have a very high spatial resolution and objects of interest have high pixel
heterogeneity—producing classifications that resemble what researchers term the “salt and
pepper effect” [42].

Pixel-based approaches can also be supervised to control the relevance and accuracy
of classification. In a supervised pixel-based classification approach, the researcher selects
representative samples for each of the land cover classes of interest in an image. Samples
are used to generate signature files that store the samples’ spectral information, and this
information is used to make classifications by running a classification algorithm (e.g.,
support vector machine). With the increased availability of high-resolution remote sensing
data, software developers and researchers have moved to the use of semi-automated OBIA
classification procedures that analyze the spectral, spatial, and contextual properties of
imagery pixels and use segmentation processes with iterative machine-learning algorithms
to delineate objects in the landscape that can then be systematically classified. OBIA
classification approaches group pixels into representative geometries based on a set of
parameters designated by the researcher. These parameters are based on the scale, shape,
texture, spectral properties, and geographic context of objects of interest [43]. The OBIA
classification process is supervised, requiring input of samples that have been previously
classified by humans to complete the classification process.

The use of artificial intelligence (AI) approaches for land-cover classification and
mapping has a well-established history, particularly for satellite-based remote sensing [44].
Much of the success from AI in remote sensing has been in advancing the use of image
processing and pattern recognition as improvements over conventional statistically-based
procedures for classification of landscape features. Advances in graphics processors, classi-
fication algorithms, and the increased ability of artificial neural networks to accurately and
efficiently classify imagery using multiple layers of features have driven a surge of interest
in AI approaches to land cover classification. These deep learning approaches examine
the intricate pixel-based structure in very large image datasets using a backpropagation
algorithm that allows the machine to adjust its internal parameters to compute an accu-
rate representation in each layer of its neural network based on the representation in the
previous layer.

Research has determined that non-parametric decision tree machine learning algo-
rithms, namely, random forest (RF) and support vector machine (SVM), are well suited to
classify vegetation species using high-resolution multispectral and RGB UAV imagery [45].
The RF algorithm in particular is regarded as an effective classification modeling approach
for remote sensing data in complex landscapes given its classification accuracy and high
predictive stability compared to other approaches [46,47] given the ability to tune model
parameters accurately and robustly [48], while decreasing the probability of an overfitted
machine learning model [49]. Support vector machines (SVMs) are a machine learning
tool that approach a higher rate of accuracy than random forest [50], but SVM classifica-
tion accuracies can be reduced when the identification of target classes requires multiple
high-resolution imagery bands.
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One of the most successful deep learning classification approaches in vegetation re-
mote sensing is the convolutional neural network (CNN) [51]. CNNs utilize computational
models that are made up of multiple convolved layers that learn representations of data
using multiple levels of mathematical abstraction [52]. The neural network is made up
of ‘hidden-layers’ composed of two stages. In the first stage, the network completes a
convolution of the previous layer at a particular kernel size and is able to store trainable
weights. The second stage is a max-pooling stage, which aims to reduce the number of
computational units by keeping only the most responsive kernel units derived from the first
stage convolution. CNNs can consist of multiple convolutional and max pooling layers that
end in a fully connected layer that receives input from all of the units from the previously
hidden layer and has a decision unit for each class that the network can predict. In remote
sensing applications, the most common form of CNNs uses a supervised learning approach
and requires a series of labeled training input images containing a subject of interest, as-
signed by the researcher, that the computer can then use to assign importance to a variety
of image attributes. Ultimately, the computer assigns learned weights that can be used to
classify future imagery that was not part of the original training set. Two key advantages of
CNN techniques are that it requires very little computational engineering and the approach
can easily take advantage of the increased amount of available graphical processing power
to process very high-resolution UAV data. CNNs achieve this by systematically reducing
images into a data form that is easier to computationally process without losing features
that are critical for accurate classification. Once the CNN is trained, it can be applied to
classify an entire raster landscape. Applying the CNN model results in a spatially explicit
probabilistic heat map for each classification. The assignment of a discrete classification to
map regions can be achieved using fuzzy logic classifiers and a geographic object-based
image analysis workflow (OBIA). CNN and OBIA approaches have demonstrated high
classification performance on a variety of plant species classification applications in agri-
culture [53,54] and forestry [55,56]. Additionally, CNN approaches have been successful
in detecting low-stature shrub species in a variety of plant communities [57–60]. Recently,
CNN deep learning modeling has been combined with the OBIA classification approach,
a process now termed CNN fusion (i.e., CNN + OBIA, CNN + GEOBIA, OCNN), with
the aim of improving the overall accuracy of land cover classification by implementing an
OBIA segmentation of CNN classification probability output [61,62].

A robust methodology for species-level classification in complex shrublands can
greatly increase the possible spatial and temporal extent of species-level monitoring for
conservation and restoration, species-specific stand-level health assessments, fire risk and
fuel load assessment, and biomass and carbon sequestration modeling. We posit that a
CNN machine learning approach coupled with OBIA can leverage the high-resolution
multispectral and structural data from UAV flight surveys to efficiently and accurately
classify shrub species canopy across landscapes. This study demonstrates how shrub
and tree species in spatially heterogeneous stands of chaparral, coastal sage scrub, and
oak woodland can be accurately classified and mapped using drone-based multispectral
imagery and a CNN + OBIA supervised machine learning classification approach.

2. Materials and Methods
2.1. Study Area

All research occurred on the 246-ha University California, Santa Cruz—Fort Ord
Natural Reserve (UCSC-FONR) (Figure 1). The UCSC-FONR is located approximately
129 km south of San Francisco, CA, along the Monterey Bay and bordered by the city of
Marina. This coastal parcel includes an abundance of low-growing shrublands among
accessible rolling terrain (96 ha), ranging in elevation between 21 and 58 m above mean sea
level. We focused on a 40.7-ha area in the northwestern region of the reserve that includes a
mosaic of three woody plant dominated coastal plant communities typical of the semi-arid
coastal Mediterranean-type ecosystems of central California: maritime chaparral, coastal
sage scrub, and coastal live oak woodland (Figure 2).
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Figure 1. Map of research sites (yellow border)—UCSC Fort Ord Natural Reserve (black border).
(a) Application Site 1 (8.42 ha), (b) Training Site (16 ha), (c) Application Site 2 (8.84 ha), (d) Application
Site 3 (7.44 ha). Backdrop imagery source: World Imagery Esri, Maxar, Earthstar Geographics (2022).
Research site imagery is displayed as RGB orthomosaic from UAV research flights.

Figure 2. Manzanita dominated maritime chaparral (left) and coastal sage scrub transitioning to oak
woodland (right). UCSC Fort Ord Natural Reserve, California.

Maritime chaparral is a plant community found along the central California coast-
line and is characterized by sclerophyllous shrub species with hard, waxy-cuticle leaves.
Dominant taxa in this community include manzanita species (Arctostaphylos tomentosa
and A. pumila), chamise (Adenostoma fasciculatum), and a rare California lilac (Ceanothus
rigidus). Coastal sage scrub is characterized by its drought-deciduous aromatic shrub
species adapted to coastal lowlands in Mediterranean climate regions. Species associated
with coastal sage scrub include California sagebrush (Artemisia californica), black sage
(Salvia mellifera), coyote bush (Baccharis pilularis), and mock heather (Ericameria ericoides).
Monotypic stands of coast oak woodlands (Quercus agrifolia) are surrounded by stands
of maritime chaparral and coastal sage scrub. Some species are found in multiple plant
communities (e.g., poison oak, Toxicodendron diversilobum) and several species can be in-
termixed at small scale. Four sites were determined based on the dominance of 10 of the
53 woody plant species known to occur in the region (Table 1).
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Table 1. Summary of the dominant woody plant species in the study sites and their associated plant
communities. Arctostaphylos tomentosa ssp. tomentosa is referred to as A. tomentosa throughout this
manuscript. Some species are known to inhabit all communities (e.g., T. diversilobum) and some
coastal sage scrub species are known to encroach into mixed chaparral and coastal sage scrub.

Species Common Name Plant Communities

Adenostoma fasciculatum Chamise Maritime Chaparral
Arctostaphylos pumila Sandmat Manzanita
Arctostaphylos tomentosa Woolyleaf Manzanita
Ceanothus rigidus Monterey Ceanothus
Artemisia californica California Sage Coastal Sage Scrub
Baccharis pilularis Coyote Brush
Ericameria ericoides Mock Heather
Salvia mellifera Black Sage
Toxicodendron diversilobum Poison Oak
Quercus agrifolia Coast Live Oak Oak Woodland

2.2. UAV Data Collection

UAV flight data were acquired in Summer 2021 (23 July 2021–24 July 2021), under
high cloudy overcast skies, no fog, and light winds (2–5 km/h). We conducted five flight
surveys ranging in area from 5 to 9 ha (Figure 1) All flights were approximately 30 min
in duration and conducted near solar noon (11:00–13:00 PDT). Overcast conditions were
ideal for limiting shadows created by taller neighboring vegetation that tend to obscure
lower growing vegetation. All automated flight operations were planned and executed
using DJI Pilot (v2.3.1.5) software as single pass grid flight patterns with 80% frontlap and
at least 80% sidelap at a constant altitude of 60 m above the terrain to ensure the desired
ground sampling distance (GSD; the distance between the centroids of two adjacent pixels
measured on the ground). All flights were conducted by Section 107 FAA licensed pilots
and in accordance with all federal, state, and local laws and regulations as well as all UC
policies regarding small uncrewed aircraft system (sUAS) operation (UC-RK-18-0377).

A DJI Matrice 210 RTK V2 Pro quadcopter (DJI, Shenzhen, China) with approximately
30 min of flight autonomy was equipped with dual gimbals to accommodate two sensor
systems capable of maximizing ground sampling distance (GSD) while capturing high-
resolution narrow spectral band reflectance data. A Zenmuse X7 24 mm RGB camera with
F2.8 leaf shutter aspheric lens captured high resolution imagery (GSD: 1 cm/pixel, 24 MP
resolution) and was used in the generation of topographic rasters. The DJI Zenmuse X7
camera was connected to the onboard RTK-GNNS positioning system and WiFi connected
to a DJI D-RTK Mobile Station which served as a high-precision GNSS ground receiver,
providing real-time differential corrections of imagery position with centimeter-level po-
sitioning accuracy. The use of RTK correction negated the need for including ground
control points in the sites. A MicaSense Altum multispectral sensor (MicaSense, Seattle,
WA) collected calibrated narrow spectral band reflectance data at blue (455–495 nm), green
(540–580 nm), red (658–678 nm), red edge (707–727 nm), and near infrared (800–880 nm)
at GSD 2.5 cm/pixel. The RTK system was not compatible with logging positioning infor-
mation to two image sensors so we used the MicaSense Altum sensor’s integrated GPS
to record image positioning and later georeferenced Altum multispectral rasters to the
reference RTK-collected Zenmuse X7 RGB data.

2.3. UAV Image Processing

UAV imagery was photogrammetrically processed using Pix4DMapper Pro (v4.6.4)
software (Pix4D SA, Lausanne, Switzerland) to generate multispectral orthomosaic and
topographic rasters. An orthomosaic raster is an image generated from a mosaic of multiple
georeferenced overhead images corrected for perspective and scale. Additional orthorecti-
fication of the multispectral raster to the reference Zenmuse X7 imagery was completed
using the Auto Georeferencing function in ArcGIS Pro (v3.0.0, ESRI 2022). The Auto Geo-
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referencing function in ArcGIS Pro requires two rasters with similar band structure and
automates the selection of georeferencing control points that can be exported and used
to georectify additional reflectance rasters. We generated an RGB composite orthomosaic
raster from the Zenmuse X7 and Altum data and georeferenced the Altum RGB raster
dataset to the X7 RGB raster dataset and exported the control points generated by the auto
georeferencing function. These control points were used to georectify the remaining cali-
brated near-infrared and near-infrared edge reflectance rasters generated from the Altum
Micasense sensor.

Topographic rasters included digital surface models (DSM) and digital terrain models
(DTM) generated from Zenmuse X7 imagery and rendered point cloud data. DSM raster
generation utilized a point cloud densification workflow with optimization at ½ image
size and an inverse distance weighting algorithm application. DTM raster generation was
achieved using a point cloud classification algorithm and Gaussian averaging producing
a terrain model with lower resolution (5 cm/pixel). We used QGIS (v3.20.1-Odense) to
generate a vegetation canopy height model from the normalized digital surface model
(nDSM) by taking the arithmetic difference between the DSM and DTM raster values. We
also calculated the slope values as a raster from the resulting nDSM. The percent slope
model showed the maximum rate of elevation change between each cell and its neighbors
calculated as the angle of inclination to the horizontal. Percent slope can be used to find
the borders of overlapping tree canopies and gaps [17] and may support distinguishing
between shrub species that have overlapping canopies as well as gaps in canopy. The
slope raster was generated using the GDAL DEM utility in QGIS. All raster products were
exported as 32-bit and 8-bit GeoTIFF format with WGS 84 / UTM zone 10N (EGM 96 Geoid)
projection. A 64-bit Windows 10 PC equipped with an Intel® Core™ i9-10900KF CPU at
3.70 GHz, 32 GB RAM, and an NVIDIA GeForce RTX 3060 graphics processor was used for
all photogrammetric processing and machine learning modeling.

Flight Imagery

We successfully generated a multispectral orthomosaic (2.5 cm/pixel; Figure 3), nDSM
(5 cm/pixel; Figure 4), and a slope raster (Figure 5) for the entire research site (40.7 ha).

2.4. Field Sampling

Between Summer 2021 and Summer 2022, we completed extensive ground surveys of
woody vegetation across the four study sites. During the year-long period of surveys, we
did not find any significant changes in the spatial distributions of the vegetation alliances
and shrub species. Given the dense, often impenetrable canopies, we opted for a plotless
sampling technique over transect or quadrat sampling methods. Previous surveys of
the entire natural reserve have documented the presence of 53 woody plant species with
dominance by 10 species. To acquire ground positions of woody plant species, we uploaded
an 8-bit version of the high-resolution X7 RGB orthomosaic imagery from UAV flights to
an Android tablet mobile device and accessed imagery in the field using the open-source
GIS plugin QField [63]. The QField interface was configured in QGIS Desktop to include a
data collection form that allowed field technicians to efficiently collect GPS point data on
the position of woody plant species by referencing imagery in real time relative to their
current ground position. GPS point data were collected for areas that were distinguishable
in the imagery, larger than 0.5 m2, and consisting of a single live species, bareground, or
standing deadwood. Technicians recorded cover type and ensured that survey points were
separated by distances of at least 3 m. All geodata were synchronized via the QField plugin
in QGIS Desktop and stored in shapefile format.
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Figure 3. Orthomosiac raster displayed in RGB. (a) Application Site 1 (7.43 ha), (b) Training Site
(16 ha), (c) Application Site 2 (9 ha), (d) Application Site 3 (8 ha). Resolution: 2.5 cm/pixel with
WGS 84 UTM Zone 10 projection. Backdrop imagery source: World Imagery Esri, Maxar, Earthstar
Geographics (2022).
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Figure 5. Slope model (degrees) generated from normalized digital surface model (nDSM) canopy
height (WGS 84 UTM Zone 10 projection). (a) Application Site 1 (7.43 ha), (b) Training Site (16 ha),
(c) Application Site 2 (9 ha), (d) Application Site 3 (8 ha).

We had a primary research interest in identifying individual species within the mar-
itime chaparral plant community. We did not consolidate these species into a single classifi-
cation category given management interests aimed at mapping the species distributions,
assessing plant health, and estimating fuel loadings in the future. Manzanita, Ceanothus,
and Chamise have very different fire-related characteristics [64]. To facilitate the focus on
classification of those maritime chaparral species, we lumped all the species comprising
the coastal sage scrub community into a single broad category; this eliminated the need for
additional algorithms for deeper species-level classification. Creating this broader coastal
sage scrub category also tested the ability of machine learning approaches to classify a
group with high spectral variability at the same time as species-specific classifications with
lower spectral variability.

2.5. Classification Modeling Development

We evaluated three OBIA integrated classifier methods: random forest (RF), support
vector machine (SVM), and a deep learning convolutional neural networks (CNN) approach.
All classifier methods were developed and applied into an object-based image analysis
(OBIA) framework using eCognition Developer (v. 10.2, Trimble Germany GmbH, Munich,
Germany). eCognition Developer is a development environment designed specifically to
combine machine learning approaches with object-based image analysis through analysis
workflows called rule sets. Two key advantages of this approach are (1) CNN integration
based on Google’s TensorFlow API and (2) the ability to utilize the same OBIA landscape
segmentation algorithms across the three classifier methods.

2.6. Image Sampling

In order to generate training and testing sample patches, survey points in the 16-ha
training region (Figure 1) were randomly assigned to 70% training and 30% testing groups
and labeled by membership to one of eight classification groups: A. fasciculatum, A. pumila,
A. tomentosa, C. rigidus, Q. agrifolia, a Coastal Sage Scrub group, Deadwood, and Bareground.
Survey points with distances to the raster scene border of less than 12 pixels were not used
to generate samples. Samples were generated by rendering a square polygon buffer around
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ground survey points with sides of 0.6 m (0.36 m2) ground sampling distance (GSD),
corresponding to 24 × 24 pixels image space, where each pixel represents 2.5 cm GSD.
Samples were extracted from 8-bit multispectral rasters (i.e., red, green, blue, near-infrared
(NIR), and near-infrared edge (NIRe)). Deep learning methods require thousands of training
samples and this is often achieved by systematically rotating the scene orientation that
sample patches are extracted from. This method can also rectify problems associated with
the influence of shadow orientations. We used eCognition Developer (v. 10.2, Trimble
Germany GmbH, Munich, Germany) to create a fully automated process that rotates
the raster imagery at an interval of 30-degrees, extracts 1000 samples, and repeats the
process a total of 12 times. The process generates 12,000 samples per class and a total of
96,000 samples across the eight cover classes.

Our convolutional neural network architecture began with random initial weights and
received sample patches from the five multispectral image layers as training inputs with the
goal of generating a probabilistic heat map of cover classes as an output. The model consists
of two batch normalized hidden layers. In the first hidden layer, imagery is convoluted
with a kernel size of 3 × 3 pixels and assigned to 40 feature maps without max pooling.
In the second fully connected hidden layer, results from the first hidden layer are further
convoluted using a 3 × 3 kernel size and assigned to 20 feature maps. Our CNN model
consists of only the two hidden layers with no max pooling layers included. Max pooling is
a method of reducing the pixel dimensions of the image thereby speeding processing time.
CNN training was initiated by randomly shuffling training data and learning occurred at a
rate of 0.0001 with 8000 training steps, and a sample batch size of 100 images. Learning
rate defines the amount by which weights are adjusted in each iteration of the statistical
gradient descent optimization.

2.7. CNN Application and OBIA Classification

Once the CNN model was trained using training samples, we applied the model to
the entire 16-ha training site and to the neighboring application sites. For each of the cover
classes, we generated a separate raster heat map representing the probability that each
pixel has membership within the cover classes (Figure 6).

0 15075 m

A. fasciculatum A. pumila A. tomentosa C. rigidus

Q. agrifolia Coastal Sage Scrub Bareground Standing Deadwood

Figure 6. CNN generated probability heat maps for each feature class in the 16-ha training site.
Red regions have a high probability (p = 1) of membership to the class and blue represents a null
probability (p = 0) of membership to the feature class.
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2.8. Segmentation

Multiresolution segmentation, or MRS, is a widely used segmentation approach for
OBIA classification with very-high-resolution (VHR) imagery [65]. We used the MRS algo-
rithm in eCognition Developer (v. 10.2, Trimble Germany GmbH, Munich, Germany) to
generate a segmentation vector layer for objectbased image classification. Multiresolution
segmentation implements a method of segmentation known as region growing that itera-
tively merges neighboring regions with similar spectral and spatial heterogeneity based
on thresholds defined by the researchers (Blaschke et al., 2004). Our segmentation process
utilized the multispectral orthomosaic, canopy height (nDSM), and slope model as inputs
with weightings assigned through trial and error as multispectral (4), canopy height (2), and
slope (1). Segmentation parameters were set to a scale of 80, shape of 0.2, and compactness
of 0.6.

Next, image segmentations were classified by generating a class hierarchy based
on fuzzy logic membership using eCognition Developer 10.2. Each feature class in the
classification hierarchy contained a class description consisting of a set of fuzzy logic
membership functions that evaluated the specific probabilistic features of the individual
heat maps generated from the CNN. We defined all of the fuzzy sets by linear membership
functions that identified a soft fuzzy classifier that uses a degree of membership probability
to express an object’s assignment to a class. The membership values range from 0.0 to
1.0, where 1.0 represents full membership to a feature class and 0.0 represents absolute
non-membership. One advantage of these soft fuzzy logic methods lies in their ability to
quantify uncertainties about the descriptions of feature classes and assign membership to a
class based on the degree of uncertainty of membership in other classes. For this study, all
membership functions varied between 0 and 1, except for C. rigidus, which was assigned a
heat map probability threshold for classification that began at 0.85 instead of zero. This
threshold was based on expert knowledge of where rare C. rigidus is actually located in
the landscape and was determined by trial and error to accurately identify the species and
reduce false-positive classification.

To assess accuracy during model development in the 16-ha training site, 30% of the
randomly selected ground survey points were used to assign segmentation polygons as
test classification polygons. If multiple ground survey test points of the same classification
type were together in a test segmentation polygon, then we deleted test points so that
only a single ground survey test point was associated with each testing segmentation
polygon. Prior to testing we also ensured that training ground survey points were not
within polygons that were assigned as test segmentation polygons. The overall impact of
this process reduced the proportion of testing points by 1–2% per class and reduced the
overall number of testing points total by 11% (Table 2).

Table 2. Number of ground survey points collected at each site.

Training Site Application Site
Group Species Training Testing Corrected Testing 1 2 3

Chaparral A. fasciculatum 174 74 67 244 9 303
A. pumila 1545 662 562 387 492 247
A. tomentosa 1065 457 369 295 218 573
C. rigidus 162 69 64 16 87 33

Sage Scrub A. californica 20 9 9 17 8 14
B. pilularis 84 36 34 48 31 23
E. ericoides 286 123 119 69 91 36
S. mellifera 102 44 42 62 16 39
T. diversilobum 35 15 14 30 57 18

Woodland Q. agrifolia 913 392 376 186 306 82
Gaps 226 97 90 94 83 78
Bareground 340 146 136 70 112 72

Total 4952 2124 1882 1518 1510 1518
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2.9. Accuracy Assessment

The classification performance of CNN + OBIA, RF, and SVM methods was assessed
using visual inspection of classified segmentation polygons and quantitative accuracy
assessment as object-based calculations of overall accuracy (OA) and Cohen’s Kappa coeffi-
cient (κ). In order to evaluate individual cover classes, we calculated per-class precision,
recall, and F-Score (F1) statistics.

Precision [66], also called user accuracy, summarizes how often a real cover type on the
ground (i.e., from reference data) correctly appears on the classified map. Recall, also called
producer accuracy, describes how often the classes designated on the map are actually
present on the ground.

A highly accurate classification must balance high recall and high precision. The
F-Score (F1) statistic is a useful metric to evaluate the trade-off calculated as the harmonic
mean of the precision and recall (Sundheim, 1992). A higher F1 statistic indicates support
for predictions made by the model classifier. Another convention is to calculate Cohen’s
kappa coefficient (κ), which compares observed patterns to a classification based entirely
on random assignment. Kappa values range from −1 to 1; a value of 0 indicates that the
classification is no better than random, and κ close to 1 indicates that the classification is
better than random.

3. Results
3.1. Field Survey Results

We collected a total of 11,622 ground survey points across the entire 40.7-ha research
area (Table 2) The majority of data collection (60%) was concentrated within the 16-ha
model training site, and the rest in the 24.7-ha application sites.

3.2. Classification Model Results

The CNN + OBIA method had the highest overall classification accuracy across all
application sites (Mean OACNN+OBIA = 0.85, Mean κCNN+OBIA = 0.81) (Figures 7 and 8)
compared to random forest (Mean OARF = 0.63, Mean κRF = 0.55) (Figures A1 and A2) and
support vector machine (Mean OASVM = 0.67, Mean κSVM = 0.58) (Figures A3 and A4).
Our CNN + OBIA approach accurately classified three species of chaparral shrub species
in the application sites including: A. fasciculatum (Mean κCNN+OBIA = 0.80), A. pumila
(Mean κCNN+OBIA = 0.86), and A. tomentosa (Mean κCNN+OBIA = 0.72). Random forest and
SVM classification models were most effective at classifying A. pumila
(Mean κRF = 0.79, Mean κSVM = 0.91), but only moderately accurate at classifying A.
tomentosa (Mean κRF = 0.45, Mean κSVM = 0.60), and poor at classifying A. fasciculatum
(Mean κRF = 0.08, Mean κSVM = 0.21). CNN + OBIA was the most effective model for
classifying several other cover classes, including Q. agrifolia (Mean κCNN+OBIA = 0.97), bare-
ground (Mean κCNN+OBIA = 0.96), standing deadwood (Mean κCNN+OBIA = 0.89), and
coastal sage scrub (Mean κCNN+OBIA = 0.69). Rare Ceanothus rigidus classification accuracy
was poor across all sites (Mean κCNN+OBIA = 0.28, Mean κRF = 0.21, Mean κSVM = 0.21).
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Figure 7. CNN + OBIA land cover classification results (WGS 84 UTM Zone 10 projection).
(a) Application Site 1 (7.43 ha), (b) Training Site (16 ha), (c) Application Site 2 (9 ha), (d) Appli-
cation Site 3 (8 ha).
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Figure 8. Accuracy Assessment of CNN + OBIA deep learning landscape cover classification.

4. Discussion

Here, we presented a CNN + OBIA classification modeling approach based on very-
high-resolution multispectral and structural UAV data capable of accurately identifying
species, broader plant communities, and structural cover features in complex, wild vegeta-
tion. We attribute the success in our CNN + OBIA classification process to three factors:
consideration of target species abundances and distribution across the training and ap-
plication sites, collection of extensive ground survey training data, and integration of a
CNN workflow that uses high resolution multispectral data with object-based segmen-
tation based on multispectral and structural data. One distinct advantage of the CNN
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approach over RF and SVM is the ability to simultaneously classify a broad group con-
sisting of several co-occurring species along with more focused and less variable target
species. Our CNN + OBIA approach outperformed RF and SVM methods for classifying
the heterogeneous coastal sage scrub group and several individual species.

We focused on creating an effective classification model for the four most dominant
shrub and tree species in a dense and heterogeneous shrubland community; a reasonable
next step would be to include additional species in the model. Generating a model is simple
for locally dominant species because it is easiest to collect the needed training and testing
data. Once a robust model is trained, it can be applied to other sites and evaluated with
fewer survey points required for validation. Including less common species would require
a larger suitable training area reflective of the composition of nearby application sites. The
process of target species and training site selection are dependent on expert knowledge
of regional plant communities. For example, the variable classification performance in
A. fasciculatum in Site #2 (Figure A1) can be explained by the low abundance of A. fascicula-
tum. We were only able to locate nine distinct patches of A. fasiciculatum in Site #2 that met
our ground survey criteria and six patches with neighboring coastal sage scrub, A. pumila,
or C. rigidus causing a distinct drop in map reliability (recall) for this region. This means
that care and creativity are needed when interpreting classification performance for locally
rare species.

For example, the poor classification accuracy of Ceanothus rigidus provides a good
example of what can happen when there are not an adequate number of specimens to
adequately train the model and an inadequate number of validation points in application
sites. In the case of C. rigidus the low number of available training subjects resulted in high
recall rates, indicating that ground survey points were correctly identified in the map, but
the low precision and accuracy statistics (F1, Kappa) indicating that the model misclassified
other non-target points as C. rigidus. We were able to apply expert knowledge, and trial-
and-error, to our classification fuzzy logic schema, setting a high probability threshold for
classification of C. rigidus (p = 0.85) to reduce the prevalence of misclassification, although
some misclassification persisted. This misclassification may be rectified by conducting
lower elevation flights to gain higher resolution data, conducting surveys across much
larger regions to increase the species sample abundance or by timing flights to coincide
with the colorful seasonal bloom of C. rigidus.

Integrating structural features of the vegetation (i.e., canopy height and slope) with
multispectral data into the multiresolution segmentation process was a powerful compo-
nent in the identification of several species and structural features. For example, Quercus
agrifolia was usually the tallest species in the landscape and had a consistently hemispherical
crown shape that segmented well and helped produce a very high classification accuracy.

Grouping standing deadwood from multiple species into a single category may reduce
the deadwood classification accuracy, as different species exhibit variations in dieback
patterns and decay processes, which can be overlooked when combined. However, this
aggregate approach can be effective at supporting the delineation of bareground, which
often has similar spectral properties. In our study, manzanitas (A. pumila and A. tomentosa),
chamise (A. fasciculatum), and oak (Q. agrifolia) were the predominant species exhibiting
deadwood characteristics. In the future, creating separate classifications for each species
could enhance classification accuracy and ecological relevance, providing a comprehensive
understanding of dieback dynamics in the ecosystem. We attribute the high performance
in deadwood detection to the abrupt variation in canopy heights and slope dynamics
within manzanita and chamise dieback patches coupled with high NIR and NIR-edge
absorption and low red absorption. Although our study does not delineate species-specific
deadwood detection, it does offer a suitable alternative to rectifying a challenge with
correctly classifying bareground from standing deadwood in forest systems [67].

We explored the use of a CNN + OBIA deep learning approach to classify vegeta-
tion cover at the species level using very high-resolution imagery collected using UAVs.
Cover classification at these levels is essential for investigating the distribution and health
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of ecologically and economically important species in a variety of wildland, urban, and
agricultural landscapes. This method holds great promise for supporting conservation
management practices in wildland communities where target species may be located in
inaccessible areas or distributed over large expanses, especially in heterogeneous wildland
communities. The ability to accurately classify standing deadwood and areas of bare-
ground is equally important as it could be used to study patterns of dieback and growth in
these communities. A continuing challenge is the difficulty of collecting adequate data to
train models for identification of locally rare species. Multiseasonal flights may capture
phenological differences (i.e., flowering) useful for developing robust classification schema.
The ease of flight planning and high-resolution sensor capabilities of drones make them
well-suited for this type of research in the future.
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Figure A1. Random Forest classification results (WGS 84 UTM Zone 10 projection). (a) Application
Site 1 (7.43 ha), (b) Training Site (16 ha), (c) Application Site 2 (9 ha), (d) Application Site 3 (8 ha).
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Figure A2. Accuracy assessment of random forest landscape cover classification.
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Figure A3. Support Vector Machine classification results (WGS 84 UTM Zone 10 projection). (a) Ap-
plication Site 1 (7.43 ha), (b) Training Site (16 ha), (c) Application Site 2 (9 ha), (d) Application Site 3
(8 ha).
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Figure A4. Accuracy assessment of support vector machine landscape cover classification.
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