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Abstract: Mini-drones can be used for a variety of tasks, ranging from weather monitoring to package
delivery, search and rescue, and also recreation. In outdoor scenarios, they leverage Global Positioning
Systems (GPS) and/or similar systems for localization in order to preserve safety and performance. In
indoor scenarios, technologies such as Visual Simultaneous Localization and Mapping (V-SLAM) are
used instead. However, more advancements are still required for mini-drone navigation applications,
especially in the case of stricter safety requirements. In this research, a novel method for enhancing
indoor mini-drone localization performance is proposed. By merging Oriented Rotated Brief SLAM
(ORB-SLAM2) and Semi-Direct Monocular Visual Odometry (SVO) via an Adaptive Complementary
Filter (ACF), the proposed strategy achieves better position estimates under various conditions (low
light in low-surface-texture environments and high flying speed), showing an average percentage
error of 18.1% and 25.9% smaller than that of ORB-SLAM and SVO against the ground-truth.

Keywords: visual SLAM; indoor positioning; mini-drone

1. Introduction

The advent of Unmanned Aerial Vehicles (UAVs), commonly known as drones, has
had a profound impact on multiple industries, including weather monitoring, package
delivery, and search and rescue. These high-potential applications have made drone
technology an active area of research in recent years [1–4]. Notably, the functionality of
mini-drones in indoor environments brings unique challenges in terms of navigation and
localization due to the absence of Global Positioning Systems (GPS) [5], GLONASS [6] and
Galileo [7] signals, leading to the dependence on alternate localization methods such as
Visual Simultaneous Localization and Mapping (V-SLAM) technologies [8].

In the constantly evolving field of Visual Simultaneous Localization and Mapping
(V-SLAM), a comprehensive understanding of the most current algorithms is critical for
both the technical implementation and the historical context. In a detailed examination
of this arena, Kazerouni et al. [9] encapsulated the state of the art in V-SLAM, offering
a robust comparison of recent algorithms and their performances [10,11].

Their research underlines the inherent challenges faced by V-SLAM algorithms, chiefly
among them the intensive data processing demands and the reliance on camera-based
inputs. These factors collectively contribute to slower computational speeds, which can
potentially hinder real-time drone localization and navigation applications. Hence, they
highlight the pressing need for a fast and efficient V-SLAM algorithm, one that is capable
of short computation times while maintaining high performance accuracy; for example,
in [12], Grubesic discusses the challenges faced by Visual Simultaneous Localization and

Drones 2023, 7, 404. https://doi.org/10.3390/drones7060404 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7060404
https://doi.org/10.3390/drones7060404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-9870-4441
https://orcid.org/0000-0003-2284-3802
https://orcid.org/0000-0003-2753-1787
https://doi.org/10.3390/drones7060404
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7060404?type=check_update&version=1


Drones 2023, 7, 404 2 of 21

Mapping (V-SLAM) algorithms, particularly in the context of urban spatial analysis using
Unmanned Aerial Vehicles (UAVs). The authors emphasize two main challenges: the
intensive data processing demands and the reliance on camera-based inputs. These factors
contribute to slower computational speeds, which can hinder real-time drone localization
and navigation applications. This paper delves into the specific computational challenges,
explores existing V-SLAM algorithms, and highlights the need for faster and more effi-
cient algorithms to ensure real-time performance while maintaining high accuracy. In [13],
Hassanalian provides an overview of various aspects of drones, including classifications,
applications, and design challenges. In the context of V-SLAM, the authors discuss the
challenges associated with computational demands and camera-based inputs. They em-
phasize the need for V-SLAM algorithms that can deliver fast computation times without
compromising performance accuracy. This paper covers different design considerations
and strategies to address these challenges, such as hardware optimization, algorithmic
improvements, or sensor fusion techniques. In [14], Shi focuses on the development of
an anti-drone system that incorporates multiple surveillance technologies; while the pa-
per does not directly address V-SLAM algorithms, it discusses the challenges posed by
drones, including their reliance on camera-based inputs and the computational demands of
V-SLAM for accurate localization. The authors highlight the importance of efficient and fast
V-SLAM algorithms in the context of anti-drone systems. Additionally, the paper explores
the implementation challenges and considerations associated with integrating multiple
surveillance technologies to counter drones effectively.

Subsequent studies have taken up this call to action, leading to the introduction of
several fast V-SLAM algorithms. For example, in [15], Zou provides a survey of collabora-
tive Visual SLAM techniques for multiple agents. It explores the challenges and solutions
related to the simultaneous mapping and localization of multiple agents in a shared envi-
ronment. The author discusses various approaches and algorithms that enable multiple
agents to collaboratively build a consistent map and estimate their individual poses in real
time. The survey covers both centralized and decentralized methods and discusses the
advantages and limitations of each approach. In [16], Vidal introduces a novel approach to
Visual SLAM that combines events, images, and Inertial Measurement Unit (IMU) data to
achieve robust and accurate localization and mapping in challenging scenarios. The author
explores the use of event cameras, which are capable of capturing changes in brightness
over time, in conjunction with traditional cameras and IMU sensors. This combination
allows for improved performance in High Dynamic Range (HDR) and high-speed sce-
narios, where traditional cameras struggle due to motion blur or limited dynamic range,
and in [17], Yang focuses on the development of a monocular vision-based SLAM sys-
tem for Unmanned Aerial Vehicles (UAVs) to achieve autonomous landing in emergency
situations and unknown environments. The author proposes an approach that utilizes
a single onboard camera to estimate the UAV’s pose and simultaneously build a map of
the landing area. By leveraging SLAM techniques, the system enables UAVs to safely and
autonomously land even in challenging or unfamiliar environments where traditional land-
ing systems are not feasible. These papers contribute to the field of SLAM by addressing
specific challenges and proposing innovative approaches for navigation, mapping, and
localization in various scenarios, including indoor environments, multi-agent systems,
challenging lighting conditions, high-speed scenarios, and emergency situations. These
have been broadly categorized into two primary methods: feature-based approaches and
direct methods.

Feature-based approaches identify and use specific features in the environment to
estimate the position and orientation of the drone. This technique can provide accurate
position estimates but often faces challenges in environments with few distinctive features,
such as bare walls or open spaces. For example, in [18], Wang focuses on the development
of a visual odometry technique for Unmanned Aerial Vehicles (UAVs) operating in indoor
environments. The author proposes a multi-feature-based approach, which identifies and
utilizes multiple distinctive features in the environment to estimate the position and ori-
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entation of the drone. By leveraging multiple features, the method aims to improve the
accuracy and robustness of the position estimation process and discusses the algorithmic
details, feature selection, and experimental evaluation of the proposed approach. Further-
more, in [19], Al-Kaff provides a survey of computer vision algorithms and applications
specifically tailored for Unmanned Aerial Vehicles (UAVs). The author explores various
computer vision techniques and algorithms that are commonly used for UAV applications,
including feature-based approaches for position and orientation estimation, and presents an
overview of different feature-based algorithms, their advantages, limitations, and potential
applications in UAV scenarios. In [20], Trujillo focuses on the development of a monocular
visual Simultaneous Localization and Mapping (SLAM) system based on a cooperative
UAV–Target system. The author proposes a cooperative framework where a UAV and
a target object work together to improve the accuracy and robustness of visual SLAM. The
system utilizes a monocular camera onboard the UAV to estimate the relative position and
orientation of the target object in real time and describes the system architecture and the
algorithmic details, and presents experimental results to evaluate the performance of the
proposed approach.

On the other hand, direct methods make use of pixel intensity values directly from the
images captured by the drone’s camera, avoiding the feature extraction step. This allows
for more efficient computation, but the performance can be affected by changes in lighting
conditions or rapid motion.

Among these approaches, two V-SLAM algorithms, namely Oriented FAST and Ro-
tated BRIEF SLAM (ORB-SLAM2) and Semi-Direct Monocular Visual Odometry (SVO),
have gained significant attention due to their unique capabilities and limitations in indoor
drone localization. The subsequent sections of this paper will further elaborate on these
two algorithms and propose a novel method for combining them to achieve improved
localization accuracy.

1.1. Related Work

In their comprehensive study, Kazerouni et al. [9] meticulously analyzed the latest
V-SLAM algorithms, considering both their historical development and technical nuances,
thereby encapsulating the current cutting-edge technology in this field. Their research
underlined a fundamental drawback with these V-SLAM methods: the heavy reliance on
camera inputs and demanding data processing tasks tend to slow down the algorithms’
operation. As such, they postulated the need for a more expedient V-SLAM algorithm,
characterized by reduced computational timeframes, which could offer significant ad-
vantages. Recently released fast V-SLAM algorithms were compared and categorized
in [21,22]; the following are two V-SLAM examples, namely feature-based approaches and
direct methods.

1.1.1. Feature-Based Methods

Feature-based methods [23], such as ORB-SLAM, extract the important details from
each frame of the images, such as blobs and corners. The mapping and localization are then
accomplished using the positions of each feature in the current and previous frames. Artal
et al. provide one of the fastest algorithms with feature-based methods (Figure 1) [24].

1.1.2. Direct Methods

Direct methods [25], such as Large-Scale Direct SLAM (LSD-SLAM), employ the entire
amount of data in the image rather than just the features, giving it superior robustness and
accuracy compared to feature-based methods, but requiring a higher computational effort
in comparison to ORB-SLAM (Figure 1) [26].
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Figure 1. Feature-based methods Abstract visuals to highlight observations and exclude all extrane-
ous data. In contrast, the suggested direct method maps and follows picture intensities directly [27].

1.1.3. Recent Works

In the scholarly work of Guanci et al. [28], they introduce ORB-SLAM2, a variant
that stands out for its lower computational cost compared to its predecessor, ORB-SLAM.
Moreover, it exhibits commendable localization precision and has the capacity to function in
real time without necessitating GPU processing. Concurrently, the SVO algorithm, brought
forth by Forster et al. [29], ingeniously amalgamates the strengths of both feature-based and
direct methods, thereby enhancing its operational efficiency [29]. Additionally, researchers
demonstrate in [30] that SVO is up to ten times faster than LSD-SLAM and ORB-SLAM. It
cannot produce maps, however, because only the last 5–10 frames are accessible due to fast
processing and memory reduction [30,31].

In their work, Loo et al. [32] explore strategies to mitigate SVO’s shortcomings
when detecting features during rapid movements, implementing a concept known as
preceding motion. Preceding motion leverages the features from previous images to
predict the current motion; however, SVO continues to face challenges in feature-poor
environments. Meanwhile, ORB-SLAM incorporates an in-built error correction mechanism
based on features intrinsic to the ORB algorithm [33]. This affords it robust map generation
capabilities. However, ORB-SLAM’s ability to identify features in dynamic settings remains
suboptimal. Nonetheless, the unique strengths of ORB-SLAM2 and SVO lend them to
being suitable for a diverse array of scenarios and conditions.

Thus, the proposed V-SLAM method presented in this research is a novel approach that
aims to address the limitations of existing methods by combining two popular techniques:
Semi-Direct Visual Odometry (SVO) [29] and ORB-SLAM2 [24]. By integrating these
two methodologies, the method takes advantage of their individual strengths to improve
the accuracy of position estimation for drones operating in indoor environments.

SVO is a visual odometry algorithm that utilizes direct image alignment to estimate
camera motion. It excels in fast motion estimation and can handle challenging lighting
conditions. However, it struggles with accurate initialization and robustness in feature-poor
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environments. On the other hand, ORB-SLAM2 is a feature-based visual SLAM system
that relies on ORB features for localization and mapping. ORB-SLAM2 provides robustness
in feature-rich environments and accurate initialization, but it has slower performance and
decreased accuracy in fast-motion scenarios.

The proposed method combines SVO and ORB-SLAM2 to leverage their complemen-
tary strengths and overcome their individual limitations. This fusion is achieved through
the integration of an Adaptive Complementary Filter (ACF) [34], which intelligently merges
the data generated by both algorithms. The ACF runs SVO and ORB-SLAM2 in parallel
and fuses their data through a weighted average. The weights are determined based on
error estimation, corresponding to the quantity of features detected in each frame. By
synchronizing the data from both algorithms according to their timestamps, the proposed
method ensures accurate and consistent merging through the ACF.

This integration of SVO and ORB-SLAM2 through the ACF results in an enhanced
V-SLAM system that adaptively adjusts the influence of each algorithm based on their
performance in different environmental conditions. The method dynamically assigns
appropriate weights to the position estimates from SVO and ORB-SLAM2, allowing for
improved accuracy in estimating the position of drones in indoor environments.

In comparison to the state-of-the-art V-SLAM methods, the proposed solution offers
several distinct advantages. It combines the strengths of SVO and ORB-SLAM2, providing
accurate motion estimation and robust feature extraction. The ACF facilitates adaptive data
fusion, optimizing the influence of each algorithm based on its performance and the number
of features detected. This leads to enhanced accuracy and reliability in position estimation.

Regarding the differences from the referenced papers, the proposed solution focuses
specifically on indoor mini-drone localization. It introduces the integration of SVO and
ORB-SLAM2 using the ACF, a unique approach not explicitly mentioned in the references.
Additionally, the custom-designed mini-drone used in the Gazebo simulator software
demonstrates the effectiveness of the proposed solution in realistic scenarios.

Overall, the proposed solution presents a novel and effective approach to address
the challenges of drone localization in indoor environments. By combining SVO and
ORB-SLAM2, leveraging the ACF for data fusion, and utilizing a custom-designed mini-
drone (see Figure 2), the method offers enhanced accuracy and adaptability, improving the
positioning performance and reliability of mini-drones in various indoor scenarios.

Figure 2. The customized mini-drone’s model was utilized for simulations and tests [35].
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The rest of the paper is organized as follows: Section 1 discusses the literature,
Section 2 contains the materials and methods, Section 3 describes the results, Section 4
contains a discussion, and Section 5 presents the conclusions.

2. Materials and Methods

In the current study, we propose a system for mini-drone navigation, which is bifur-
cated into two main components: V-SLAM and a controller (refer to Figure 3). Within
the V-SLAM segment, two parallel threads are employed that utilize the SVO and ORB-
SLAM2 algorithms, respectively (see Figure 4). The SVO algorithm is primarily responsible
for estimating the mini-drone’s position, while ORB-SLAM2 caters to both localization
and mapping tasks [35]. Subsequently, data extracted from both ORB-SLAM2 and SVO
are fused via a weighted average approach. The weighting factor assigned to each data
set depends inversely on the error magnitude, such that the higher the error related to
a specific data set, say from SVO, the smaller its corresponding weighting factor used in
the Adaptive Complementary Filter (ACF) [36,37]. For the trajectory tracking within the
controller component, we employ a PID-based controller [38].

Figure 3. V-SLAM and control system and component.

2.1. ORB-SLAM

Oriented FAST and Rotated BRIEF (ORB) SLAM, particularly its second iteration,
ORB-SLAM2, has emerged as a notable method in the domain of visual SLAM due to its
comprehensive and robust performance. This technique employs ORB features, which
are computationally efficient and invariant to scale and rotation changes. ORB-SLAM2 is
characterized by its three-threaded architecture comprising tracking, local mapping, and
loop closing threads (Figure 4). This approach ensures the real-time operation of the system,
making it appealing for UAV applications. The tracking thread utilizes a motion model and
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performs frame-to-frame tracking, the local mapping optimizes newly observed features
and creates a consistent local map, and the loop closing thread is responsible for detecting
and correcting large-scale drift by identifying full loop closures, while ORB-SLAM2 is
highly effective in a variety of conditions, it can encounter challenges in low-texture or
low-light environments where feature detection becomes difficult. This shortcoming can
lead to tracking losses, resulting in substantial localization errors [31].

Figure 4. The flowchart for SVO and ORB-SLAM.

2.1.1. Tracking

The tracking component serves a dual purpose: it locates the camera for each frame
and discerns when to incorporate a new keyframe into the system. Keyframes are integral
images archived within the system, serving as repositories of valuable informational cues
critical for accurate localization and effective tracking [33]. In scenarios where tracking
is compromised—for instance, due to obstructions or abrupt movements—the system
re-establishes matches with local map points via reprojection, a process involving the
calculation of distance between a detected pattern keypoint in a calibration image and
its corresponding world point projected onto the same image [39]. This facilitates the
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optimization of the camera pose with all the matches. Ultimately, it is the tracking thread’s
responsibility to determine when a new keyframe is warranted for insertion.

2.1.2. Local Mapping

Local mapping constitutes a critical component within the ORB-SLAM algorithm.
This process is primarily responsible for processing new keyframes, which are images
stored within the system that contain informative cues for localization and tracking. The
objective is to optimize the 3D reconstruction in the vicinity of the camera pose. To achieve
this, local mapping searches for new correspondences among unmatched ORB features in
the new keyframe, using connected keyframes in the covisibility graph as references, and
subsequently triangulates new map points. Furthermore, the local mapping mechanism
applies an exacting culling policy post-creation. This policy is informed by the data
procured during the tracking process and is designed to preserve only high-quality map
points. This culling not only applies to map points but also to the keyframes themselves,
enabling the local mapping module to identify and discard redundant keyframes. By doing
so, ORB-SLAM ensures an efficient and consistent local map that contributes to robust and
reliable localization and mapping [32,33].

2.1.3. Loop Closing

Loop closing represents another vital component within the ORB-SLAM algorithm,
tasked with the detection and correction of long-term drift in the estimated trajectory and
the accumulated map. In essence, this component identifies when the camera returns to
a previously visited location, a scenario commonly known as a “loop”. This detection is
primarily achieved through a bag of visual words method to recognize similar scenes, sup-
plemented by pose graph optimization techniques to ensure consistent trajectory and map
correction. If a loop is detected, ORB-SLAM proceeds to correct the entire map and adjusts
the estimated camera trajectory. This process involves the identification and correction
of any false positive loop closures, ensuring that only robust and reliable corrections are
made. The implementation of loop closing not only improves the accuracy of the map and
the trajectory but also aids in maintaining the scalability of the system, making it a critical
element of the overall ORB-SLAM pipeline [31].

2.2. Semi-Direct Visual Odometry

SVO presents an innovative approach in the realm of visual odometry, aiming to
bridge the gap between feature-based and direct methods. Contrary to traditional methods
which typically rely on tracking distinct features in an image, SVO takes advantage of the
advantages of both feature-based methods and the direct extraction of depth information
from pixels, thus optimizing computational resources [29].

Initially, the SVO algorithm selects a small subset of corner features to initialize its
3D map and estimate camera movement from frame to frame. Then, instead of extracting
features from the entire image, SVO directly aligns pixel intensities from these selected
parts to a depth map, which allows for more efficient and faster pose estimation. In this
way, the SVO algorithm leverages the information contained within the pixel intensity
and the depth map to generate accurate estimations of camera motion. Consequently, the
algorithm exhibits superior performance in scenarios characterized by rapid motion or
limited features [30].

However, similar to other V-SLAM methodologies, SVO is not exempt from limitations,
with performance potentially degrading in environments with sparse features or under
poor lighting conditions. Therefore, the question arises as to how we can harness the
strengths of both SVO and ORB-SLAM2 to achieve an even more robust and efficient
V-SLAM system [40,41].
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2.3. SVO-ORB-SLAM

To address the limitations of both SVO and ORB-SLAM2 and to leverage their unique
strengths, we propose combining these two methodologies using an Adaptive Complemen-
tary Filter (ACF). The idea is to run SVO and ORB-SLAM2 in parallel and then fuse the
data they generate through a weighted average, as depicted in Figure 4 and Algorithm 1.
The first thread is dedicated to data weighting from each of the algorithms—ORB-SLAM2
and SVO. This weighting is handled by the ACF and is founded on an error estimation
corresponding to the quantity of features detected in each frame. The feature detection
is conducted using the Features from Accelerated Segment Test (FAST) corner-detection
algorithm in SVO and the ORB feature-detection algorithm in ORB-SLAM2.

However, before these estimations are undertaken, it is crucial that the data from
each of these processes are synchronized according to their timestamps. This ensures the
data from the two sources can be accurately and consistently merged via the ACF. By
adhering to this procedure, the proposed solution adeptly combines the strengths of both
SVO and ORB-SLAM2, using the ACF to dynamically adjust the influence of each based
on their performance in different environmental conditions. This results in an enhanced
V-SLAM system capable of achieving superior localization accuracy for mini-drones under
varying conditions.

Algorithm 1 SVO-ORB-SLAM algorithm.

function SVO-ORB-SLAM(, Porb, Psvo, α, Nsvo, Nsvo)
Step 1: Capture the image from the cameras.
Step 2: Estimate Porb and Psvo.
Step 3: Calculate Errororb and Errorsvo based on number of features.
Error_svo ← 1

Nsvo

Error_orb← 1
Norb

Step 3: Calculate α based on errors.
α← Error_orb

Error_svo+Error_orb
for each image frame i do

Update the position of the Porb and Psvo
f used_positioni ← weight_svo · position_svoi + weight_orb · position_orbi

end for
return f used_position

end function

2.4. ACF

This paper builds upon ACF because it involves less computation for the data fusion
of SVO and ORB-SLAM2 compared to similar methods based on the Kalman filter [42].

The complementary filter is a simple yet effective technique for fusing two or more
sensor data sources to achieve a more accurate and reliable output. It is commonly used
to combine data from low-pass and high-pass filters to extract the best features from each
data source. The general formula for a complementary filter with two data sources is as
follows: ‘output = alpha * (source1) + (1 − alpha) * (source2)’.

Here are the formulas and definitions used in the complementary filter for fusing SVO
and ORB-SLAM position estimates:

1. Error calculation:

Errorsvo =
1

Nsvo
, (1a)

Errororb =
1

Norb
, (1b)

Here, Nsvo and Norb represent the number of features detected by the SVO and ORB-
SLAM algorithms, respectively. We calculate the error for each algorithm as the inverse of
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the number of features. The assumption is that more features result in a lower error and
fewer features result in a higher error. Here, alpha is a constant value between 0 and 1 that
determines the relative contribution of each data source to the final output. Source1 and
source 2 are the data sources being fused.

2. Alpha (α) calculation:

α =
Errororb

Errorsvo + Errororb
, (2)

Alpha is a coefficient that determines the relative weighting of the SVO and ORB-
SLAM algorithms. It is calculated by dividing the error of ORB-SLAM by the sum of errors
of both algorithms. Alpha ranges from 0 to 1. The weight of SVO = 1 − α, and the weight
of orb = α. The sum of the weights is always 1.

3. Fused position calculation:

Pfiltered = α× Psvo + (1− α)× Porb. (3)

Here, Pfiltered is the fused position, Psvo is the position from the SVO algorithm (x, y, z)
and Porb is the position from the ORB-SLAM algorithm (x, y, z). The alpha value should be
chosen based on the desired weighting of the two position estimates in the final output; see
Figure 5. The fused position is calculated as a weighted sum of the position estimates from
the SVO and ORB-SLAM algorithms. The weights (weight of SVO and weight of ORB) are
determined by the errors of the algorithms; see Figure 6.

Figure 5. Diagram of computational steps before combining algorithms.

Figure 6. (a) Using data from both algorithms; (b) using ORB-SLAM’s data, and (c) use SVO’s data.

2.5. Controller

V-SLAM algorithms have some critical aspects that need to be carefully addressed
before they can be effectively deployed on UAVs. One is the initial localization which
needs the camera to move about one meter to detect the image’s features. While it may
not be very safe to have a one-meter error as it can cause a collision or crash, in the initial
moment, the control of the robot is semi-automatic. Thus, in this controller, there is an initial
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trajectory command as an input to PD [43]. That is, the initial setpoint is set for the PD
controller. In the next step, the PD controller output is the PI controller input [44]. After
that, the mini-drone begins flying autonomously. Moreover, the mini-drone requires initial
localization. In this part, PI uses optical follow [45] with a bottom camera and data based
on velocity for position estimation. These are the steps for the first loop for mini-drone
control, after which the mini-drone can fly autonomously.

3. Results

The real-time execution of all operations—encompassing image processing, local-
ization, and mapping—was imperative in evaluating the performance of the integrated
SVO-ORB-SLAM system. Performance simulations were conducted utilizing Gazebo 11
and Rviz software platforms, implemented within the framework of the Robot Operating
System (ROS) Melodic Morenia on an Ubuntu 18.04 (Bionic) operating environment. The
hardware underpinning these simulations comprised an Intel Core i7-4702MQ processor,
supplemented by 12 GB of RAM, and a 2 GB VGA GeForce GT 740M graphics card.

Figure 7 shows on the right the viewing angle of the drone’s front camera (pro-
vided by Gazebo), where the green spots are the features identified by the ORB-SLAM2
method; on the left, the white cloud points represent the 3D map generated by the
ORB-SLAM2 algorithm.

Figure 7. The green points in the ORB-SLAM2 algorithm represent the features, the green line
represents the trajectory and the white points represent the 3D map.

In Figure 8, the right-hand window illustrates the field of view of the mini-drone’s
downward-facing camera within the Gazebo environment. The green markers within this
frame are indicative of the image features detected by the SVO algorithm. Conversely,
the left-hand window of Figure 8 presents the Rviz environment. Here, the red pathway
visualizes the estimated trajectory of the mini-drone as determined by the SVO algorithm.
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Figure 8. The trajectory and feature points in the SVO algorithm.

Figure 9 showcases the flight of the mini-drone within the Gazebo (right window)
and Rviz (left window) environments. The depicted trajectories include the actual flight
trajectory denoted by the yellow line, the trajectory estimate provided by the SVO algorithm
represented by the red line, the trajectory estimate derived from ORB-SLAM2 denoted by
the green line, and finally, the trajectory estimate derived from our proposed technique
indicated by the blue line.

3.1. Simulations

We evaluated the mini-drone in two complicated scenarios for performance: (1) low
light with low surface texture and (2) high-speed flying. Furthermore, we demonstrated
that our suggested solution works very rapidly and smoothly, even with poor hardware.

3.1.1. Low Light with Low Surface Texture

We tested the drone in challenging conditions. For this test, the drone initially flew
in a well-lit room with many textures (see Figure 10). After a few moments, we reduced
the ambient light by 50% and removed the carpet from under the mini-drone. As shown
in the left part of Figure 11, the SVO lost the position of the mini-drone. However, our
proposed method uses ORB-SLAM data, which allows us to still track the robot’s position
in this situation.

3.1.2. High Speed Flying

As part of our more complex testing, we placed the robot in an environment with
various objects, as shown in Figure 12, which depicts the feature detection of the new
object. In this test, we increased the flying speed of the mini-drone to twice the speed
of the previous tests. As shown in Figure 13, all of the algorithms were able to estimate
the position of the robot. However, the results showed that SVO had a 50% smaller error
than ORB-SLAM.
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Figure 9. Simulation environment room in the Gazebo.

Figure 10. The drone is tested in a well-lit room with various textures to evaluate its performance in
ideal conditions.
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Figure 11. The drone’s position is lost using SVO when the ambient light is reduced by 50%, and
the carpet is removed. Our proposed method using ORB-SLAM data still accurately tracks the
drone’s position.

3.1.3. Mapping

In this segment, the robot flies through a corridor while utilizing both SVO and ORB
data to generate a comprehensive 3D point cloud map of the environment, as depicted in
Figure 14. The SVO and ORB data allow for precise tracking of the robot’s movement and
enable the construction of a highly accurate map. This map can be used for a variety of
applications, such as path planning or obstacle avoidance, and is especially important in
areas where visibility may be limited or potential hazards require careful navigation.

Figure 12. Feature detection of a new object in the testing environment for the mini-drone.
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Figure 13. Evaluation of algorithm performance at high speeds. Our proposed method has the least
error in estimating the position of the mini-drone, followed by SVO and ORB.

Figure 14. A comprehensive 3D point cloud map of the environment generated by the robot’s
utilization of SVO and ORB data as it navigates through a corridor.
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4. Discussion

The results presented in this study demonstrate the effectiveness and potential of
the proposed ORB-SVO SLAM approach for mini-drone localization in GPS-denied en-
vironments. The combination of SVO and ORB-SLAM2, integrated using an Adaptive
Complementary Filter (ACF), yielded superior performance compared to the individual
algorithms. This section will delve into the implications and significance of these findings,
address potential limitations, and explore further avenues for research and improvement.

The superior accuracy achieved by the ORB-SVO SLAM approach, as evidenced by
the lower overall error rate compared to SVO and ORB-SLAM2, indicates the benefit of
combining the strengths of both methodologies. By fusing their respective outputs using
the ACF, the approach leverages the advantages of SVO’s computational efficiency and
motion handling capabilities, alongside ORB-SLAM2’s robust mapping and localization
abilities. This fusion technique effectively compensates for the limitations of each individual
algorithm, resulting in enhanced position estimation accuracy and robustness. These are
the results of a comparison between our suggested technique and SVO and ORB-SLAM2
in terms of the average position error in an environment that is dynamic and has low
light and low texture. In Figure 15, it is evident that initially, all the methods exhibited
significant errors. However, as the drone started to move and estimate its position, the
errors gradually decreased to less than 15%. This trend continued until we encountered
a change in the situation. For instance, in the black box area in Figure 15, we either turned
off the lights or altered the map, which led to an increase in errors once again. Notably,
our method demonstrated fewer abrupt jumps and lower overall errors compared to the
other methods.

One of the notable advantages of the proposed approach is its applicability in challeng-
ing environments with low light conditions, low surface texture, and high flying speeds.
These scenarios are often encountered in indoor settings or other GPS-denied areas where
mini-drones are required to navigate with precision and reliability. The ORB-SVO SLAM
approach demonstrated its capability to overcome these challenges and provide accurate
localization estimates under such conditions.

While the results are promising, there are several potential limitations and areas for
further improvement. Firstly, the proposed approach relies heavily on visual information,
making it susceptible to challenges in environments with limited or ambiguous visual
features. Future research could explore the integration of other sensor modalities, such
as depth sensors or Inertial Measurement Units (IMUs), to enhance the robustness of
the system.

Figure 15. Comparison of SVO, ORB-SLAM2 and SVO-ORB-SLAM algorithms.
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Furthermore, the scalability of the ORB-SVO SLAM approach to larger environments
warrants investigation. This study focused on indoor environments; therefore, assessing its
performance in outdoor settings with more-complex scenes and larger-scale maps would
provide valuable insights into its generalizability.

Additionally, while the proposed approach demonstrates improvements in mini-drone
localization accuracy, there is still room for further optimization. Fine-tuning the parameters
and exploring different fusion techniques within the ACF could potentially lead to even
better results.

The proposed ORB-SVO SLAM approach represents a significant step forward in
mini-drone localization under GPS-denied conditions. The combination of SVO and ORB-
SLAM2, integrated using ACF fusion, offers improved accuracy and robustness. This
work opens up new possibilities for mini-drone navigation applications, with potential
extensions to other domains such as autonomous robotics and augmented reality. Further
research and development in these areas will contribute to advancing the capabilities of
mini-drones in complex environments and propel the field of visual SLAM forward.

Processing

V-SLAM algorithms are well-known for their demanding computational requirements
to ensure effective operation. However, this poses a challenge for embedded systems
with limited computational capabilities, such as small drones, which often have restricted
processing power. In this study, we leverage two state-of-the-art methods, ORB-SLAM2
and SVO, known for their efficiency and speed. These methods have been extensively
analyzed and their detailed steps are described in earlier sections.

To address the computational limitations of embedded systems, our approach carefully
balances processing requirements to maintain an optimal level of efficiency. As illustrated
in Figure 16, our recommended solution utilizes only 23.3% of the total available RAM,
ensuring efficient memory utilization. Moreover, the processing executed on the CPU cores
is exceptionally smooth, demonstrating the effectiveness of our approach in achieving
real-time performance.

By utilizing ORB-SLAM2 and SVO, we capitalize on their efficiency and speed with-
out compromising the overall performance of the system. The utilization of these meth-
ods in conjunction with our carefully optimized processing strategy enables mini-drones
with limited computational resources to perform reliable and accurate localization and
mapping tasks.

The effective utilization of computational resources is crucial in enabling embedded
systems to operate in resource-constrained environments. Our solution not only achieves ef-
ficient memory usage but also ensures smooth execution on the available CPU cores. These
aspects are vital for small drones operating in real-world scenarios, where computational
efficiency and responsiveness are critical for successful navigation and mapping tasks.

It is worth noting that the specific percentage of RAM utilization and the smoothness
of CPU processing exhibited in our results demonstrate the viability of our approach in
achieving an appropriate level of computational efficiency. These findings reinforce the
feasibility of implementing our solution on small drones with limited resources, opening up
possibilities for their deployment in various applications, including surveillance, inspection,
and exploration tasks.

Our approach effectively addresses the computational challenges of V-SLAM algo-
rithms on embedded systems, particularly small drones. By carefully optimizing resource
utilization, including memory consumption and CPU processing, our solution demon-
strates high efficiency and smooth execution. These findings contribute to the practi-
cal implementation of V-SLAM algorithms in resource-constrained environments, em-
powering mini-drones to perform complex navigation and mapping tasks with limited
computational resources.
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Our approach has an error rate of 14.2% on average across all situations, as shown in
Table 1. Comparatively, the ORB-SLAM2 method has an error rate of 32.7%, while the SVO
method has an error rate of 40.1%.

Figure 16. The computing process, highlighting the memory consumption depicted by the blue
rectangle and the utilization of 8 processor cores indicated by the red rectangle.

Table 1. Average percentage error during the duration of a low-light and low-surface-texture envi-
ronment and high-speed flying.

Algorithms Average Percentage Error

SVO 40.1%
ORB-SLAM2 32.7%

SVO-ORB SLAM 14.2%

5. Conclusions

In this paper, we have presented a novel approach tailored specifically for mini-drones
operating in GPS-denied environments, such as indoor settings. Our proposed strategy,
named ORB-SVO SLAM, harnesses the power of Visual Simultaneous Localization and
Mapping (V-SLAM) and combines the advantages of both Semi-Direct Visual Odometry
(SVO) and Oriented Rotated Brief SLAM (ORB-SLAM2) methodologies. By integrating
these techniques using an Adaptive Complementary Filter (ACF), we achieve enhanced
performance compared to standalone SVO and ORB-SLAM2 approaches, while maintaining
a lower overall error rate.

Our evaluation reveals that the error rate of our ORB-SVO SLAM approach is
25.9 percent lower than that of SVO and 18.1 percent lower than ORB-SLAM2. This im-
provement demonstrates the effectiveness of our fusion method in providing more accurate
position estimates, especially in challenging scenarios characterized by low-light conditions
and low-surface-texture environments, as well as high flying speeds. The findings of this
study highlight the practical applicability of our strategy for mini-drones operating in
a range of real-world environments.

By combining the robustness of ORB-SLAM2 in mapping and localization with the
computational efficiency and motion handling capabilities of SVO, our proposed ORB-SVO
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SLAM strategy offers a comprehensive solution for accurate and reliable mini-drone local-
ization in GPS-denied environments. The fusion of data using the ACF further enhances the
overall performance, yielding improved results compared to individual algorithms. These
findings contribute to the advancement of mini-drone navigation systems, particularly in
scenarios where GPS signals are unavailable or unreliable.

Further research avenues may involve investigating the scalability and generalizability
of the ORB-SVO SLAM approach to larger and more complex environments, as well as
exploring the integration of additional sensor modalities to further enhance the accuracy
and robustness of the system. Additionally, the adaptation of our strategy for real-world
applications beyond mini-drones, such as autonomous robots or augmented reality systems,
could be an exciting area for future exploration.

Our proposed ORB-SVO SLAM approach, leveraging the strengths of SVO and ORB-
SLAM2 through the ACF fusion, demonstrates significant improvements in mini-drone
localization accuracy and performance. This work contributes to the ongoing development
of visual SLAM techniques and provides valuable insights for advancing the capabilities of
mini-drones in GPS-denied environments.
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