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Abstract: In this paper, an object detection and recognition method based on improved YOLOv5
is proposed for application on unmanned aerial vehicle (UAV) aerial images. Firstly, we improved
the traditional Gabor function to obtain Gabor convolutional kernels with better edge enhancement
properties. We used eight Gabor convolutional kernels to enhance the object edges from eight
directions, and the enhanced image has obvious edge features, thus providing the best object area for
subsequent deep feature extraction work. Secondly, we added a coordinate attention (CA) mechanism
to the backbone of YOLOv5. The plug-and-play lightweight CA mechanism considers information
of both the spatial location and channel of features and can accurately capture the long-range
dependencies of positions. CA is like the eyes of YOLOv5, making it easier for the network to find
the region of interest (ROI). Once again, we replaced the Path Aggregation Network (PANet) with a
Bidirectional Feature Pyramid Network (BiFPN) at the neck of YOLOv5. BiFPN performs weighting
operations on different input feature layers, which helps to balance the contribution of each layer.
In addition, BiFPN adds horizontally connected feature branches across nodes on a bidirectional
feature fusion structure to fuse more in-depth feature information. Finally, we trained the overall
improved YOLOv5 model on our integrated dataset LSDUVD and compared it with other models on
multiple datasets. The results show that our method has the best convergence effect and mAP value,
which demonstrates that our method has unique advantages in processing detection tasks of UAV
aerial images.

Keywords: UAV aerial images; YOLOv5; Gabor; edge enhancement; coordinate attention mechanism;
bidirectional feature pyramid network

1. Introduction

In recent years, drones have been used in a large number of industries due to their
advantages of being lightweight and convenient to use. In the field of artificial intelligence,
people use convolutional neural networks based on deep learning to recognize and analyze
objects in aerial images [1]. The drone aerial images are very rich in information, which is of
great value in intelligence reconnaissance, geographic surveying, and research. Therefore,
drone aerial images are the main object of our research.

When unmanned aerial vehicles are conducting aerial photography missions, image
quality may be degraded by various interferences, such as the environment around drones,
body vibrations, and equipment performance. These interference factors can cause blurring,
unclear object texture, noise, and other issues in the images collected by drones. In addition,
as the height of the drone increases, the image coverage of the scene continues to increase,
and the changes in object scale gradually become apparent, which leads to the weakening
of object features. These problems make object detection in drone aerial images difficult, so
much research has been conducted on detection algorithms for drone aerial images. Chen Y
et al. [2] utilized the MobileNetv3 model and improved the backbone structure in YOLOv5
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to solve the problem of excessive memory usage when detecting high-resolution images of
drones, thereby improving network memory utilization. Messmer M et al. [3] proposed a
height-adaptive image preprocessing method that can adjust the size of objects in the drone
images to meet model requirements. Experimental results have shown that this method
improves the detection accuracy and speed of objects in the aerial view of drones and
can be adapted to all state-of-the-art detectors. Due to the possibility of abnormal objects
invading railways and affecting the safety of railway traffic, unmanned aerial vehicles are
often used to monitor such targets. Therefore, in response to the issue of real-time drone
detection of railway foreign objects, Yundong L et al. [4] proposed a deep learning-based
multi-block SSD (Single Shot Multi-Box Detector) detection method, in which the original
image is divided into several sub-images and then transported to the multi-block SSD
network. The purpose of this is to increase local contextual information and enable the
SSD network to better utilize real-time and high-precision capabilities. Cai H et al. [5]
proposed a lightweight detection method based on YOLOv4. They changed the DarkNet-
53 network of YOLOv4 to a MobileNet network, improved the neck feature extraction
network and head prediction network, and ensured good real-time performance while
greatly reducing parameters. This is very suitable for the lightweight characteristics of
unmanned aerial vehicles. The high density and overlap of small objects in the shadow of
photovoltaic panels pose great difficulties for real-time detection. Jun W et al. [6] improved
the RetinaNet algorithm model. Firstly, they proposed the Ghost CSP DenseNet feature
extraction network to reduce network size and improve network detection speed. Secondly,
the model uses the Ghost model and recursive feature fusion mechanism for feature
fusion and adjusts the feature layer to adapt to multi-scale targets, which can improve
feature expression ability and detection speed. Finally, the model uses the SiLU activation
function to improve the network learning ability. In addition, the network uses the CioU
regression loss function to improve the network prediction ability and convergence speed.
The experimental results show that the model has better mAP, with a model size of only
8.75 MB and a detection speed of up to 50.7 FPS. These studies indicate that object detection
algorithms currently do not have universality across different application fields. Therefore,
adjusting algorithms appropriately for different application fields is a necessary measure
before AI algorithms become stronger.

In this article, we mainly solve the background problem, object distribution problem,
and object scale problem of UAV aerial images from two aspects. On the one hand, the
image is preprocessed. We use an edge processing method based on the edge features of the
object to filter and strengthen the edges in multiple directions. The strengthened object not
only has obvious edge information but can also effectively filter out redundant background
information. We attach the processed image to the original image, highlighting the object
area and thus making it easier for the detection model to find the target during feature
extraction. It is then fed into the detection model of YOLOv5 along with the original image.
On the other hand, this article introduces an attention mechanism and a feature pyramid
structure that enhances weights. The addition of an attention mechanism allows the model
to simultaneously consider channel and spatial information and has high recognition
and localization efficiency in detecting multi-scale objects, especially small objects with a
dense arrangement, overlap, and shadow occlusion. The feature pyramid structure with
enhanced weights is used to fuse the feature layers input from the YOLOv5 backbone in
multiple ways and perform weighting operations based on the contribution of the input
feature layers. This enables the feature layer to have rich semantic information and location
information after multiple fusion events. In order to improve the generalization ability and
robustness of the model proposed in this article, we integrate several datasets and conduct
comparative experiments and precision–recall statistics on the overall improved model and
other models. The experimental results verify the efficient detection ability of the model
proposed in this article.

In this article, our main contributions are as follows:
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• Gabor filter banks are used to preprocess the edges of objects. We improve the
traditional inefficient Gabor function by using discrete quantization. Due to the fact
that a single Gabor convolution kernel can only enhance the edges of objects in a single
direction, we utilize multiple improved Gabor convolution kernels (filters) to enhance
the edges of objects from different directions. From the enhanced image, it can be
seen that the redundant background is suppressed and the edge features of the object
are obvious.

• CA is added to the backbone of YOLOv5. CA embeds spatial information of object
features into channel information to reduce information loss and enable the network to
accurately capture the long-range dependencies of positions. The introduction of CA
is beneficial for the model in better identifying target areas, with good effectiveness in
locating small targets.

• PANet is replaced by BiFPN on the neck of YOLOv5. Developed on the basis of PANet,
in BiFPN (1) the network is simplified by deleting nodes without feature fusion and
with little contribution to output, (2) an additional feature branch is added across
intermediate nodes between the original input and output nodes in the same layer to
fuse feature information from more layers, and (3) input feature layers with different
resolutions are weighted to balance their respective contributions, which is beneficial
for improving training speed and efficiency.

• The new dataset LSDUVD (Large-Scale Dataset Based on UCAS-AOD, VisDrone2019,
and DOTA-V1.0) is obtained by integrating UCAS-AOD, VisDrone2019, and DOTA-V1.0
through data augmentation methods such as flipping, random cropping, and cutout.

The organizational structure of this article is as follows. Section 2 discusses related
studies on object detection and image processing. Section 3 introduces the overall working
structure of our method and the details of each improvement module. Section 4 mainly
introduces our dataset, model experiments, and analysis of the results. Section 5 is the
summary and outlook for the article.

2. Related Works
2.1. Object Detection

Object detection is a very important technology in the field of artificial intelligence
computer vision. In addition to being widely used in facial recognition [7], intelligent
transportation [8], industrial detection [9], and environmental monitoring [10], it also plays
an increasingly important role in the recognition of UAV aerial images [11]. Given the
increasingly strong demand for technology in the development of an intelligent society,
people’s requirements for this technology are also increasing. Therefore, the upgrading and
iteration of object detection technology are among the most challenging issues at present.

From the perspective of object detection algorithms, traditional object detection algo-
rithms have many shortcomings in terms of detection accuracy and speed. One reason
is that the computing resources at the time of their development were insufficient, and
the other important reason is that they use a cumbersome sliding window method to
traverse the entire image, find a certain number of candidate boxes, and then manually
extract features. This results in the loss of much important information, and manual fea-
ture extraction has great limitations, such as that the feature robustness is not strong [12].
Common traditional object detection algorithms include the Viola Jones detector [13], the
HOG detector [14], and the component-based deformable model (DPM) [15]. Of these, the
Viola Jones detector is mainly composed of three parts: Harr features [16], Adaboost classi-
fier [17], and cascaded classifier. Because Harr features are relatively simple features, the
classifier is prone to overfitting, which leads to low robustness of the algorithm. The HOG
detector combines HOG features [18] with SVM classifiers [19] and has good performance
in pedestrian detection. However, its detection window does not change with the object
scale, and this can only be achieved by repeatedly scaling the size of the input image. DPM
requires the manual design of the corresponding incentive templates for different objects,
which has a significant effect on a small number of objects. However, this approach is
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clearly not suitable for multi-type and multi-scale objects. Since 2014, breakthroughs have
been made in deep learning research. Convolutional neural network algorithms based on
deep learning have been widely applied in object detection, and object detection technology
has also achieved unprecedented development. For example, in the study of autonomous
landing missions for UAV, researchers in [20] improved the deep learning-based model
TLD by combining the Hough Transform, enabling the model to effectively detect and track
objects, helping the drone better land on moving ground vehicles. In order to improve the
accuracy of pedestrian detection in drone aerial images, YaChing C et al. [21], based on
YOLOv2, utilized image segmentation and vanishing point transformation preprocessing
methods to overcome the difficulties caused by small objects and object deformation in
aerial images.

The current algorithms are divided into two types: one-stage and two-stage algo-
rithms. The difference between the two is that the one-stage algorithm does not generate
candidate boxes, and the network directly classifies and regresses objects. By contrast, the
two-stage algorithm first generates candidate boxes by the network and then performs
object classification. Representative one-stage algorithms include SSD [22], YOLO [23],
etc., while two-stage algorithms include R-CNN [24], Fast-RCNN [25], Faster-RCNN [26],
SPPNet [27], etc. Of these, the one-stage algorithm model is lightweight and has an advan-
tage in computational speed, making it very suitable for processing real-time tasks, but
it has shortcomings in recognition accuracy. Although the classification and regression
process of two-stage algorithms is relatively cumbersome, their detection accuracy is rel-
atively high. YOLO, as a typical one-stage algorithm, has a simple structure consisting
of convolutional layers, pooling layers, and fully connected layers. The input image is
transformed by a neural network, and the tensor is directly output. YOLO divides the input
image into grids, and each grid predicts the object categories in the bounding box and out-
puts the probability of the categories. The first-generation version of YOLO, YOLOv1 [28],
was released in 2015 as the first installment of the YOLO series, laying the foundation
for subsequent versions of YOLO. The subsequent versions are all improvements and
innovations based on this foundation. YOLOv1 uses a network to regress objects and
implement a unified system, but due to the limitations of its network size, it has limitations
in space and scalability. At the end of 2021, YOLO was iterated to the fifth version. Of
the various versions, YOLOv2 [29] uses Darknet-19 as the network subject, which reduces
the computational complexity of the network by four convolutional layers compared to
YOLOv1. In 2018, YOLOv3 [30] was published, and YOLOv3 has made significant im-
provements compared to previous versions. Its backbone network is Darknet-53, and
this deeper convolutional layer combined with FPN architecture improves the detection
performance of multi-scale objects. The YOLOv4 [31] model conducts more optimization
work on the network, such as adding multiple CSP modules to the backbone, which can
effectively improve the learning ability of the network. The neck and output head are
partially optimized for feature extraction and loss function, respectively, which improves
the detection accuracy of the network. In 2020, after the release of YOLOv4, YOLOv5 was
released. Although the original authors of YOLO did not publish papers on this version,
it can be seen from other related papers, such as [32,33], that YOLOv5 is a masterpiece of
previous versions, with excellent performance in detection accuracy and speed.

2.2. Image Preprocessing

Before object detection in the image input model, researchers sometimes use image
preprocessing to improve image quality, enabling the model to better recognize and locate
objects. Zhou B et al. [34] proposed a multi-operator-based image edge processing scheme,
which enhances the edge features of images through single-operator preprocessing and
multi-operator serial parallel preprocessing. Combined with the SSD algorithm model,
validation was conducted on an industrial dataset, and the results show that this method
can effectively detect industrial defects. Chousangsntorn C et al. [35] used an image
processing method based on OpenCV python [36] to detect defects in the serial number
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printed on the hard drive block. In order to balance the contrast of the region where the
serial number is located, they first used an image processing method based on OpenCV
python to eliminate variations that cause changes in image contrast. Secondly, they used
the Otsu approach [37] image preprocessing method to process the image threshold into
binary. Furthermore, contour approximation technology was used to enhance the edges of
the region of interest (ROI) and to achieve consistent image size through ROI cropping. In
the second part, the author used four classification models, YOLOv4 and DarkNet-19 [38],
EfficientNet-B0 [39], Deep Residual Network (ResNet-50) [40], and DenseNet-201 [41] to
detect the sequence number of hard disk sliders. The detection accuracy exceeded 99%, and
the shortest inference time was 256.91 ms. In the field of medical imaging, traditional X-ray
imaging is an important reference for doctors to judge the focus, but for some diseases in
the early stage of development, such as breast cancer, radiologists are difficult to find and
make accurate predictions. To address this issue, Rehman K et al. [42] proposed a deep
separable deep convolutional neural network. In this network, they used an automatic
image preprocessing method to convert the original X-ray image DICOM format to PNG
format and adjusted the image size by using the OpenCV resize image preprocessing
method. These methods can effectively help the network classify lesions in the later stage.
Gendall L et al. [43] proposed an object-based image analysis method for determining the
survival of Canadian kelp. In this method, they preprocessed the remote sensing images of
kelp. Firstly, they used ground control points and nearest neighbor interpolation to correct
the geometric deformation of the images in ArcGIS. Secondly, geographic correction was
performed on the overlapping images to restore them to the position before the overlap,
and then root mean square error (RMSE) was used to determine the correction quality.
Once again, all types of images were processed through reflectivity comparison, contrast
adjustment, and adding pixel buffers. Finally, a visual evaluation was conducted on the
combination of the highest-scoring band index or ratio with the visible band to select
the best classification combination. When detecting vehicles in aerial images, Ref. [44]
proposed an image preprocessing method based on Principal Component Analysis (PCA).
This method removes common misclassifications caused by the ambiguity of small objects
by removing unnecessary features, improving the detection accuracy of small vehicles in
aerial photographs. When PCA is combined with ResNet50, the misclassification rate of
vehicles in aerial images is significantly reduced, providing a better detection rate compared
to existing baselines. The images that artificial intelligence relies on are obtained through
optical sensors, and these sensors are designed to cater to human visual characteristics,
rather than specifically designed for artificial intelligence algorithms. In fact, different
intelligent organisms, such as frogs, cats, flies, etc., have significant differences from the
human eye regarding the images they perceive. We believe that this difference matches
their biological intelligence processing systems. This also indicates that different algorithms
and applications have more closely matching image expression strategies. Under the
premise that the current image acquisition method cannot be changed, strengthening the
key information of the image through preprocessing should be a more effective strategy.

2.3. Attention Mechanism

In order to enable the network to extract more accurate features of the object area,
attention mechanisms are sometimes introduced into network models by researchers.
From a large number of research results, it can be seen that attention mechanisms can
not only help networks effectively extract features but also improve network detection
efficiency and reduce network computing burden. Due to the low accuracy of the original
YOLOv5 model in detecting small objects in drone aerial images, the SENet attention
mechanism was introduced into the YOLOv5 model in [45] to address this issue. Different
channels of the feature map were weighted through squeezing and excitation, and the
channel information of the feature map was strengthened, which is beneficial for the
network to extract feature information. In order to reduce model parameters and save
computational resources, Zhang B et al. [46] introduced a channel attention mechanism
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in the improved feature extraction module ISFCREM. By weighting channels in different
feature layers, the feature attention of different channels was improved, compensating
for the loss of feature information caused by channel compression and enhancing the
detection efficiency of the object area. Sometimes, influenced by the shooting equipment,
the resolution of the object in remote sensing images may be small, and the image may
be accompanied by noise interference, which brings great difficulties to the detection
and recognition of targets. Huang M et al. [47] proposed a residual attention function
fusion method to enhance the network’s performance in detecting small objects. This
method enhances the feature expression ability of multi-scale feature layers by integrating
multi-scale contextual information. Based on this, they used a spatial attention mechanism
(GPC) for convolutional compression of global pixels, which weights the global pixels
of the original image. This can significantly reduce noise interference in the original
image, highlight key pixel information in the image, and improve the network’s ability to
extract feature information. Dong M et al. [48] proposed a crawl detection model based
on its own semantic information. In order to effectively capture the semantic feature
information of objects in the real world, they designed a target feature attention mechanism
based on the ROI method. This mechanism focuses on the feature information of the
target through semantic information, separates the target feature information from the
background information, and makes the target information unique. This enables the model
to capture the target feature through semantic information. The experimental results of this
method on the dataset have high accuracy. In a multiple-object tracking (MOT) task, the
network may overlook the continuous motion information of the object and the attention of
undifferentiated discovery and recognition, which greatly affects the tracking accuracy of
the network toward the object. To address the above issues, Yifeng W et al. [49] proposed a
Motion and Correlation-Multiple Object Tracking (MAC-MOT) method, in which a motion-
enhanced attention module (MEA) and a dual correlation attention module (DCA) were
introduced. MEA performs differentiation on adjacent feature layers, enhances motion
correlation between feature layers, and suppresses irrelevant information between adjacent
layers. The DCA module decouples and thereby separates the detection task and the
recognition task, reducing conflicts and achieving a balance between the two tasks. After
experimental evaluation, the proposed method can achieve ideal tracking and detection
performance. The attention mechanism essentially involves using a certain processing
strategy to reduce the randomness of the data in the image matrix, resulting in unequal data
in different regions, making the image in the object region more effective in connecting the
data processing channels. The essence of big data is to transform it into small data through
a certain strategy, which requires the fusion of effective data and the early abandonment of
some invalid data.

2.4. Feature Fusion

At present, research on feature fusion is becoming increasingly in-depth, and the
methods and application forms of feature fusion are also becoming more diverse. It
can be divided into early fusion and late fusion depending on the order of fusion and
prediction. Early fusion refers to the fusion of multi-layer features first, followed by
result prediction. Common early fusion methods include concat and add. Late fusion
refers to the detection of partial fusion layers before the completion of all fusions, forming
multiple detection results, and finally fusing multiple detection results. Common late
fusion methods include SSD and Feature Pyramid Network (FPN). In underwater image
object detection, a lightweight adaptive feature fusion network (LAFFNet) [50] is proposed
to reduce the excessive storage occupied by the model and reduce model parameters.
This network uses multiple Adaptive Feature Fusion (AFF) modules of different sizes to
effectively fuse the generated multi-scale features with channel attention. Experiments
have shown that this network reduces parameters by about 94% compared to GFLOP
networks and has a more compact structure and lighter weight. Due to the influence
of complex backgrounds or missing features on small objects in remote sensing images,
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detection networks often cannot work effectively. In [51], a multiple-path feature pyramid
network (MPFP-Net) is proposed. In the feature fusion section, the network uses an FPN
architecture to connect feature layers of different scales, which is used to adjust the number
of channels and the size of feature maps so that the feature layers maintain the gradient
specification of the pyramid. FPN uses bottom-up and cross-connected networks that
can fuse feature layers of different sizes, helping the network collect small object features
and achieve more accurate detection accuracy. Guoyi Y et al. [52] proposed a feature
fusion method called the multi-flow feature fusion module (MF3M) to address the issue
of scale changes in object detection, building a door module and multiple information
flows in MF3M to suppress redundant information in the feature mapping process and
improve the integrity and accuracy of information transmission. They also proposed an
improved deformable convolution algorithm, task-adaptive convolution (TaConv), which
uses TaConv to output two feature maps on each layer of their constructed feature pyramid
for classification and regression. This approach solves the internal contradiction between
classification and regression, thereby improving model detection performance. Similarly,
in order to solve the problems caused by object-scale changes in detection work, Ref. [53]
proposed a feature fusion network (FFNet), which consists of two parts: a relationship
fusion module (RFM) and a numerical fusion module (NFM). Long-range dependency
information in RFM strengthens the information region of features and reduces interference
from useless regions. In NFM, average operation is used to generate fusion weight values,
and the corresponding region information is retained by determining the weight size such
that information can be effectively transmitted in feature fusion. Through a large number
of experiments, it was verified that the feature fusion strategy they designed exhibits an
efficient detection performance for multi-scale targets, especially small objects. In the
process of feature convolution from bottom to top, information such as position and texture
will be lost layer by layer, but the semantic information of the feature layer will also be
gradually enriched. Therefore, Ref. [54] proposed a feature fusion single-shot multi-box
detector (FFSSD) based on a feature pyramid network (FPN), which adds multiple lateral
connection structures on top of the FPN to improve the detector’s feature extraction ability.
Its up-and-down interaction mechanism fuses the high-level semantic information with
the underlying location information, and the fused feature layer has more abundant deep
information. This method has high mAP and strong real-time performance when applied
to the task of prostate capsule detection.

3. Methods
3.1. Overview of the Proposed Method

The overall structure of the drone aerial image object detection model proposed in
this article is shown in Figure 1. The overall structure is mainly composed of the data
collection and enhancement section in the upper left region in the figure below, the image
edge preprocessing section in the lower left region, and the improved YOLOv5 detection
section in the right half region. The specific steps of the drone aerial image detection process
are as follows. Firstly, to ensure the generalization ability of the model after training, we
increased the data size of the three existing datasets through vertical flipping, horizontal
flipping, random cropping, and cutout methods to obtain a new dataset named LSDUVD.
Secondly, we used a combination of Gabor filters to enhance the image and then combine
the filtered image with obvious edges after enhancement with the original image. Finally,
we adjusted the resolution of the combined image to 640× 640, and the image was then
input into the improved YOLOv5 network. In the improved YOLOv5 model, the backbone
network part that introduces a CA [55] mechanism will extract key region features from the
input image. Then, in the neck network of the model, BiFPN [56] performs sampling and
weighting operations on the input feature layer, which enables the full fusion of feature
layers with different information. The improved YOLOv5 head performs object prediction
on the fused features and outputs the results.
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3.2. YOLOv5 Network Model

YOLOv5 is the fifth-generation version of the YOLO (You Only Look Once) series
and is a single-stage object detection algorithm that belongs to the regression series of
object detection methods. Unlike sliding window and subsequent region division detection
methods, it treats the detection task as a regression problem, using a neural network to
directly predict the coordinates of the bounding box, the confidence level of the objects
in the bounding box, and the probability of the object’s category from the entire image,
allowing the achievement of end-to-end detection performance optimization. According
to the different depths and widths of the network, YOLOv5 has four versions: YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. Among them, the YOLOv5s model has the smallest
size and the fastest detection speed, which is widely used in the field of real-time object
detection. So, the research work of this paper is based on YOLOv5s. This algorithm
adds some new improvement ideas on the basis of YOLOv4, which greatly improves
its speed and accuracy. For example, at the input end of the model, some improvement
ideas have been proposed, mainly including mosaic data enhancement, adaptive anchor
box calculation, adaptive image scaling, etc. In the model backbone network, some new
ideas from other detection algorithms are integrated, mainly including the focus structure
and CSP structure, which greatly reduces the number of network parameters. In the
object detection network of the neck network, a PANet [57] structure is often inserted
between the feature extraction backbone and the final head output layer. At the head
output end, the anchor frame mechanism at the output end is the same as YOLOv4. The
main improvements are the loss function GIOU-Loss during training and the DIOU-NMS
filtered by the prediction frame. The structure of the YOLOv5s model is shown in Figure 2.

3.3. Improvement of YOLOv5 Model

Although a large number of cases have confirmed that the YOLOv5 model has good
object detection performance, in the research on object detection in drone aerial images,
due to the complex background, blurred edges, and small and dense targets of drone aerial
images, YOLOv5 often cannot perform well when directly used for detection. Therefore,
in this work, the YOLOv5 model is improved. At the input end of the model, images
are preprocessed with edge enhancement. We use an improved Gabor filter bank to filter
and calculate images, thereby strengthening the target edges from multiple directions,
which can reduce the interference of complex background information and facilitate feature
extraction. In the backbone network, we introduce a coordinate attention (CA) mechanism.
On the premise that the target edge has been strengthened, CA can better integrate channel
and position information, enhancing the network’s positioning and recognition of the
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target area. In the neck network, due to the fact that the original PANet structure does not
distinguish different proportions of features during feature fusion, it simply adds them
and directly outputs the feature map, resulting in low prediction accuracy of the model for
small targets. Therefore, we introduce a bidirectional feature pyramid structure (BiFPN).
BiFPN mainly balances the contribution of each feature map by adding weights to feature
maps of different scales and adds branches of feature fusion across nodes, enabling the
network to fuse more feature information, thereby improving the model’s performance
in object detection. The structure of the improved YOLOv5s object detection network is
shown in Figure 3.
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3.3.1. Image Edge Preprocessing Based on Improved Gabor

Because UAV aerial photography is affected by the performance of the shooting equip-
ment, flight height, light intensity, and so on, the aerial photography image often exhibits a
complex background with blurry and dense target arrangement, which poses challenges
for object detection. In order to reduce the difficulty of model detection and enhance the
accuracy and speed of model detection, the image is preprocessed before inputting the
color image into the model. In aerial photos of unmanned aerial vehicles, although the
target color components are complex, the image target usually has corresponding edge
representation. For this feature, we introduce an image processing method based on Ga-
bor [58] for object edge enhancement. Because the gray value of the edge part of the object
in the grayscale image changes significantly and contains high-frequency information, this
method first converts the color picture into a grayscale image and then performs edge
processing in the grayscale image.

In this paper, a filter bank composed of eight Gabor filters is used to enhance the edges
of the target in the UAV aerial image according to its shape, which facilitates subsequent
feature extraction. The Gabor function has been shown to perform well as a filter in texture
recognition and detection of targets. In [59], the imaginary part of the Gabor function has
good performance and robustness for edge detection of objects. The equations of the Gabor
function and the imaginary part of the Gabor function are shown in Equations (1) and (2).

G(x, y) = exp
[
− (x2 + y2)

2σ2

]
· exp[jω(x cos θ + y sin θ)] (1)

G(x, y) = exp
[
− (x2 + y2)

2σ2

]
· sin[ω(x cos θ + y sin θ)] (2)

The Gabor function is a Gaussian function modulated by a sinusoidal wave. σ is the
standard deviation of the Gaussian function along the coordinate axis. ω is the frequency
value of the function in space, σ ·ω ≤ 1.

The use of traditional Gabor filters (TGFs) in [60] enhances the contour of the target in
the image by segmenting the target area, which has a good effect. However, when the target
has many directions, the processing method of TGFs is weak. In drone aerial photographs,
the target always has any direction, which requires the combination of multiple Gabor
filters from different directions in which the filter bank is closer to the edge of the target.
Although a multi-directional and multi-scale filter bank allows the filtered image to have
more complete information, it also increases computational costs, reduces the speed of
image processing, and cannot meet the requirements of real-time performance. We have
improved the traditional Gabor filter to address the above issues while meeting the needs
of multi-directional and multi-scale filters. The improved Gabor filter no longer uses
traditional fast Fourier transform to calculate at each pixel position but discretizes the
infinite number of possible values into finite values during Gabor function operation
and represents other values through quantization. According to [61], the quantization
level is selected, and the value is selected based on the principle of proximity during
the quantization process, with the intermediate value set to 0. In the Gabor function
image, due to the positive and negative nature of the imaginary part of the function, the
image is symmetrical along the coordinate axis, and the positive and negative quantization
results are the same. We define the quantified value as nl , where there is a total of 2nl + 1
values. nl is an important parameter for the discretization of convolution kernels, which
can be understood as the dimension of discrete points. The purpose is to overcome the
computational workload of traditional convolution kernels and improve the computational
efficiency without obvious distortion in computational performance. To obtain the discrete
Gabor values, we scatter the traditional continuous Gabor function values by defining the
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positive and negative quantization values as Lpositive and Lnegative in quantization, and the
positive and negative quantization equations are shown in (3) and (4), respectively.

Lpositive =
A

2nl + 1
· 2k (3)

Lnegative = −
A

2nl + 1
· 2k (4)

where A is the amplitude of the Gabor function, and k has a value range of 1 ∼ nl . Then, the
input image is convolved with a multi-scale and multi-directional filter, but the traditional
Gabor filter convolution kernel divides the 2D plane into eight directions according to 360◦

for feature extraction. Here, due to the symmetric distribution of the selected convolution
kernels, which have the same edge feature extraction ability in the opposite direction, we
use the method of evenly dividing the 2D half-plane (i.e., 180◦) to determine the direction
of the convolution kernels as four. Due to the filter having the same function both in the
four directions below the half plane and in the eight directions below the full plane, the
time for feature extraction is halved, thereby improving detection efficiency. Considering
the speed of the processing and meeting the multi-scale and multi-direction requirements,
we use a two-scale and four-direction filter bank consisting of eight convolutional kernels.
The two-scale here corresponds to the frequency or wavelength of the Gabor function.
From the visual point of view, it determines the width of the Gabor convolution kernel
texture. The convolution kernel should not be excessively large, as the edges are the local
information of the image. An excessively large convolutional kernel can cause excessive
coupling of pixel information and weaken the feature information of local pixels. After
experimental verification, we chose a convolutional kernel of size 5× 5. The 5× 5 here
represents the center selection 5× 5 matrix of the discrete Gabor kernel. We chose the
5× 5 matrix because the values outside the region have little impact on the convolution
results, but the filtering characteristics of the values inside the matrix are still affected by it.
The eight convolution kernels we used are shown in Figure 4. Among them, ω and θ are the
frequency of Gabor convolution kernels in space and the direction of Gabor convolution
kernel reinforcement, respectively.
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Figure 4. The parameters of the eight convolutional kernels: (a) ω = 0.3π, θ = 0; (b) ω = 0.3π,
θ = π j/4; (c) ω = 0.3π, θ = π j/2; (d) ω = 0.3π, θ = 3π j/4; (e) ω = 0.5π, θ = 0; (f) ω = 0.5π,
θ = π j/4; (g) ω = 0.5π, θ = π j/2; (h) ω = 0.5π, θ = 3π j/4.

Eight filters traverse convolution at each pixel location, as shown in Equation (5).

φωi ,θj(x, y) = I(x, y)⊗ δωi ,θj(x, y) (5)

where φωi ,θj(x, y) represents the filtered convolution value of the image, I(x, y) represents
the input image, δωi ,θj(x, y) represents the filter bank, ⊗ represents the spatial domain
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convolution calculation, and θj ∈ (0, π). The average segmentation of the 2D plane allows
the filter to consider the edges in each direction during detection, which can robustly
balance factors such as image flipping and rotation. After convolution, eight results will
be obtained at each pixel position on the feature map. Among these eight results, the
maximum value is selected through Equation (6), and the maximum value at each pixel is
synthesized into a feature map with high-level semantics.

φ′ω,θ(x, y) = max
{

φωi ,θj(x, y), i = 0, 1 and j = 0, 1, 2, 3
}

(6)

where φ′ω,θ(x, y) is the composite result of the maximum value of each pixel, i = 0, 1,
j = 0, 1, 2, 3. Each pixel value in φ′ω,θ(x, y) is determined by the θ and ω parameters in the
improved Gabor filter.

Figure 5 shows the results of the image filtered by the improved Gabor filter. (j) is a
raw image selected for us with blur, noise, and similar backgrounds. In (a) to (h), eight
filters were used to filter the image from eight directions and obtain feature maps. It can
be seen that the edges of objects in the same direction as the filter have been significantly
enhanced. The final composite image is shown in (i), and it is evident that the edges of
the aircraft in this image have been truly enhanced. This indicates that the method we
proposed is effective.
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the filter bank: (a) ω = 0.3π, θ = 0; (b) ω = 0.3π, θ = π j/4; (c) ω = 0.3π, θ = π j/2; (d) ω = 0.3π,
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input diagram.
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3.3.2. Coordinate Attention Mechanism

Due to the frequent occurrence of blurred edges, complex backgrounds, and small
and concentrated targets in the drone aerial photos input into the model, the model
backbone may obtain unsatisfactory results in feature extraction, which poses difficulties
for subsequent feature fusion and accurate prediction information output. In view of
this, researchers often introduce a method to improve feature extraction performance: the
attention mechanism [45–49]. The attention mechanism can flexibly capture the connections
between global and local information, making the network more interested in the target
area and less focused on other areas. By putting more weight on the object region, we can
obtain more detailed information on the object and suppress other useless information at
the same time, so as to improve the efficiency of feature extraction of the model.

Currently, there are various types of attention mechanisms with varying performance.
For example, the Non-Local Network [62] ignores the distance between any two positions
when performing non-local operations and directly captures long-range dependencies
by calculating the interaction between the two positions. However, the network has
only independent positional attention modules and no channel attention mechanism.
When the feature map size is large, the network consumes a large amount of memory
and computing resources to compare each point in the feature map. SENet [63] has a
stronger feedback ability by focusing on which layers of information are at the channel
level through squeezing and motivating, but attention is not expressed in the spatial
dimension; that is, position information is not expressed in the visual target. CBAM [64]
introduces attention mechanisms in both channel and spatial dimensions with the aim of
embedding position information into channel attention through global pooling. However,
this module does not capture spatial information of different scales to enrich features,
and spatial attention only considers local region information, which cannot allow the
establishment of long-distance dependencies.

In contrast, we introduce a flexible and efficient plug-and-play coordinate attention
(CA) mechanism that embeds location information into channel attention, enabling the
backbone CSPDark network to avoid excessive computational complexity by obtaining
information from a larger area. Traditional attention mechanisms can cause a loss of posi-
tional information when performing 2D global pooling, while CA transforms global pooling
into two encoding operations of 1D vectors. Specifically, for input X (C × H ×W), pooling
kernels (H, 1) and (1, W) are used to encode horizontal and vertical features, respectively,
to obtain the output of the c-th dimensional features, as shown in Equations (7) and (8).

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (7)

zw
c (w) =

1
H ∑

0≤i<H
xc(j, w) (8)

where zh
c (h) is the output of the c-th dimensional feature at height h, and zw

c (w) is the
output of the c-th dimensional feature at width w. The above formula integrates features
from different directions and outputs a pair of directional feature maps. Compared to
the compression method of global pooling, this allows the attention module to capture
long-distance relationships in one direction while retaining spatial information in the
other direction, helping the network to more accurately locate targets. Therefore, location
information can be saved in the generated attention map. Then, the outputs of Formulas (7)
and (8) are concatenated using 1× 1 convolutional kernel, BN, and nonlinear activation for
feature transformation, as shown in Equation (9).

f = δ
(

F1

([
zh, zw

]))
(9)
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where f ∈ RC/r×(H+W) is the intermediate feature that contains both horizontal and vertical
spatial information, r is the reduction factor, and δ is the nonlinear activation function.
There is no intense fusion of these two features. The main purpose of concatenating
is to unify BN operations. f is then divided into two separate features, f h ∈ RC/r×H

and f w ∈ RC/r×W , using the other two 1× 1 convolutional kernel and sigmoid function
transform features so that their dimensions are consistent with input X (C × H ×W), such
as Formulas (10) and (11).

gh = σ
(

Fh

(
f h
))

(10)

gw = σ(Fw( f w)) (11)

The multiplication of output gh and gw into a weight matrix, as shown in Equation (12),
is used to calculate coordinate attention block output to emphasize the representation of
the area of interest.

gc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (12)

Each weight of the coordinate attention block contains channel information, horizontal
spatial information, and vertical spatial information, which can help the network to more
accurately locate and identify the target area information. This method is flexible and
lightweight and can easily be incorporated into existing classical mobile networks, such as
CSPDarkNet, ShuffleNet, etc., to improve the performance of feature representation. The
principle of the coordination attention mechanism is shown in Figure 6.
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3.3.3. Bidirectional Feature Fusion Network

The neck network part of YOLOv5 consists of a feature pyramid network structure,
PANet, aimed at fusing different scale features input from the backbone. Although the
original FPN structure improved the high-level semantic information in the prediction
feature map, much of the location information in the underlying feature map is lost.
Therefore, PANet adds a bottom-up channel on the basis of the FPN to transmit the
location information to the prediction feature map such that the prediction feature map
simultaneously has both high semantic and location information. This can greatly improve
the accuracy of object detection. The specific structure of PANet is shown in Figure 7.

Although PANet treats input features of different scales equally during feature fusion,
wherein features of different resolutions are directly added for output during fusion, in
reality, however, their contributions to the final output are different. In order to balance
the contributions of each feature layer, this paper proposes a new feature fusion method:
Bidirectional Feature Pyramid Network (BiFPN). This involves modifying the PANet struc-
ture in YOLOv5 to a BiFPN structure, proportionally weighting features of different sizes
to balance the information of each input feature. This network can achieve bidirectional
fusion of deep and shallow features from top to bottom and from bottom to top, enhanc-
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ing the transmission of feature information between different network layers, which will
significantly improve the detection accuracy and performance of the YOLOv5 algorithm.
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Specifically, the following improvements in design have been made in the BiFPN
structure. Firstly, nodes with only one input edge and no feature fusion are removed due to
their lower contribution to feature fusion in the feature network. This allows the network
to be simplified without affecting its performance. Secondly, we add an additional feature
branch between the original input and output nodes in the same layer. This will not increase
the computational cost too much and can also allow the integration of more features. Finally,
due to the different resolutions of multi-scale feature maps, their contributions to fusion as
inputs vary. Therefore, we balance different feature layers through weighting to achieve
a deep fusion of feature layers. However, traditional feature fusion structures do not
distinguish between input feature maps during concatenate or shortcut connections but
simply stack or add them. We use the middle layer as an example to demonstrate the
relationship between each feature layer, as shown in Equations (13) and (14).

PTd
3 = Conv(PIn

3 + Resize(POut
5 )) (13)

POut
3 = Conv(PTd

3 + Resize(POut
1 )) (14)

where PTd
3 is the intermediate feature of the third layer, and POut

3 is the output feature of
the third layer. For the shortcomings exposed by this traditional feature fusion method, we
propose a feature fusion mechanism that weights input features, adjusting the contribution
of different feature maps through trainable weights. Considering the differences in training
performance, we chose the fast normalization fusion method, as shown in Equation (15).
This method reduces the weight range to 0~1, which results in a fast training speed and
high efficiency.

O = ∑
i

wi
ε + ∑j wj

Ii (15)

where w is the weight learned by the feature, and Ii is the input feature map, taking the
stable numerical coefficient ε = 0.0001. The fusion process of the two features in the middle
layer is shown in Equations (16) and (17).

PTd
3 = Conv

(
w1 pIn

3 + w2Resize(PIn
5 )

w1 + w2 + ε

)
(16)
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POut
3 = Conv

(
w′1 pIn

3 + w′2PTd
3 + w′3Resize(POut

1 )

w′1 + w′2 + w′3 + ε

)
(17)

where Conv is a deep separable convolution operation, and Resize is an upsampling or
downsampling operation. The BiFPN network structure is shown in Figure 8.
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4. Experiments and Results

In this section, firstly, we collected three UAV aerial image datasets, UCAS-AOD [65],
DOTA-V1.0 [66], and VisDrone2019 [67], and analyzed the data from each dataset. Sec-
ondly, in order to maximize the learning ability of the model, we integrated the above
three datasets into a new dataset called LSDUVD through data augmentation. We ana-
lyzed the data from the above four datasets and explained the advantages of LSDUVD
based on their proportion. Once again, to verify the effectiveness of our improved method,
we conducted a series of experiments on UCAS-AOD, DOTA-V1.0, VisDrone2019, and
LSDUVD. The experiment is divided into three parts. (1) On the dataset LSDUVD, train-
ing experiments were conducted on the original model, corresponding models of each
improved module, and the overall improved model we proposed (referred to as YOLOv5s,
YOLOv5s-Gabor, YOLOv5s-CA, YOLOv5s-BiFPN, YOLOv5s-Improved). Based on the
training loss–epochs curve obtained after the experiment, the convergence situation was
analyzed to demonstrate the advantages of our proposed model. (2) We conducted ablation
experiments and analyzed the results of APs, APm, APl , mAP@0.5, and mAP@[0.5 : 0.95]
of each model in (1) to verify that our proposed method can effectively classify and locate
multiple types of targets in drone aerial images. (3) To further highlight the effectiveness of
our proposed method, we calculated precision–recall rates for the above five models on
UCAS-AOD, DOTA-V1.0, VisDrone2019, and LSDUVD. By observing the precision–recall
curves, we found that our proposed method is effective in improving detection accuracy.
(4) Comparing our method with several popular object detection networks, the detection
results show that our method has good detection accuracy in complex drone aerial images.

4.1. Experimental Environment and Training Parameter Settings

The parameters of the hardware and software environment we used during the ex-
periment are shown in Table 1. For example, the CPU is Intel Core i7-9700k, the GPU is
NVIDIA GeForce RTX 3090Ti, the operating system is Ubuntu18.04 LTS 64-bits, the deep
learning framework is PyTorch1.9.1, CUDA 10.2 is the GPU accelerator, etc.
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Table 1. Software and hardware parameter configuration in the experimental environment.

Parameter Configuration

Integrated development environment PyCharm
Scripting language Python3.8

Deep learning frame PyTorch1.9.1
CPU model Intel Core i7-9700k

Operating system Ubuntu18.04 LTS 64-bits
GPU model NVIDIA GeForce RTX 3090Ti

GPU accelerator CUDA 10.2
Neural network accelerator cuDNN7.6.5

The training experiment parameters are shown in Table 2. A stochastic gradient
descent (SGD) optimizer with a momentum of 0.937 was used to train the network. The
initial learning rate was 0.001, the weight decay was 0.0005, and the batch size was set to
32. A total of 1600 epochs were trained.

Table 2. Configuration of training experimental parameters.

Parameter Configuration

Neural network optimizer SGD
Learning rate 0.001

Training epochs 1600
Momentum 0.937
Batch size 32

Weight decay 0.0005

4.2. Dataset Preparation

The overall improved YOLOv5 model was trained on our integrated dataset. We
named the integrated dataset LSDUVD (Large-Scale Dataset Based on UCAS-AOD, Vis-
Drone2019, and DOTA-V1.0), which consists of data-enhanced UCAS-AOD, VisDrone2019,
and DOTA-V1.0. The DOTA-V1.0 dataset released by Wuhan University is a large-scale
aerial image dataset with targets of different proportions, directions, and shapes. The
dataset consists of 15 common categories such as vehicles, stadiums, boats, and over-
passes, including 2806 images and 188,282 samples with sizes ranging from 800× 800 to
4000× 4000 pixels. The annotation method for each sample instance is the bounding box
of any quadrilateral determined by four points. VisDrone2019 was produced by Tianjin
University, in which various drone lenses are used to capture images in different scenes and
environments. This dataset contains 10 types of objects, including pedestrians, cars, and
tricycles, with a total of 10,209 images. UCAS-AOD is a high-definition aerial photography
dataset released by the University of the Chinese Academy of Sciences. Most of the objects
in this dataset are small targets of two categories: cars and planes. There are 510 images of
cars, totaling 7114 samples, and 1000 images of planes, totaling 7482 samples. In this work,
the samples were enriched through data augmentation methods such as vertical flipping,
horizontal flipping, random cropping, and cutout, improving the model’s generalization
ability and robustness. Figure 9 shows some original and data-enhanced images.

We used the LabelImg tool to manually annotate images using traditional horizontal
bounding boxes. For situations of severe occlusion, targets with an occlusion area greater
than 90% and an edge area less than 15% are not marked. We define targets smaller than
32× 32 as small targets, targets between 32× 32 and 96× 96 as medium targets, and targets
larger than 96× 96 as large targets. Based on the training requirements, we selected 4000,
15,000, and 3000 images from three enhanced datasets to form the LSDUVD dataset. As
shown in Figure 10, we used visual methods to calculate the proportion of sample types
and instance numbers for the four datasets mentioned above. The graph intuitively reflects
that LSDUVD is a large-scale dataset rich in types and quantities, which ensures that the
model has efficient detection ability after training.
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4.3. Performance Evaluation Indicators

Due to the large receptive field of UAV aerial images, there are many types of objects,
complex backgrounds, and large differences in target size in the images, which inevitably
increases the difficulty of detection and may increase the rates of missed detection and false
detection of models. In order to fully demonstrate the improved detection performance of
the model, this article uses four evaluation indicators to measure the performance of each
model in the experiment: recall rate (R), precision (P), average precision (AP), and mean
average precision (mAP). The formulas for defining recall rate and accuracy are shown in
(18) and (19).

R =
TP

TP + FN
× 100% =

TP
all ground truth

× 100% (18)

P =
TP

TP + FP
× 100% =

TP
all detect

× 100% (19)
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where TP is true positive, which refers to the positive sample data correctly detected by
the model; FN is false negative, which refers to the correct sample data that the model did
not detect; FP is false positive, which refers to the positive sample data detected by model
errors. The general way to distinguish TP and FP is based on setting the threshold of IOU,
where IOU is the ratio of the intersection area between the predicted box area and the real
box area, as shown in Equation (20).

IOU =
area(Bdet ∩ Bget)

area(Bdet ∪ Bget)
× 100% (20)

where Bdet refers to the predicted box area, Bget refers to the actual box area, area(Bdet ∩ Bget)
refers to the intersection area of two boxes, and area(Bdet ∪ Bget) refers to the union area of
two boxes. In this article, area(Bdet ∩ Bget) refers to the intersection area of two boxes. We
use the ratio of IOU greater than 0.5 to denote TP and less than 0.5 to denote FP.

Although the greater the recall and precision of the model the better, the change in
recall and precision is a mutually constraining and inversely proportional relationship.
In order to find the best balance between them, we introduced the AP value, which is
the average precision. We use the P− R curve to calculate the AP value. The precision
in the P− R curve is the vertical axis, the recall rate is the horizontal axis, and the area
formed between the curve and the coordinate axis is the AP value. Because having multiple
average precision values causes difficulties in intuitively measuring the entire model, we
chose mAP to represent the comprehensive detection performance of a model. mAP refers
to the average value of AP for all classes. The calculation formulas for AP and mAP are
shown in (21) and (22).

AP =
∫ 1

0
P(R)dR× 100% =

n

∑
k=0

P(k)R(k)× 100% (21)

mAP =
1
Q

Q

∑
q=1

AP(q)× 100% (22)

where P(R) represents the precision value on the P− R curve with a recall rate of R; k
represents a certain cut-off position of precision; P(k) and R(k) represent the values of
precision and recall rate at position k, respectively; n represents the range of k points; q
represents the category of detected objects; and Q represents the total number of detected
object categories.

4.4. Experimental and Results Analysis
4.4.1. Model Training Experiment

In this section, the performance of our proposed model is verified through a training
loss experiment. Firstly, the experimental parameters were set. Secondly, during training,
we trained the five models YOLOv5s, YOLOv5s-Gabor, YOLOv5s-CA, YOLOv5s-BiFPN,
and YOLOv5s-Improved on the training set of LSDUVD. The loss–epoch change curve after
training is shown in Figure 11. The figure shows that the loss trends of the five models tend
to stabilize with the increase in epoch values. Specifically, YOLOv5s-Improved has a faster
convergence speed and the best convergence effect compared to other models. It tends
to saturate after 800 epoch values and eventually converges to around 0.5. However, the
loss function curves of YOLOv5s, YOLOv5s-Gabor, YOLOv5s-CA, and YOLOv5s-BiFPN
all stabilized between 1000 and 1200 epochs, and their loss function values converged to
around 3.0, 2.2, 1.5, and 1.3, respectively. From the above data, it can be seen that the loss for
YOLOv5s-Improved is approximately 2.5 lower than for the original YOLOv5s, indicating
a significant improvement in the performance of our proposed model. From the graph,
it can be seen that the loss epoch curves of the five models have similar trends. This is
because our method is optimized based on YOLO and without fundamentally redesigning
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the network structure. Therefore, further in-depth research on network structure is of
great significance.

Drones 2023, 7, x FOR PEER REVIEW 22 of 32 
 

 
Figure 11. Training loss–epochs curve. 

4.4.2. Ablation Experiment 
To highlight the significant detection performance of our algorithm model, we con-

ducted an ablation experiment on each improved module. The experimental results are 
shown in Table 3. The table shows the detection results for the YOLOv5s baseline model 
and the models with the Gabor module, CA module, BiFPN module added, as well as the 

overall improved model. sAP  represents the average detection precision of small targets, 

mAP   represents the average detection precision of medium targets, lAP  represents the 
average detection precision of large targets, @0.5mAP  represents the average value of all 
categories AP  when the IOU  threshold is set to 0.5, and @[0.5:0.95]mAP  represents the 
average mAP  value of the IOU  threshold starting from 0.5 in steps of 0.05 to 0.95. 

By analyzing the data in the table, it can be seen that compared with the detection 
performance of the original YOLOv5s, firstly, the Gabor module we introduced improves 

sAP  , mAP  , and lAP   by 1.7%, 0.8%, and 0.9%, respectively, while @0.5mAP   and 
@[0.5 : 0.95]mAP  improved by 1.6% and 1.8%, respectively. It can be seen that the edge 

reinforcement characteristics of this module have a positive impact on the model detection 
performance. Secondly, the introduction of the CA mechanism in the main part of the 
model makes the model more able to overcome the problem of insufficient feature infor-

mation extraction of small targets. It has increased sAP  by 3.30%, significantly improving 
the detection precision of small targets. At the same time, the AP  and mAP values of me-
dium to large targets have also improved. Thirdly, the use of bidirectional feature fusion 
structure BiFPN has improved the detection performance of various types of targets, with 

sAP  , mAP  , and lAP   increasing by 0.7%, 1.6%, and 1.7%, and @ 0.5mAP   and 
@[0.5 : 0.95]mAP  increasing by 2.6% and 3.4%, respectively. It can be seen that the BiFPN 

module is suitable for detecting medium to large targets. Finally, the combination of the 

Gabor module, CA module, and BiFPN module resulted in an increase in sAP , mAP , and 
lAP   by 4.9%, 5.7%, and 4.4%, respectively, while @0.5mAP   and @[0.5 : 0.95]mAP  

Figure 11. Training loss–epochs curve.

In order to further analyze the data, we selected YOLOv5s and YOLOv5s-Improved
for enlarged display on data for 400–600 and 1000–1200 epochs, as shown in Figure 11
A–D. From the graph, it can be seen that within the same epoch interval range, such as
the comparison between A and C, as well as the comparison between images B and D,
our method results in a curve with a smaller vibration amplitude. This indicates that,
with the same data support, the improved YOLOv5s network has higher robustness.
Through a comparative analysis of A and B, as well as C and D, the improved method
significantly reduces data fluctuations, indicating that the robustness of the improved
method is strengthened with the accumulation of knowledge. This also strengthens the
certainty of the network as it moves toward application.

4.4.2. Ablation Experiment

To highlight the significant detection performance of our algorithm model, we con-
ducted an ablation experiment on each improved module. The experimental results are
shown in Table 3. The table shows the detection results for the YOLOv5s baseline model
and the models with the Gabor module, CA module, BiFPN module added, as well as the
overall improved model. APs represents the average detection precision of small targets,
APm represents the average detection precision of medium targets, APl represents the
average detection precision of large targets, mAP@0.5 represents the average value of all
categories AP when the IOU threshold is set to 0.5, and mAP@[0.5 : 0.95] represents the
average mAP value of the IOU threshold starting from 0.5 in steps of 0.05 to 0.95.
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Table 3. The ablation results of each improved module, with data expressed in percentage (%). The
best results are highlighted in bold.

Baseline Gabor CA BiFPN Dataset APs APm APl mAP@0.5 mAP@[0.5:0.95]

YOLOv5s

LSDUVD 80.4 82.4 85.8 81.9 64.3√
LSDUVD 82.1 83.2 86.7 83.5 66.1√
LSDUVD 83.7 83.7 86.1 84.2 67.2√
LSDUVD 81.1 84.0 87.5 84.5 67.7√ √ √
LSDUVD 85.3 88.1 90.2 85.7 69.5

By analyzing the data in the table, it can be seen that compared with the detection
performance of the original YOLOv5s, firstly, the Gabor module we introduced improves
APs, APm, and APl by 1.7%, 0.8%, and 0.9%, respectively, while mAP@0.5 and mAP@[0.5 :
0.95] improved by 1.6% and 1.8%, respectively. It can be seen that the edge reinforcement
characteristics of this module have a positive impact on the model detection performance.
Secondly, the introduction of the CA mechanism in the main part of the model makes the
model more able to overcome the problem of insufficient feature information extraction of
small targets. It has increased APs by 3.30%, significantly improving the detection precision
of small targets. At the same time, the AP and mAP values of medium to large targets
have also improved. Thirdly, the use of bidirectional feature fusion structure BiFPN has
improved the detection performance of various types of targets, with APs, APm, and APl
increasing by 0.7%, 1.6%, and 1.7%, and mAP@0.5 and mAP@[0.5 : 0.95] increasing by
2.6% and 3.4%, respectively. It can be seen that the BiFPN module is suitable for detecting
medium to large targets. Finally, the combination of the Gabor module, CA module,
and BiFPN module resulted in an increase in APs, APm, and APl by 4.9%, 5.7%, and 4.4%,
respectively, while mAP@0.5 and mAP@[0.5 : 0.95] increased by 3.8% and 5.3%, respectively.
Based on the above detection results, it can be seen that combining the three modules on
YOLOv5s results in the best AP and mAP values, and the detection performance of targets
at all scales is greatly improved. This indicates that each module can operate in coordination
and work together on YOLOv5s, which also indicates that the method proposed in this
article is reasonable and efficient.

4.4.3. Precision–Recall Rate Experiment

To verify the performance of our method, we generated precision–recall rate statistics,
and the statistical results are shown in Figure 12. We mainly verify two aspects: firstly, the
impact of the size of the database and the number of categories on precision–recall rate,
and secondly, the impact of our improved module on the results. In these four statistical
results, each result corresponds to four independent databases, including DOTA-V1.0,
VisDrone2019, UCAS-AOD, and LSDUVD. In order to verify the impact of introducing
modules on the algorithm, we conducted comparative experiments on five methods in
each graph. Among them, 5© represents YOLOv5s, 4© represents the statistical results of
introducing the Gabor preprocessing module, and we named this model YOLOv5s-Gabor,
3© and 2© represent the experimental results after separately introducing CA and BiFPN

modules, while curve 1© represents the overall performance of our improved algorithm,
and we call them YOLOv5s-CA, YOLOv5s-BiFPN, and YOLOv5s-Improved, respectively.

From the statistical results, it can be seen that among these four databases, UCAS-AOD
has the worst performance in terms of the precision–recall rate. After our analysis, we
found that the UCAS-AOD database has a smaller sample size and fewer categories for
classification. In VisDrone2019 and DOTA-V1.0, the precision–recall rate showed better
statistical results. From the experimental results, our method performs the best on dataset
LSDUVD. This indicates that the good performance of the network requires a large amount
of data resources as information support.
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From the perspective of method, the baseline model YOLOv5s has the worst precision–
recall performance compared with the four models YOLOv5s-Gabor, YOLOv5s-CA, YOLOv5s-
BiFPN, and YOLOv5s-Improved. The detection performance of the model combined
with each improved module has been improved to varying degrees, and the detection
effect of YOLOv5s-CA and YOLOv5s-BiFPN is better than that of YOLOv5s-Gabor in
general. YOLOv5s-Improved has the best performance of the precision–recall rate among
all models in this experiment, which further shows that the overall improved YOLOv5s
model integrating Gabor, CA, and BiFPN is efficient in the object detection task of UAV
aerial images.

4.4.4. Comparison of Several Object Detection Methods

To further validate the efficient detection performance of our proposed method, we
compared several common object detection algorithms, such as SSD [22], FMSSD [68],
Faster-RCNN [26], RetinaNet [69], YOLOv3 [30], YOLOv4 [31], and YOLOv5s. The de-
tection experiment was conducted on the dataset LSDUVD, and the AP (%) and mAP
(%) results of each target are shown in Table 4. We have abbreviated the target names
in the dataset as follows: PE, plane; SP, ship; BE, bridge; HR, harbor; HP, helicopter; RT,
roundabout; ST, storage tank; TC, tennis court; BD, baseball diamond; SV, small vehicle; LV,
large vehicle; SL, swimming pool; BC, basketball court; SBF, soccer ball field; GTF, ground
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track field; PN, pedestrian; MT, motor; BI, bicycle; ATE, awning tricycle; TE, tricycle; PR,
person; VN, van; BS, bus. By analyzing the AP and mAP values in the table, overall, our
method has the highest mAP (81.8%) in all categories of object detection, which is 5.4%
higher than other models with the highest mAP. Specifically, in the detection of large
and medium-sized targets such as soccer ball fields, basketball courts, baseball diamonds,
roundabouts, large vehicles, swimming pools, etc., our model is not significantly different
from other models in having the best detection results, as they all have high detection AP
values. This indicates that our method has good detection accuracy in the detection of
medium-sized and large targets. In terms of small object detection, compared with the best
detection results of the other seven methods in Table 4, our model increased the AP values
of small objects such as planes, ships, storage tanks, small vehicles, and pedestrians by
1.6%, 5.3%, 7.3%, 7.4%, and 0.6%, respectively. This indicates that our model has the best
detection ability for small objects, especially for dense small objects such as ships, storage
tanks, and small vehicles, which have more obvious detection effects.

Table 4. The AP (%) and mAP (%) results of our method and several common methods on the
LSDUVD dataset. The best results are presented in bold.

Target
Category

Methods (AP (%))

SSD FMSSD Faster-RCNN RetinaNet YOLOv3 YOLOv4 YOLOv5s Ours

PE 81.9 89.1 75.7 87.2 90.5 93.1 91.5 94.7
SP 69.2 76.9 75.2 71.7 82.7 82.3 80.8 87.6
BE 59.2 68.2 55.0 67.0 77.2 68.1 73.2 79.6
HR 64.5 72.4 67.3 71.8 77.8 81.9 83.0 85.7
HP 71.8 70.2 68.8 67.7 82.0 83.8 66.9 64.9
RT 73.5 67.5 79.2 56.2 71.6 67.7 79.2 82.9
ST 74.5 73.7 68.4 70.2 60.7 68.5 76.9 84.2
TC 89.6 90.7 85.6 95.3 94.3 94.6 93.0 94.5
BD 81.3 81.5 77.5 90.6 64.0 67.1 73.4 89.5
SV 63.0 79.2 60.8 70.7 70.3 70.8 75.2 86.6
LV 59.4 73.6 79.0 83.0 79.9 81.1 88.9 90.2
SL 65.6 80.6 66.7 70.7 88.6 74.0 71.0 76.6
BC 72.2 82.7 74.2 88.5 72.8 65.9 83.6 87.4
SBF 74.5 78.7 58.4 87.9 70.7 72.9 77.3 86.2
GTF 79.9 67.9 74.7 79.7 59.7 62.8 73.6 77.3
PN 58.5 70.3 64.5 72.1 60.7 61.7 64.0 72.7
MT 65.5 78.1 63.1 67.5 77.1 80.2 76.3 78.5
BI 70.2 79.3 70.2 73.9 70.6 75.1 74.1 75.9

ATE 68.7 54.7 62.1 68.2 55.7 70.3 63.0 71.6
TE 67.2 71.1 58.5 64.8 60.5 66.2 82.1 84.7
PR 73.5 73.7 69.5 52.1 80.5 79.9 69.0 65.3
VN 51.4 79.5 61.5 67.2 78.9 70.1 71.1 84.6
BS 64.7 67.2 58.5 65.5 77.1 80.7 70.2 79.7

mAP (%) 69.6 75.1 68.4 73.5 74.1 74.7 76.4 81.8

The following are the detection results of some typical samples on the LSDUVD
dataset using SSD, FMSSD, Faster-RCNN, RetinaNet, YOLOv3, YOLOv4, YOLOv5s, and
our method, as shown in Figures 13–16. In the detection task of drone aerial images,
we select image types based on factors that affect the accuracy of object detection. For
example, in Figure 13, we select image types where some targets are shaded. Due to
differences in shadow area size and self-detection accuracy, the above models exhibit
different results. Among them, the two-stage network Faster-RCNN, which lacks effective
feature extraction, performs the worst, while our method YOLOv5s-Improved has the best
detection rate and regression effect due to the presence of Gabor filter banks that enhance
target edge characteristics.



Drones 2023, 7, 402 24 of 30Drones 2023, 7, x FOR PEER REVIEW 26 of 32 
 

 
Figure 13. Visualization of detection results for image types where some objects are obscured by 
shadows. 

In Figure 14, we selected an image type with similar contrast between target and 
background. Due to the similarity in contrast between target and background, the pixel 
difference between target and background is not significant, and there is no clear bound-
ary between the two. This makes it difficult for many models to effectively determine the 
position of the target due to their insufficient ability to filter background information and 
perceive the region. This leads to high missed detection rates for targets in this type of 
image in many networks. The edge reinforcement module and attention mechanism in 
YOLOv5s-Improved enable the network to effectively capture the feature information of 
the target area, thus effectively solving such problems. As can be seen from Figure 14, our 
method has the best detection results compared with other methods. 

 
Figure 14. Visualization of detection results for image types with similar contrast between the object 
and background. 

Figure 13. Visualization of detection results for image types where some objects are obscured
by shadows.

Drones 2023, 7, x FOR PEER REVIEW 26 of 32 
 

 
Figure 13. Visualization of detection results for image types where some objects are obscured by 
shadows. 

In Figure 14, we selected an image type with similar contrast between target and 
background. Due to the similarity in contrast between target and background, the pixel 
difference between target and background is not significant, and there is no clear bound-
ary between the two. This makes it difficult for many models to effectively determine the 
position of the target due to their insufficient ability to filter background information and 
perceive the region. This leads to high missed detection rates for targets in this type of 
image in many networks. The edge reinforcement module and attention mechanism in 
YOLOv5s-Improved enable the network to effectively capture the feature information of 
the target area, thus effectively solving such problems. As can be seen from Figure 14, our 
method has the best detection results compared with other methods. 

 
Figure 14. Visualization of detection results for image types with similar contrast between the object 
and background. 
Figure 14. Visualization of detection results for image types with similar contrast between the object
and background.

In Figure 14, we selected an image type with similar contrast between target and
background. Due to the similarity in contrast between target and background, the pixel
difference between target and background is not significant, and there is no clear boundary
between the two. This makes it difficult for many models to effectively determine the
position of the target due to their insufficient ability to filter background information and
perceive the region. This leads to high missed detection rates for targets in this type of
image in many networks. The edge reinforcement module and attention mechanism in
YOLOv5s-Improved enable the network to effectively capture the feature information of
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the target area, thus effectively solving such problems. As can be seen from Figure 14, our
method has the best detection results compared with other methods.
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In Figure 15, we selected an image type with densely arranged small objects and
blurred backgrounds. From a subjective perspective, our method has the lowest missed
detection rate, while other methods have varying degrees of missed detection. Some models,
such as SSD, Faster-RCNN, and RetinaNet, have more severe issues with missed detection.
From this, it can be inferred that densely arranged small targets and fuzzy backgrounds pose
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a significant challenge to the model’s detection ability, which requires the model to have a
strong ability to extract small target features against fuzzy backgrounds. For our model, in
the process of object edge enhancement through multi-directional Gabor convolution, not
only does the target contour become clear but blurry background information is also filtered
out. At the same time, combining CA and BiFPN mechanisms, the model can effectively
extract and fuse multi-dimensional information for small object regions, minimizing the
problem of sparse and difficult-to-detect small object pixels.

In Figure 16, we selected the image type of multi-scale objects. Overall, our model
pays comprehensive attention to various levels and types of objects in multiple-scale object
detection tasks, with not only the lowest missed detection rate but also the best regression
effect between the predicted box and the real box. During the detection process, there
are several types of targets: large-scale soccer ball fields with contour areas that are very
similar to the background, small and densely arranged storage tanks, and small vehicles.
These targets receive low attention from the model and are often overlooked during the
detection process, which is the biggest difficulty for the model in multi-scale detection
tasks. Our model, under the combined action of the CA mechanism and other modules,
can fully integrate the feature information of various targets while considering obvious
regional targets, paying more attention to targets with complex backgrounds and smaller
scales. Compared to other models, our model can effectively overcome this problem.

As shown in Figure 17, in order to further demonstrate the comprehensive perfor-
mance of our method, we selected aerial photographs of unmanned aerial vehicles with
multiple scales and types of targets in large scenes for detection, and some detection results
were enlarged and are displayed. Observing the detection results in the graph, it can
be concluded that our method can not only detect cars and ships with significant scale
changes but also has good detection performance for small cars that are shaded and densely
arranged, or medium to large cars and ships that are similar to the background. It can
be seen that our model has strong detection performance in processing complex types of
drone aerial images.
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5. Conclusions

This study was conducted to address the shortcomings of current drone aerial image
object detection algorithms, aiming to solve the difficulties caused by complex backgrounds,
object scale, and distribution issues in drone aerial images. We improved the YOLOv5
algorithm to boost the performance of object detection in drone aerial images. The main
improvements were as follows. Firstly, we optimized the traditional Gabor function to
obtain Gabor convolution kernels with better edge enhancement characteristics and use
multiple Gabor convolution kernels to enhance the target edges from multiple directions,
resulting in an enhanced image that was beneficial for subsequent deep feature extraction
work. Secondly, we added a coordinate attention (CA) mechanism to the backbone of
YOLOv5. This attention mechanism had the characteristics of being plug-and-play and
lightweight, making it convenient for the operation of the network. At the same time, CA
comprehensively considers the location information and channel information of features to
accurately capture the long-range dependency relationship of positions, making it easier for
the network to find the region of interest (ROI). Thirdly, we replaced the Path Aggregation
Network (PANet) with the Bidirectional Feature Pyramid Network (BiFPN) on the neck of
YOLOv5. BiFPN performed corresponding weighting operations based on the different
contributions of each input layer in order to enrich the information of different feature
layers. In addition, BiFPN added horizontally connected feature branches across nodes
on a bidirectional feature fusion structure to fuse more and deeper feature information.
Finally, we trained the YOLOv5-Improved model on our integrated dataset, LSDUVD, and
compared it with other models on multiple datasets. The results showed that our method
had efficient performance in processing detection tasks of drone aerial images.

In the future, we will continue to explore the characteristics of drone aerial images
and pay attention to the difficulties encountered in object detection in drone aerial images.
We will propose more targeted and innovative ideas to improve the performance of object
detection algorithm models. In addition, continuously improving the category and quantity
of test samples is also our key task.
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