| drones

Article

Towards Robust Visual Tracking for Unmanned Aerial Vehicle
with Spatial Attention Aberration Repressed Correlation Filters

ao Zhang ', Yongxiang He "), Hongwu Guo *, Jiaxing He, Lin Yan and Xuanying Li
Zhao Zhang ¥, Yongxiang He *(0, Hongwu Guo *, Jiaxing He, Lin Y: d Xuanying Li

check for
updates

Citation: Zhang, Z.; He, Y.; Guo, H.;
He, J.; Yan, L.; Li, X. Towards Robust
Visual Tracking for Unmanned Aerial
Vehicle with Spatial Attention
Aberration Repressed Correlation
Filters. Drones 2023, 7, 401. https://
doi.org/10.3390/ drones7060401

Academic Editors: Shengke Wang,
Pengfei Zhu and Bineng Zhong

Received: 6 May 2023
Revised: 13 June 2023
Accepted: 14 June 2023
Published: 16 June 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Intelligent Science and Technology, National University of Defense Technology,
Changsha 410000, China; zhangzha0981124@163.com (Z.Z.); heyongxiang1995@163.com (Y.H.);
hejiaxing211@163.com (J.H.); yeln.w@outlook.com (L.Y.)

*  Correspondence: guohongwu@nudt.edu.cn

t  These authors contributed equally to this work.

Abstract: In recent years, correlation filtering has been widely used in the field of UAV target tracking
for its high efficiency and good robustness, even on a common CPU. However, the existing correlation
filter-based tracking methods still have major problems when dealing with challenges such as fast
moving targets, camera shake, and partial occlusion in UAV scenarios. Furthermore, the lack of rea-
sonable attention mechanism for distortion information as well as background information prevents
the limited computational resources from being used for the part of the object most severely affected
by interference. In this paper, we propose the spatial attention aberration repressed correlation filter,
which models the aberrations, makes full use of the spatial information of aberrations and assigns
different attentions to them, and can better cope with these challenges. In addition, we propose a
mechanism for the intermittent learning of the global context to balance the efficient use of limited
computational resources and cope with various complex scenarios. We also tested the mechanism on
challenging UAV benchmarks such as UAVDT and Visdrone2018, and the experiments show that
SAARCEF has better performance than state-of-the-art trackers.

Keywords: unmanned aerial vehicle; correlation filtering; visual tracking; aberration suppression;
spatial attention; global context

1. Introduction

In recent years, UAVs have been more and more widely used in many fields, such
as civil, military, and scientific research, by virtue of their small size, flexible movements,
and easy control, for example, in power line detection in harsh environments, atmospheric
environment detection, rescue and disaster relief, enemy reconnaissance, enemy target
tracking, and search for battlefield intelligence [1-6]. UAV visual target tracking is one
of the fundamental and challenging tasks with high research value, and it is also a major
research hotspot in the field of computer vision at present. However, compared with
general tracking scenarios, UAV visual target tracking faces more complicated challenges.
To sum up, there are mainly the following points: (1) when UAVs perform tracking tasks,
interference from wind and other factors leads to motion blur, camera shake, and frequent
viewpoint changes, which in turn leads to the tracking drift and target loss. (2) Due to
the open aerial view and complex ground environment, many interfering objects, mutual
interference between targets and targets and between targets and backgrounds, poor
distinguishability leads to the target model’s variability and exclusivity being not so high,
and it is difficult to establish an accurate target model. (3) When the UAV flies at a certain
altitude, the image shadow width becomes larger, the resolution and clarity become lower,
the scale of the target to be tracked on the ground becomes small, and the target features
and textures become sparse, making it difficult to extract the target features and the feature
representation is not significant, leading to greater difficulty in tracking [7]. Therefore, a robust
UAV target tracking method is needed to cope with various complex tracking scenarios.
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Deep learning has achieved better results in vision tracking in recent years, but it
is still difficult to deploy deep learning tracking algorithms in UAVs for a wide range
of applications in real flight scenarios due to limited on-board computational resources,
small battery capacity, low power consumption, and maximum load limitations [8]. Under
the hard constraints of real-time vision-based UAS, the ideal tracker should have higher
computational power for sensor fusion, advanced control, etc. [9]. Although the discrimina-
tive correlation filter (DCF)-based approach cannot compete with the deep learning-based
approach in terms of accuracy and precision, it can quickly learn the model from a single
frame without the need for additional dataset training. Due to the use of fast Fourier
transform (FFT) to transfer the evaluation of correlation to the frequency domain, it has
high computational efficiency and excellent robustness on a single CPU. This method has
been widely applied in the industry.

DCEF uses cyclic shifting on a single image frame to generate a large number of samples
for training, but due to the limited search area, it is difficult to avoid generating boundary
effects and degrading the tracking performance [10]. The background-aware filter (BACF)
directly constructs a cropping matrix by circularly shifting in the whole image picture
to obtain more negative samples from the background, which effectively mitigates the
boundary effect. Due to the expanded search area, it is able to track targets with relatively
high velocities with the camera or UAV. However, as more background information is
introduced, many background clutters become byproducts. This will lead to similar objects
around the target as well as the background being easily identified as the original target
we want to track. Huang et al. introduced an aberration suppression term based on BACE,
which provides a good suppression of the aforementioned aberrations. There are also
works that consider learning context information during training to extend the acceptance
domain of DCF and improve the filter’s ability to discriminate the background [11,12].
These methods have more limited limitations for target drift caused by fast target move-
ment, camera shake, and partial occlusion, and lack reasonable attention mechanisms for
aberration information as well as background information to devote limited computational
resources to the part of the object most affected by the interference.

The attention mechanism (AM) is a data-processing method in machine learning,
which is widely used in various different types of machine learning tasks such as natural
language processing (NLP), image processing (CV) and speech recognition [13]. The
attention mechanism is able to select and focus on relevant information in a targeted
manner according to the input context and task requirements, which improves the accuracy
and efficiency of the model. Inspired by spatial attention, in this paper, we propose an
aberration-repressed correlation filter (SAARCF) based on the spatial attention framework
to more efficiently cope with the target tracking problem in various complex scenes from
the UAV perspective under the condition of limited computational resources.

First, we introduce an aberration model built from two consecutive response frames,
which assigns equal attention to aberrations near the target and aberrations occurring far away
from the target; however, aberrations occurring far away from the target are often irrelevant,
and aberrations occurring closer to the target have a greater impact on the filter training and
are more likely to cause target drift. To address this, we designed an attention module to
optimize the filter’s perception of aberrations by assigning different levels of attention to
them according to their spatial information, thus improving the filter’s ability to discriminate
between targets. To further optimize the use of computational resources, we used the APCE
to determine whether to learn the global context in the aberration frame. For the aberration
frame, a low APCE indicates that the tracker can no longer cope with the drastic changes
in the scene by relying on its own robustness, and the global context needs to be learned to
introduce more background information to cope with the drastic changes in the scene.
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The main contributions of this work are listed as follows:

1.  We propose a robust target tracking method (SAARCF), which alleviates boundary
effects and fully utilizes the spatial information of aberrations to suppress sudden
changes in the response map, and can better cope with tracking problems in complex
environments from the perspective of unmanned aerial vehicles.

2. A mechanism of intermittent learning global context is proposed to utilize the back-
ground information more efficiently and cope with the drastic changes in the scene
under the limited computational resources.

3. SAARCF s tested on challenging UAV datasets such as UAVDT, Visdrone2018, and
the experimental results show that SAARCEF has a better tracking performance.

The rest of this paper is organized as follows: Section 2 provides a brief review of the
prior work related to this work. Section 3 presents the baseline tracker on which our tracker
is based and elaborates our proposed method. Section 4 shows the experimental results
of our proposed method tested on UAV benchmarks such as UAVDT and Vistrone2018.
Section 5 provides the conclusion.

2. Related Works

Visual object tracking methods are mainly divided into two categories: discriminative
methods [14-16] and generative methods [17-19]. Generative tracking methods essentially
learn a feature template in the target area of the first frame and search for the area with the
highest similarity in the search area of subsequent frames. However, this approach does
not model the target’s appearance, treats it as a point mass, and mostly ignores background
information, making it difficult to cope with complex tracking scenarios. Discriminative
tracking methods, on the other hand, essentially extract features near the target and train
a classifier that can distinguish between the target and the background. Discriminative
tracking methods include those based on correlation filters and those based on deep
learning. Discriminative methods solve the problem of insufficient samples and can extract
more useful information, thus better dealing with various complex tracking environments
and gradually becoming the mainstream method in the tracking field. This section mainly
reviews discriminative tracking methods based on correlation filters.

2.1. Discriminative Correlation Filtering Algorithm

The correlation filter-based target tracking method was introduced by Bolme et al. [20]
in 2010. They proposed the minimum output sum of the squared error (MOSSE) tracking
algorithm. The core of this algorithm is to train a filter to perform correlation operations
with training samples and minimize the squared error between the correlation output and
the expected output. At the same time, the paper uses fast Fourier transform to transfer
the convolution operation to the frequency domain, updating the target position through
the response map. MOSSE has a high speed of up to 615 frames/s, but it does not have an
advantage in tracking accuracy.

Henriques proposed the circulant structure of tracking-by-detection with kernels
(CSK) algorithm based on MOSSE, which introduces the circulant matrix. Unlike previous
tracking methods that used affine transformations to obtain sparse samples, CSK obtains a
large number of dense samples through cyclic shifts. Due to the improvement in sample
quality and quantity, CSK achieved a significant increase in tracking accuracy compared
to MOSSE. CSK only uses grayscale features, so it has poor robustness in the complex
scenarios of drone scenes. Therefore, Dalal and others introduced histograms of oriented
gradients (HOG) features based on CSK and built the KCF algorithm [21]. Danelijian and
others introduced commonly used color attribute features (CN) in target recognition and
detection to improve the tracking performance based on CSK [22].

Bertinetto designed the staple tracker [23] to address the challenges of the target
deformation and illumination changes. The staple tracker contains two correlation filters,
using HOG and CN features, respectively. After obtaining their respective response maps,
they are fused to achieve target tracking.
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2.2. Previous Work on Suppressing Boundary Effects

The introduction of circulant matrices in the CSK algorithm leads to negative boundary
effects. Boundary effects mainly refer to the generation of some inaccurate negative samples
in the DCF method due to the use of the periodicity assumption of samples, which can
reduce the discriminative ability of the model during the training process [24]. Generally,
filters use cosine windows to mitigate boundary effects, but the effect is minimal.

In view of this, the spatially regularized discriminant correlation filter (SRDCF) [24]
introduces spatial penalty weights during the filter training process to penalize the back-
ground. However, the added regularization constraint breaks the closed-form solution of
ridge regression, so the optimal correlation filter parameters can only be obtained through
the computationally complex Gauss-Seidel method. As a result, the algorithm’s robustness
is significantly improved, but the processing speed is reduced to 5 frames/s [24]. Many
other studies have also focused on adding different constraints during the filter training
process to obtain more discriminative filters. For example, CFLB [25] increases the proportion
of effective negative samples by enlarging the training sample size and learning smaller-scale
filters (essentially removing the boundary effects present in training correlation filters through
spatial constraints). STRCF [26] introduces the spatio-temporal regularization constraints
during the filter training process, effectively suppressing boundary effects.

2.3. Previous Work on Background Information Learning

These methods [24-26] only model the target and ignore background information,
which affects the target tracking performance. To make full use of background informa-
tion and alleviate boundary effects, Galoogahi et al. [11] proposed the background-aware
correlation filter (BACF) algorithm, which extracts HOG features from the target region
and dynamically models the foreground and background of the tracking target. The BACF
algorithm essentially alleviates boundary effects by expanding the input image block. Al-
though this allows the filter to learn more background information, it also includes too
much background noise. In order to suppress boundary effects while expanding the search
area and minimize the impact of background noise, Z. Huang et al. [11] designed the learn-
ing aberrance repressed correlation filters (ARCFs), which effectively alleviate boundary
effects and perform well in various complex tracking scenarios. Mueller et al. proposed
a context-aware correlation filter [12], the CACF tracker. The CACF tracker designs four
patches close to the object, located in the top, bottom, left, and right directions. The circulant
structure of the context patches is the same as that of the object patches. By using these
four context patches, the tracker provides more background information, enhancing the
tracker’s robustness in dealing with complex scenarios.

3. Proposed Tracking Methodology

In this chapter, we first introduce the Baseline tracker, and then we will elaborate on
our proposed tracker, which includes an aberration suppression module based on spatial
attention and an intermittent context learning mechanism. An overview of the tracker
is shown in Figure 1. In Table 1, we provide explanations for the variables that will be
mentioned later.

As can be seen from Figure 1, our proposed tracker consists of two modules: a spatial
attention aberration suppression module and an intermittent context learning mechanism.
The spatial attention aberration suppression module effectively suppresses aberrations,
while the intermittent context learning mechanism first determines whether the current
frame is an aberrance frame or not. If it is an aberrance frame, the APCE criterion is
employed to decide whether the global context learning is needed. The APCE criterion is
used to determine the necessity of global context learning.
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Figure 1. The overview of our proposed method.

Table 1. Some of the variables that will be used later.

Denotation Symbol Note
Number of cyclic shifts N
The size of filter M M <N
Number of feature channels D
Frame k
Spatial correlation operator *
Crops matrix P P ¢ RM*N
The vectorized ideal response y y € RN
The vectorized samples xﬂ xﬂ e RN
The filter to be learned w w e RM
Penalty coefficient A

3.1. Baseline Tracker

In this work, the background-aware correlation filter (BACF) is considered our baseline
tracker. The BACF algorithm uses cyclic matrix sampling. In contrast with other correlation
filters, it does not perform cyclic shifts around the target but on the entire image. Then, a
cropping matrix is used to crop the samples to the desired size. As such, the number of
samples is significantly increased, and the negative samples are real rather than artificially
stitched together.

BACEF aims to minimize the following objective:

] AL
o1 A !

D
y— 2 Pxixwj
d=1

3.2. Aberration Suppression Module

The baseline tracker used in this work can effectively alleviate the boundary effects
present in classic correlation filter algorithms. However, when introducing background
information, the BACF introduces a large amount of clutter, leading to the misidentifica-
tion of similar objects around the target. Moreover, in drone scenarios, the environment
undergoes drastic changes, easily generating various distortions that are difficult for BACF
to handle. The significant spatial shape changes between the two consecutive frames of



Drones 2023, 7, 401

6 of 20

response maps can easily lead to target loss. The difference in response maps can reflect
the severity of aberration to a certain extent.
In light of this, we first model the aberrations:

18613 = || k-1 [Fpa) — Akl3 @

where Ay is the response map of the k-th frame, p and g represent the position differences
of the peak values of the response maps in the previous and current frames, and the
shift operation [F, 4] is used to align the peak positions of the two response maps. When
aberrance occurs, the similarity of the response maps decreases, resulting in a higher value
of || Ax ||§ In order to suppress the generation of aberrance during the filter training process,
the training objective of the filter is optimized to minimize the following loss function:

2

1 D44 Al 2
E(w) = 5 |lv— X0 Pxxaf | +5 30| + 1163 ©)
d=1 2 d=1

However, Ay adopts the same focus on distortion for every point in space. Instead, we
should focus on the aberration occurring near the peak of the response map or, in other
words, near the tracking target. This is because the aberration in this area has the greatest
impact on filter training. The farther away it is from this focal area, the less relevant the
aberration becomes, and we should not allocate too much attention to these edge areas.
Otherwise, the filter will focus too much on the information in the edge areas, relatively
weakening the filter’s ability to distinguish the target. In view of this, this paper designs a
spatial attention module Q and introduces it into the training stage of the filter. The new
objective function is described as follows:

AR d||? 2
+ 2 % e + w3 )
2 d=1

1 D
E(wy) = 3| Y Pt xwf
d=1
The Qy attention module in the k-th frame can be obtained from Ay_;, where the peak
coordinates of Ay ; are (x( k—1),00 Y k—l),O) . In this paper, the numerical representation of

the attention that should be allocated to each area (x,y) in the spatial domain is as follows:

el vl
Qr(x,y) =po+ae DO fpe D0 )

where p is the base factor and « is the scale factor.

Figure 2 shows the tracking results and response graphs of the proposed tracker in
this paper (SAARCF) and the baseline tracker (BACF). The suppression effect of SAARCF
on distortion can also be observed from the response map, which is significantly more
prominent compared to BACE.
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Figure 2. Comparison of the baseline tracker and the tracker we propose: (a) Comparison of the
tracking results of our proposed tracker (red) and the baseline tracker (blue). (b) Response map of
the baseline tracker (BACEF). (c) Response map of the tracker proposed herein.

3.3. Intermittent Context Learning Mechanism
3.3.1. Aberrance Frame Recognition

In the baseline tracker, only limited context information is included, which makes the
tracker prone to drift in situations of rapid movement, occlusion, and background noise.
To address this issue, we incorporated global context information into the filter training
process. Frame-by-frame context learning is considered highly redundant, as the capture
frequency of drone cameras is generally lower than the context change frequency. For
example, in a 30 frames per second (FPS) video, the interval between two consecutive time
points is 0.03 s, but in reality, the background in an aerial view remains unchanged for a
much longer time than 0.03 s [27]. Furthermore, due to the ubiquitous appearance changes
in aerial scenes, an unrestricted learning-based single filter is prone to damage.

In light of this, we also need to allocate reasonable attention to consecutive image se-
quences, focusing on frames with dramatic scene changes (which we refer to as aberrance
frames) to fully utilize the limited computing resources. Based on this, we use the ||Ag||
mentioned in Section 3.2 as the criterion for identifying aberrance frames, setting a thresh-
old G = 2% + Y[, ||A¢||,, where T is the number of image sequences between the current
frame (t) and the previous aberrance frame (t — 1). When ||A¢||, > G, it indicates that the
aberrance is exceptionally noticeable, and the frame is recognized as an aberrance frame (t).

3.3.2. Multi-Peak Confidence Level

In regard to the aberrance frames defined in Section 3.3.1, the tracker has a certain
level of robustness. In some cases, even without learning the global context, the tracker can
rely on its own robustness to counteract the impact of aberrance on tracking results. In this
situation, learning the global context during the filter training stage might mistakenly learn
some background information, leading to error accumulation and a waste of computational
resources. Therefore, after identifying the aberrance frames, it is necessary to first evaluate
the confidence of the tracking results at this moment. When the confidence is low, it indicates
that the tracker’s inherent robustness is no longer sufficient to handle the dramatic scene
changes. In such cases, the global context should be learned during the filter training stage.
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In this paper, the maximum response value of the filter output and the average peak-
to-correlation energy (APCE) [28] are used as metrics to assess the confidence level of the
tracking results:

|Fmax - Fmin‘2

mean (ZW (Fry — Fmin)z)

Here, Finax represents the maximum peak of the response map, Fnin, denotes the mini-
mum peak value, and Fy , indicates the response value at the (x,y) position. When APCE
is small, it suggests that the target is significantly affected by surrounding interference,
leading to low tracking result confidence. Conversely, a larger APCE implies a higher
tracking result confidence. In this study, we establish a threshold L, where L is calculated
as the mean APCE of all frames between the current frame and the previous aberrance
frame, multiplied by 6 (8 is a scaling factor). If the current APCE is less than L, we deter-
mine that the confidence is low, indicating that the aberrance has a substantial impact on
the tracker. Consequently, the tracker is unable to effectively handle the dramatic scene
changes, necessitating the learning of the global context.

APCE =

(6)

3.3.3. Context Patches Scoring Scheme

We calculate the scores of context patches using Euclidean distances. Context patches
have the same dimensions as the target and are located around the target. The score of

patch j is specified as follows:
Vw? + h?

'~ oo ?
where ’OO]-| denotes the Euclidean distance between the target and the context patch
j(j=1,2,...,]), zis a constant, and w and h are the width and height of the target
box, respectively.

At this point, for the aberrance frame, the new objective function is described as follows:

D 2

y— Z Px,‘f *w,‘f
d=1

E(wp) = + ®

2
A D p 2 7 J
) +5 Lt + neuaud+ 5
2 d=1 j=1

D 4
Z Px§ % wy
d=1

2

where the third term is the response of context patches (desired responses are 0) and P is
the number of context patches. For non-aberrant frames, the objective function remains as
Equation (3).

Next, we need to transform the objective function to the frequency domain. To facilitate
computation, we first convert Equation (8) into matrix form as follows:

1 2 A P
E(wy) = EHY — X (ID ® PT)WkHZ + EHWkHz

3l k(AxalFoa) ~xe(10 @ 7)o ) ©)

Z.J 2
] . T
3 Tt

Now, we will explain the parameters in the objective function for the k-th frame. Note
that the parameters we discuss below are all with the subscript k omitted. The detailed
explanations are as follows.

® is the Kronecker product and Ip is an identity matrix whose size is D x D. Fis
a kind of mapping: § = vVNFq, g € CPN*land w € RPMX1. This is a more detailed
description of these variables: X is the matrix form of the input sample x, Xp is the p-th

context path. X = [diag(xl)T,- - ,diag(xD)T},g = [g!’, - ,gDT]T and X, € CNxDN
(p=1...P).
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3.4. Transformation into Frequency Domain

The equation above represents the total loss function in matrix form, which is essen-
tially a convolution operation. In order to ensure computational efficiency, it is transformed
into the frequency domain as follows:

L 1, . A
E(we &) = 5 y_ngk|§+§HwkH%
1 A N 2 & ~
+5 | Qk(Ak—1) (Ag—1 — Xigk) Hi (10)
zZ: Lo 0
+7]Z|| j8kll2

-
I
—

st g = \/N(ID ®FPT)wk

Here," represents the discrete Fourier transform (DFT). To further optimize, we intro-
duce a new parameter, which represents the discrete Fourier transform of the k — 1 frame
response signal Ay_ after translation. At the k-th frame, the response image Ay_1 of the
k — 1 frame and the value obtained from Aj_; can be regarded as constants, which can
further simplify the calculation.

3.5. Optimization through ADMM

The alternating direction method of multipliers (ADMM) is fast in solving convex
optimization problems and has good convergence performance. Equation (10) can be solved
using ADMM to obtain the global optimal solution. Therefore, we transform Equation (10)
into the augmented Lagrangian multiplier (ALM) form as follows:

c 2 A
y - ngk||§ + E”WkH%

1 A ~ Sa Z I & A
510k (A — %) [+ 2 Y IRl
j=1 (11)

+ (5 - VN(b e FPT wy),

& — x/N(ID ® FPT)wkHz

E(wi.., 8, §) =

NI+~

"
+2

. 5 51T sDT]T . . . .
Here, u is the penalty factor and { = [( PR 4 ] is an auxiliary variable in

the Fourier domain that we introduce with dimensions DN x 1. The advantage of using
ADMM is that it can transform the solution of the overall problem into solving two simpler
subproblems, that is, the solution of the k + 1 frame correlation filter can be transformed
into solving for wi ; and §; ;. The specific solution methods are as follows:
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Wi = argnvlvikn{ 2wl
+¢7 (8- VN (1o @ FPT )wy)
s ifroom )

X 1
81 =arg rré;n{ 5 (12)

g ,
*||Qk(Ak 1= Xigi )5 + f;” il
+¢" (8- VN (1o @ FPT )wy)

o V(a0 )

3.5.1. Solution to Subproblem wy_
The solution of the subproblem wy, ; can be easily obtained from the following equation:

Wiy = (A+uN)! (\/N(ID ® PFT)Z+ yx/N(ID ® PFT>gk)

A -1 (13)
= (N +u> (C+ psi)
The g and ¢ can be obtained by Fourier inverse transform:
g — \;ﬁ (10 © PFT ) g
h A (14)
[ = ﬁ(ID ®PFT)¢;

3.5.2. Solution to Subproblem g

It can be seen that subproblem g;_ ; includes a term X, which is time-consuming to
compute. Therefore, by exploiting the sparsity of X, in each element of 7 i.e., (1), where
n=1,2,...,N,is solely dependent on:

&c(n) = [conj (g,{(n))...,conj (gE(n))}T

1 2 D T (1)
%e(n) = [%(n), & (n), ..., %P ()|
where operator conj(. ) denotes the complex conjugate operation.
From this, subproblem g}, ; is decomposed into N smaller problems:
5 * R T (5 2
g1 (n)” =argmin) = [y(n) =%/ (m)c(m)
8k (1) 2
i (A Zi T (n 2
T2 Qk<A"—1 B )H Z Hz (16)

+ &7 (ge(n) = V()
+ L llge(n) — wie(m)113}
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The solution for each smaller problem after decomposition can be easily obtained:

i 1
Bra(n)" = (Iv+Q)! (ﬁk(”)*zj(”) + Y Zi%(m)x] (n) + pu(Iy + Q2)1> W
=

(36 (m)3 (m) + Q%e(m) Ay = §(n) + e () )

3.5.3. Update of Lagrangian Parameter

The Lagrangian parameters are updated by the following equation:

s(i41) 4 (i) (i1
Cir1” = Cp1 T 1 (g;ﬁl )~ WZ$1 )) (18)
where i denotes the i-th iteration and WZE:TU =(Ip® FPT)wz(ﬁrl)

3.5.4. Update of Appearance Model

The appearance model ¥™°%! is updated as follows:
Kol = (1= R + i (19)
Here, 1 is the learning rate of the appearance model.

4. Experiment

In this chapter, to evaluate the performance of the proposed algorithm, we conduct
quantitative and qualitative experiments on two challenging UAV target tracking datasets,
UAVDT and Visdrone2018. The results are compared with 11 other state-of-the-art trackers
that use handcrafted features, including: AutoTrack, ECO-HC, ARCF (HOG + CN), ARCF-
H (HOG), SRDCEF, BACE, Staple, DSST, SAMF, KCF, and CSK. To ensure the fairness of the
real-time evaluation, the code obtained from each author’s webpage was uniformly run
on the author’s computer, rather than directly using their evaluation results. If readers are
interested in understanding the specific parameters set by the authors during their testing,
they can refer to the literature [11,21,23,24,29-34] for detailed information. The tracker’s
settings and parameters used in my testing are the same as those used by the authors in
the original study. The experiments can be divided into overall performance evaluation
and sub-attribute performance evaluation. These datasets cover various complex scenes
and diverse attributes in the UAV tracking domain and are widely used to verify the
effectiveness of tracking algorithms in UAV scenarios.

4.1. Experimental Platform and Parameters

Regarding the aberration suppression module mentioned in Section 3.2, we set its
parameters as jip = 2 and & = 1.5 during the testing. For the intermittent learning context
mechanism mentioned in Section 3.3, we set z = 0.24 and 6 = 0.5 during the testing. The
number of iterations for ADMM is set to 5, and the learning rate is 0.0192. All 12 trackers
are run on a computer equipped with an Intel(R) Core(TM) i5-10300H CPU @ 2.50 GHz
processor, and 16 GB RAM using MATLAB R2019a.

4.2. Evaluation Methodology

We use the one-pass evaluation (OPE) method, which only provides the ground
truth for the target’s first frame during the entire testing process and does not initialize
it subsequently. We adopt an efficient set of evaluation rules proposed by Wu et al. [35],
which reasonably assess the performance of trackers from the aspects of the distance
precision rate (DPR) and overlap success rate (OSR). The center location error (CLE) refers
to the Euclidean distance between the center point of the bounding box and the tracking
result [36]. The DPR for a single sequence represents the proportion of image sequences
with a CLE less than a certain threshold, typically using a 20-pixel CLE for sorting trackers.
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Similarly, the “intersection over union (IoU)” can also be used for sorting. The numerator
of the IoU is the area of the intersection between the test result box and the ground truth,
while the denominator is the area of the union. The OSR for a single sequence represents
the proportion of image sequences with an IoU greater than a certain threshold.

4.3. Benchmarks for Experiments

The UAVDT benchmark consists of 100 video sequences, recorded at 30 frames per
second (fps) with a resolution of 1080 x 540 pixels [37]. UAVDT can be used for single-
object detection and single-object tracking, and the single-object tracking part includes
50 video sequences with 9 attributes: camera motion (CM), illumination variation (IV), long-
term tracking (LT), large occlusion (LO), object motion (OM), object blur (OB), background
clutter (BC), small object (SO), and scale variation (SV).

The Visdrone benchmark is captured by cameras mounted on various drones, covering
a wide range of aspects, including location (from 14 different cities in China, thousands of
kilometers apart), environment (urban and rural), objects (pedestrians, vehicles, bicycles,
etc.), and density (sparse and crowded scenes). The dataset is collected using different drone
platforms (i.e., different drone models) in different scenes, as well as different weather and
lighting conditions. The single-object tracking part of Visdrone contains 50 video sequences,
including 13 attributes: aspect ratio change (ARC), background clutter (BC), camera motion
(CM), fast motion (FM), full occlusion (FO), illumination variation (IV), low resolution (LR),
out-of-view (OV), partial occlusion (PO), similar occlusion (SO), similar object (SO), scale
variation (SV), and viewpoint change (VC).

4.4. Overall Performance Evaluation

The overall performance evaluation results of the proposed SAARCEF algorithm on
the UAVDT benchmark are shown in Figure 3. It should be noted that the performance
evaluation values in the figure are percentages. The precision and success rate are 0.743
and 0.514, respectively, which represent improvements of 12.1% and 12.7% compared to
the baseline tracker. Moreover, compared to other advanced trackers, it generally has a
better overall performance.
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Figure 3. Evaluation of tracker attributes on the Visdrone dataset.

The overall performance evaluation results of the SAARCEF algorithm on the Visdrone
benchmark are shown in Figure 4, and it should be noted that the performance evaluation
values in the figure are all percentages. The precision and success rate are 0.798 and 0.719,
respectively, which are 2.6/2.4% higher than those of the baseline tracker, and it also has a
better overall performance compared to other advanced trackers. Although the precision is
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slightly lower than ECO-HC by 0.01, the success rate is higher than ECO-HC by 0.19, so the
comprehensive performance is still better than ECO-HC.

Precision plots of OPE Success plots of OPE

0.9 0.9
08 ] 08
07 0.7
0.6 0.6
2
c
Sos g o5l
(7]
S E 3
O o4l 7 ———ECO_HC [79.9] O (4| | T SAARCF [71.9]
o / ~ — SAARCF [79.8] 8 41|~ — ARCF[71.3]
2 s ARCF [78.9] @ || SRDCF [71.0]
o3t My AutoTrack [78.8] 03| |[——ECO_HC [708]
’ H Staple [78.3] : AutoTrack [70.8]
! BACF [77.8] BACF [70.2]
o2f ff +++ ARCF_H [76.9] 0.2 |7 Staple [69.1]
13 == DSST [76.3] *ARCF_H [68.6]
3 SRDCF [76.2] ~———— SAMF [60.9]
01F = = SAMF [73.8] 04f|" — DSST [47.7]
-------- KCF [68.7) weeeeies CSK [45.1]
- = CSK|[63.2] = = KCF [42.6]
o . o . . . . . " " )
0 5 10 15 20 25 30 35 40 45 50 0 0.1 0.2 03 04 0.5 0.6 0.7 08 09 1
Location error threshold Overlap threshold
(a) Precision plots (b) Success plots

Figure 4. Evaluation of tracker attributes on the Visdrone dataset.

4.5. Attribute Evaluation

Figures 5 and 6 demonstrate the comparison of precision and success rates for 8
attributes on the UAVDT dataset. As can be seen from the figures, SAARCF achieves
an improvement of more than 10% in all 8 attributes compared to the baseline tracker.
In contrast to the other trackers, SAARCEF achieves scores of SV (0.647), CM (0.718), BC
(0.668), OM (0.672), and LO (0.548), while the overall performance of Autotrack, which is
the second-best, improves by SV (1.7%), CM (3.2%), BC (3.2%), OM (1.3%), and LO (4.9%).
SAARCEF obtains the highest success rates for the attributes SV (0.457), CM (0.493), BC
(0.441), and SO (0.558), with improvements over Autotrack of SV (0.4%), CM (2.2%), BC
(1.1%), OM (1.3%), and OB (1.6%). Figure 7 provides a more intuitive comparison of the
performance of various trackers in the 8 attributes.
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Figure 7. Evaluation of tracker attributes on the UAVDT dataset.

The evaluation results for the 13 attributes of the Visdrone dataset are shown in
Figure 8. Figure 8 presents the comparison of precision and success rates for trackers on
the 13 attributes in the Visdrone dataset. SAARCF outperforms the baseline tracker in
all 13 attributes. The precision rates were: VC (0.819), SV (0.766), SO (0.641), PO (0.737),
OV (0.802), LR (0.706), IV (0.856), FO (0.701), FM (0.746), CM (0.799), BC (0.663), and
ARC (0.799). The success rates were: VC (0.787), SV (0.674), SO (0.540), PO (0.698), OV
(0.693), LR (0.461), IV (0.818), FO (0.664), FM (0.669), CM (0.722), BC (0.543), and ARC
(0.661). SAARCEF ranks first in both the success and precision rates for the CM, FM, and SO
attributes. Figures 9-11 show the precision and success rates of various trackers for these
three attributes, respectively.
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Figure 8. Evaluation of tracker attributes on the Visdrone dataset.
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Due to the introduction of the spatial attention aberrance suppression module, SAARCF
can effectively cope with the distortion of the environment and targets. This is evidenced by
the highest scores achieved by SAARCF in the CM and MO attributes in Figures 9 and 10.
Moreover, Figure 11 shows that SAARCF performs better in dealing with similar target
interference compared to other trackers, which further confirms that learning the global

context can effectively enhance the filter’s ability to distinguish targets.
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Figure 9. Comparison of CM properties on the Visdrone dataset.
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Figure 10. Comparison of FM properties on the Visdrone dataset.
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Figure 11. Comparison of SO properties on the Visdrone dataset.
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4.6. Real-Time Evaluation

We conducted a real-time evaluation of SAARCF and 11 other trackers on the UAVDT
and Visdrone datasets, with the results displayed in Table 2. As shown in Table 2, our
proposed SARRCEF algorithm can meet the requirements of real-time tracking. To verify
the effectiveness of our proposed intermittent learning context mechanism (ILCM), we
compared the FPS of three scenarios: the baseline tracker with the aberration suppression
module (baseline + SAAR), baseline tracker with aberration suppression module and the
frame-by-frame learning of global context (Baseline + SAAR + LCFF), and baseline tracker
with aberration suppression module and ILCM (baseline + SAAR + ILCM). The results are
shown in Table 3. As can be seen from Table 3, our proposed ILCM can effectively save
computational resources and improve the computation speed.

Table 2. FPS on UAVDT and Visdrone.

Tracker Benchmarks UAVDT Visdrone

SAARCF 28.54 24.47

AutoTrack 38.78 48.84

ARCF 31.44 26.89

ECO-HC 73.55 59.96

BACF 39.96 42.24

SRDCF 15.68 11.24

ARCF-H 42.33 47.97

Staple 68.84 92.74

DSST 130.24 101.44

SAMF 17.22 7.94
KCF 1283.77 498.66
CSK 1792.88 624.33
Table 3. FPS in three scenarios.

Modules Benchmarks UAVDT Visdrone

Baseline + SAAR 32.57 27.29

Baseline + SAAR + LCFF 22.37 19.74

Baseline + SAAR + ILCM 28.54 24.77

4.7. Qualitative Experimental Analysis

To more intuitively analyze the effectiveness of SAARCEF, we selected five video
sequences from the UAVDT dataset for evaluation. We compared SAARCF with two
other top trackers (AutoTrack and ECO-HC) and a baseline tracker (BACEF). The tracking
results are shown in Figure 12.

In Seql, all four trackers can stably track the target before any occlusion occurs. At
frame 153, leaves partially occlude the target, but the four trackers still do not exhibit
tracking drift. However, at frame 214, the vehicle is mostly occluded, and only SAARCF
still maintains the target. This indicates that, during occlusion, SAARCEF learns the global
context of the target and incorporates more background information. Therefore, even if
most of the target area is occluded and the available target information is limited, the target
can still be accurately recognized. However, at frame 279, the target is completely occluded,
and even SAARCF cannot track it.

In Seq2, although the illumination changes significantly, all four trackers can still
accurately track the target. At frame 150, a car passes near the target, and the baseline
tracker fails to distinguish the object similar to the target, tracking the wrong target instead.
At frame 356, the camera suddenly rotates rapidly, causing ECO-HC to experience tracking
drift, while AutoTrack and SAARCEF can still accurately follow the target.

In Seq3, as the camera moves upward, the target is completely occluded. Between
frames 30 and 36, the target is fully occluded, but when it reappears at frame 37, it is imme-
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SAARCF

diately captured by SAARCE. This shows that SAARCEF has a certain level of robustness to
complete occlusion.

In Seq4 and Seq5, there is some disturbance around the target, accompanied by sudden
camera movements and partial occlusion. It can be seen that only SAARCEF performs well
in completing the tracking task. Especially at frame 429 in Seq5, when the target suddenly
jumps to shoot, only SAARCEF successfully follows the target. This indicates that SAARCF
has a better robustness to sudden changes in the environment or target.

E . #000150 . T 32 1 #000356 |1~
B - s K

AutoTrack

Figure 12. The visualization of tracking results.

5. Conclusions

To address the drastic changes in scenes and targets from the perspective of UAVs,
this paper proposes SAARCE, and in order to fully utilize background information un-
der limited computational resources, an intermittent context learning mechanism is also
introduced. Extensive tests of the proposed algorithm were conducted on the UAVDT
and Visdrone datasets, and the experimental results show that the proposed SAARCF
outperforms the state-of-the-art trackers in overall performance, with a particularly out-
standing performance in attributes such as camera movement, rapid target movement, and
partial occlusion.

At the same time, there are some shortcomings in this work, namely the fact that it
does not take into account the need for target scale estimation in complex environments
when the target size changes, in order to adjust the size of the target bounding box and
avoid learning too much background information due to an excessively large bounding
box. The next step in this research will focus on implementing target scale adaptation.
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