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Abstract: Unmanned aerial vehicles (UAVs) can bring many benefits, particularly in emergency
response and disaster management. However, they also induce negative effects, such as noise and
visual pollution, risk, and integrity concerns. In this work, we study visual pollution, developing a
quantitative measure that can calculate the visual pollution from one or multiple UAVs. First, the
Analytic Hierarchy Process was utilized in an expert workshop to find and rank factors relevant to
visual pollution. Then an image-based questionnaire targeted at the general public was used to find
relations between the factors. The results show that the two main factors causing visual pollution are
the number of UAVs and the distance between a UAV and the observer. They also show that while a
UAV used for emergency medical services is as polluting as any other UAV, it is easier to tolerate this
pollution. Based on the questionnaire results, two visual pollution functions were developed that can
be used when carrying out path planning for one or multiple UAVs. When combining this function
with other existing measures for noise pollution, and ground and air risk, it is possible to find paths
that will give as little negative impact as possible from urban air mobility.

Keywords: visual pollution; UAV; UAM; eVTOL; drones; AHP; path planning; route planning

1. Introduction

Unmanned aerial vehicles (UAVs) and electric vertical take-off and landing (eVTOL)
aircraft (both often called drones) are expected to be an integral part of the transportation
system in the future, contributing to efficient and environmentally friendly transportation
of both freight and people [1]. To achieve this, they must be automated (possible to
fly beyond visual line of sight) and there must exist an unmanned traffic management
(UTM) system that ensures safe operations [2]. While various organizations and companies
are working towards establishing this UTM system allowing large-scale operations, tests
are currently being carried out for different applications, including using UAVs as an
emergency response resource [3]. In an emergency response and disaster management
context, UAVs are already being tested or used for the delivery of automated external
defibrillators [4,5], to help find missing persons [6], find drowning victims [7], obtain aerial
images of disaster sites [8], and detect dangerous chemicals [9], etc.

Among the challenges of implementing UAVs and eVTOLs as part of Urban Air
Mobility (UAM) are the negative effects that they may be perceived to produce. Two such
effects are noise and visual pollution. It is well known that noise exposure may cause health
issues [10], and studies have shown that noise from UAVs is more annoying than from
other transportation sources [11]. This is expected to be true also when considering visual
pollution, where people would get more annoyed to see a passing UAV than a passing
car [12].

While noise pollution has been extensively studied (e.g., [13–17]), this is not the case
for visual pollution. “Visual pollutants” [18] may refer to advertisements, signage, and litter,
but also any other element—both indoor and outdoor—that an observer finds unpleasant
or offensive to look at. They also degrade the visual quality of a place [19]. Thus, visual
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pollution is the negative impact that the view of some artificial structure or object (visual
pollutant) and its movement might have on a person. UAVs and eVTOLs are examples of
possible visual pollutants.

One of the first definitions for visual pollution is “The degradation of the visual quality
of historic city centres caused by commercial signs displayed on building facades and in
public spaces” [20]. Two years later, [21] claimed that “Visual pollution is a designation
broadly employed to cover limits on the ability to view distant objects, to describe the
subjective issues produced by the introduction of structures in beautiful scenes, and as a
way to refer to all other visual defacements”. In [22], the authors stated that visual pollution
was a term to express how the introduction of negative changes might disturb people, to
which [23] added that visual pollution may increase if the pollutant is moving because it
attracts people’s attention and can reduce peacefulness.

In [24], a list of all aspects that may be considered visual pollutants is provided:
“Reckless placing of stickers, waste thrown in random places or in front of residential
houses, misplaced containers, buildings that are not in harmony with the surrounding
infrastructure, bad urban planning, streets lands that are not homogeneous, protruding
buildings, irregularity, parking spots with a clear lack of order, communication towers,
antennas, wires and advertising ( . . . )”. They highlight that visual pollution is not only
about the beauty of objects but is highly interconnected to the spatial arrangement of those
objects and whether or not they are well-organized. This interpretation is also made by [25],
who establishes that visual pollution is spatial chaos.

The interest in studying visual pollution increased with the introduction of wind
farms, which annoy parts of the population simply by their presence. Different studies
have attempted to quantify their impact [23,26,27]. The study by Ref. [24] considered
that some objects, such as wires, rubbish, or landfills, will always be regarded as visual
pollutants, and forms of classifying different types of visual pollutants are suggested
by [19,28].

Visual pollution may cause health issues, such as [24]:

• Distraction and lack of focus
• Stress and anxiety
• Difficulty in processing visual input due to the extensive amount of simultaneous data
• Dangerous distractions, especially in a driving context
• Reduced work efficiency
• A low frame of mind
• Mood disorders and aggression

From an economic perspective, visual pollution may induce indirect costs or property
value loss. In the Czech Republic, 85% of the proposed wind turbine projects have been
aborted because of this [26]. In Greece, it was found that the sales price of the per-unit
floor in the areas that were nearby a wind farm location decreased because of the visual
impact [27].

Visual pollution is not a problem that disappears with time. In [29], for example,
60 out of 72 participants (83%) answered that their city was visually polluted, even if they
were obviously used to their living environment. Furthermore, this problem also increases
the perception of other problems. For instance, noise pollution is amplified if the source
generating the sound is visible [30].

However, visual pollution does not seem to be among the top concerns when im-
plementing UAM. EASA survey results [31] show that visual pollution is the second to
last factor (out of ten) concerning citizens when considering UAV deliveries, ranking less
important than safety and noise pollution. However, the report remarks that it is not to be
considered negligible. Another survey study showed that 22% of the participants claimed
to be concerned that UAVs might make the sky less pleasant to look at [32]. However,
visual pollution was the primary concern for only around 4% of the respondents.
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Visual pollution has been previously studied using a range of different methods. The
study by [28] provides an extensive summary of techniques that have been used, including
color photographs, surveys, SWOT analysis, GIS tools, statistical analysis, etc.

Survey methods are commonly used in visual pollution studies, and numerous exam-
ples can be found [20,26,31]. Deep learning was used to classify and measure the visual
pollution in Bangladesh [19], providing information about if there was visual pollution in a
picture. Another similar approach was adopted in [18] using Google Maps tools and You
Only Look Once (YOLO) methodologies. They claim that if the location of each photograph
is captured, a map can be constructed with the type and significance of visual pollution
present in each geographical zone.

The Hedonic Pricing Model is “a statistical method to estimate monetary value on
a set of characteristics of a good, typically housing” [33]. This method has been widely
employed to estimate the impact that a certain characteristic (the study variable) can have
on the price of a house. This method was adopted in a visual pollution study [27] where
they sought to analyze the effect the view of a wind turbine might have on housing prices.
Using regression [34], they conclude that it may cause the price to drop by more than 14%.

In [34], ArcGIS was employed to generate a 2.5D model where the surface of a city in
Poland was rendered. Then, an intervisibility analysis was carried out to determine how
many outside advertising items could be seen from a set of selected observation points.
This process was followed by a questionnaire executed in the previously mentioned points,
in which respondents were asked if the visual pollution was annoying. Statistical analysis
was used to provide the maximum number of billboards that a standard citizen would
categorize as not “too annoying”.

The tangential approach estimates visual pollution during a period, in contrast to the
previously described instant measures. The study by [25] introduced a time dimension to
visual pollution studies by introducing several pictures that emulated the path a person
would follow in a city. Then the author could estimate how many views the passer-by was
missing because of the presence of outside advertising.

The study by [28] used the Analytic Hierarchy Process (AHP) methodology first to
create a list of all items that could be considered pollutants and then, with a group of
twenty experts, categorize them. Following the AHP method, a comparison and ranking of
different visual pollutants were obtained. For instance, open dumps of solid waste were
classified as the most annoying pollutant, followed by billboards, etc.

Given the abstract and subjective nature of visual pollution, it is a difficult area to
study, which may be why the previous work done on how UAVs and eVTOLs contribute to
visual pollution is scarce. In particular, there has been no previous study on how visual
pollution can be quantified, which is helpful if it is to be considered in, e.g., path planning
or infrastructure planning.

Thus, the aim of this paper is to describe how visual pollution from UAM can be
quantified, and how the resulting measure can be used. One additional focus is on the
application area of Emergency Medical Services (EMS), i.e., when the UAV is used for
transporting medical equipment, medicine, or personnel to an incident site. In the rest of
the paper, we will use the term UAV for both UAVs and eVTOLs, i.e., even if passengers
are transported, it will be referred to as a UAV.

This work is part of AiRMOUR (https://airmour.eu/, accessed on 5 June 2023), an
EU-funded project supporting sustainable air mobility via emergency medical services.

Compared to previous work, we:

• Identify and rank factors that contribute to the visual pollution produced by UAVs.
• Test the significance and establish the relationship between a selection of the

identified factors.
• Construct a numerical visual pollution model that can be used to calculate the visual

pollution produced by one or several UAVs.

https://airmour.eu/
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In the next section, we describe the methods used to collect and analyze data. This is
followed by a presentation of the results in Section 3 and the discussion in Section 4. Finally,
conclusions and future research directions are presented in Section 5.

2. Materials and Methods

The methodology used in this work was based on the previous research described in
Section 1 and is illustrated in Figure 1.
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Figure 1. Methodology for the study.

The methodology consists of four main steps, briefly outlined below, and explained in
more detail in the following subsections:

1. Identifying the main factors that may cause visual pollution. An expert workshop
was held to determine which factors to consider when analyzing visual pollution.
During the workshop, the Analytic Hierarchy Process (AHP) methodology [35] was
used to select the most important factors to include when constructing a mathematical
model for calculating visual pollution. This gave a set of factors that might contribute
to visual pollution from UAVs. A subset of these factors was then tested using an
image-based questionnaire.

2. An image-based questionnaire. A survey was crafted by adding UAVs in different
positions and configurations to two backgrounds, one city, and one rural background.
This is to see how the different identified factors would affect the perception of citizens.
Then, respondents selected mainly by snowball sampling, were asked to rank the
visual pollution in each image on a scale from zero to ten.

3. Regression analysis. Regression was used to establish a correlation between the
different factors and the grade that was obtained through the questionnaire. The
objective was to obtain a function that could calculate the visual pollution based on
different input values. Based on the results, two different functions were developed.

4. Validating the results. During the test, four images were ranked by the participants
but not considered in the regression, i.e., the images were divided into a training set
and a validation set. Using these, it was possible to confirm that the functions can also
be used for other scenarios.

2.1. Identifying the Main Factors That May Cause Visual Pollution

An expert workshop with seven participants was used for identifying and ranking
factors on 24 March 2022. Six out of seven participants were part of the AiRMOUR project,
all were very familiar with UAVs and UAM. The seventh participant had expertise in Air
Traffic Management. The meeting mainly aimed to give input into which factors to include
in the questionnaire, since including all possible factors would give too many questions.

At the start of the workshop, the participants were introduced to the topic, and a
general discussion and brainstorming session on visual pollution from UAVs was held.
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The experts were asked about the factors that, in their opinion, should be considered when
building a model that can analyze visual pollution. The factors were grouped, reducing the
number of independent parameters.

With a list of ten independent factors, the AHP began. AHP is a Multi-Criteria
Decision-Analysis (MCDA) method that can be used to analyze and evaluate complex
decisions [36]. Having a set of criteria, AHP lets decision-makers do pairwise comparisons,
often using a scale from 1 to 9 [35]. For each criterion, numerical values are calculated
based on the comparisons. AHP is only one of multiple MCDA methods (see, e.g., [37,38]).
The reason for using it here was mainly because it had been successfully used before when
studying visual pollution by [28], whose method was followed closely. Thus, the experts in
the workshop were requested to fill in a questionnaire where they had to compare all the
factors in pairs using a Saaty scale from 1 to 9.

When all participants finished their comparisons, they were requested to return the
information. To get an aggregate response, there are at least two methods [39]. The first
was to make a common matrix of preferences combining all participants’ matrices and then
obtain a single solution vector. The second method was to get the individual ranking for
every expert and then combine the results. The last option was selected as it provided more
individualized information about each expert. All the participants were assigned the same
weight (same importance), and therefore, the final result was the geometric mean of each
characteristic [35,39].

Finally, a study was made to find out if the experts had similar opinions. This was achieved
with the Shannon entropy alpha and beta approach [40], giving a consensus indicator.

2.2. An Image-Based Questionnaire

Based on [19,20,26,34] among others, the main approach selected for establishing
the relationship between the identified factors and visual pollution was an image-based
questionnaire. It contained 3 general questions and 28 images. The format of all questions
was closed [41] in favor of (1) getting numeric data, (2) reducing the time for completing
the questionnaire, and (3) conforming to a uniform set of data for the analysis.

A 0 to 10 scale was selected, from “No pollution” to “Strong pollution”. This choice of
scale implied that only negative effects were reflected, not offering the chance of selecting a
positive attitude further than “No pollution”.

On the first page, interviewees were introduced to the subject and asked general
information with three questions related to age, opinion about UAVs, and knowledge of
UAVs. On the second page, the images with questions were presented (two example images
are shown in Figures 2 and 3. The full survey is available as Supplementary File S1 in the
Supplementary Material.

Each picture was followed by two questions:

1. What is the level of visual pollution in this image?
2. Is this level of visual pollution tolerable?

The questions were asked in a specific order. The first image showed a picture of a
rural environment without any UAVs. The second image introduced one UAV in the same
environment. This was to make sure that the respondents understood the main idea of
the questionnaire. This structure was repeated in an urban setting in the third and fourth
images. Then, pictures containing different configurations of UAVs at different distances
were introduced randomly to avoid the growing effect [26]. Finally, images containing EMS
UAVs and extra information were placed at the end of the questionnaire. All images were
different, ensuring that interviewees would not feel unsure if they had already answered
them [42]. Furthermore, the respondents were allowed to go backward and modify their
ranking.

The questionnaire was designed to be as short as possible to avoid respondents quitting
before finishing. Based on recommendations in [43–45], the whole survey was designed to
take about 7 min; this resulted in 28 images.



Drones 2023, 7, 396 6 of 18
Drones 2023, 7, x FOR PEER REVIEW  6  of  19 
 

 

Figure 2. Questionnaire image with one UAV in a rural setting. (Background image from Pixabay, 

House  in  the field; uploaded by Grizzlybear-se, published 5 July 2017. Drone  image from Ehang 

Scandinavia). 

 

Figure 3. Questionnaire image with two UAVs in an urban setting. (Background image from Pixa-

bay, Gustav Adolf Torg; uploaded by hpgruesen, published 5 July 2017. Drone image from Ehang 

Scandinavia). 

Each picture was followed by two questions: 

1. What is the level of visual pollution in this image? 

2. Is this level of visual pollution tolerable? 

The questions were asked in a specific order. The first image showed a picture of a 

rural environment without any UAVs. The second image introduced one UAV in the same 

environment. This was to make sure that the respondents understood the main idea of the 

questionnaire. This structure was repeated in an urban setting in the third and fourth im-

ages. Then, pictures  containing different  configurations of UAVs at different distances 

were  introduced randomly  to avoid  the growing effect  [26]. Finally,  images containing 

EMS UAVs and extra information were placed at the end of the questionnaire. All images 

were different, ensuring that interviewees would not feel unsure if they had already an-

swered them [42]. Furthermore, the respondents were allowed to go backward and mod-

ify their ranking. 

Figure 2. Questionnaire image with one UAV in a rural setting. (Background image from Pix-
abay, House in the field; uploaded by Grizzlybear-se, published 5 July 2017. Drone image from
Ehang Scandinavia).

Drones 2023, 7, x FOR PEER REVIEW  6  of  19 
 

 

Figure 2. Questionnaire image with one UAV in a rural setting. (Background image from Pixabay, 

House  in  the field; uploaded by Grizzlybear-se, published 5 July 2017. Drone  image from Ehang 

Scandinavia). 

 

Figure 3. Questionnaire image with two UAVs in an urban setting. (Background image from Pixa-

bay, Gustav Adolf Torg; uploaded by hpgruesen, published 5 July 2017. Drone image from Ehang 

Scandinavia). 

Each picture was followed by two questions: 

1. What is the level of visual pollution in this image? 

2. Is this level of visual pollution tolerable? 

The questions were asked in a specific order. The first image showed a picture of a 

rural environment without any UAVs. The second image introduced one UAV in the same 

environment. This was to make sure that the respondents understood the main idea of the 

questionnaire. This structure was repeated in an urban setting in the third and fourth im-

ages. Then, pictures  containing different  configurations of UAVs at different distances 

were  introduced randomly  to avoid  the growing effect  [26]. Finally,  images containing 

EMS UAVs and extra information were placed at the end of the questionnaire. All images 

were different, ensuring that interviewees would not feel unsure if they had already an-

swered them [42]. Furthermore, the respondents were allowed to go backward and mod-

ify their ranking. 

Figure 3. Questionnaire image with two UAVs in an urban setting. (Background image from
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The questionnaire was constructed with the Survey & Report platform from Artologik
(https://www.artologik.com/en/survey-report, accessed on 5 June 2023). No specific
selection of the respondents was made. We wanted general citizen participation, so the
foremost approach for distributing the survey was snowball sampling. Colleagues, friends,
and relatives were asked to fill out and spread the survey. This was complemented by
website postings (e.g., on http://airmour.eu), email lists, and social media postings on, e.g.,
LinkedIn, Instagram, Reddit, and Facebook. The survey was available in English, Spanish,
French, Swedish, German, Dutch, Norwegian, and Finnish and was open for 20 days.

2.3. Regression Analysis

In the data analysis, Excel was used to group and organize the information and carry
out non-linear regression. Statgraphics was used for ANOVA tests and linear regression.
Initial validation of the data was carried out with Excel. Histograms, maximum and
minimum values, and general checks were performed, which indicated that some results
were not logical and that some respondents may not have filled in the survey seriously. To
identify these, several red flags (RF) were identified:

https://www.artologik.com/en/survey-report
http://airmour.eu
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• RF1: The respondent ranked pictures without UAVs with a mark greater than or equal
to 8.

• RF2: The respondent stated that images without UAVs were not tolerable.
• RF3: The respondent had 3 or more clear inconsistencies, e.g., that an image with a

rank greater or equal to 8 was tolerable.
• RF4: The participant did not correctly identify the less polluted images. A number of

pictures were, on average, low-ranked, and if a participant gave those a higher level
than their own average, it was considered an inconsistency. If four or more images
were inconsistently ranked, RF4 became active.

• RF5: The participant did not correctly identify the more polluted images. Same as RF4,
but for the more polluted images.

• RF6, RF7, RF8, and RF9: The respondent provided responses not in line with the
majority, e.g., the level of visual pollution increases when the UAV is further away.

• RF10: The respondent gave the same rank to all the images.
• RF11: The respondent gave more than six “10” ranks.

The responses of respondents that had four or more RFs were investigated further.
This corresponded to 24 surveys. After a closer look, 3 of them turned out to be acceptable,
and as a consequence, only 21 responses had to be dismissed. A total of 227 questionnaire
responses from 248 remained for the analysis. The full set of responses to the questionnaire
can be found in Supplementary File S2 in the Supplementary Material.

Once the survey data was cleaned, ANOVA tests were performed to check if there
were significant differences among groups based on the participants’ age, opinion about
UAVs, and level of knowledge.

For the regression analysis, the variables included were classified according to:

• Picture: Number from 1 to 28 that represents the order in which the picture was shown
in the test.

• Environment: 0—Rural, 1—Urban.
• Distance to the closest UAV.
• The number of UAVs.
• Purpose: 0—No EMS, 1—EMS (if it is an EMS UAV or not)
• Awareness: 0—There is no extra information in the picture. 1—There is extra informa-

tion provided in the picture.
• ID: Respondent number from 1 to 248.
• Age: 1—Less than 18, 2—From 18 to 30, 3—From 30 to 50, 4—From 50 to 65, 5—More

than 65.
• Opinion: 0—No opinion about UAVs, 1—Positive opinion, 2—Negative opinion.
• Knowledge: 1—None, 2—Basic (The participant stated that (s)he could write a para-

graph about UAVs), 3—Medium (The participant could write a page about UAVs),
4—Expert (The participant could write five pages about UAVs).

• Rank: Number from 0 to 10, where zero is no pollution, and ten represents strong
pollution.

• Tolerable: 0—Not tolerable, 1—Tolerable.

The data was first validated using histograms, qq graphics, Kolmogorov-Smirnov test,
asymmetry and kurtosis tests, Levene’s test, and the Durbin Watson test [46]. Then, several
different types of regression models were tested in Statgraphics and in Excel, to provide a
function that would fit the data as good as possible.

3. Results
3.1. Expert Workshop and Image-Based Questionnaire

As a result of the AHP-supported workshop, the list of factors in Table 1 was estab-
lished as important when determining the visual pollution from UAVs.
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Table 1. Factors selected during the expert workshop.

Factor Criteria Description

Appearance
Dimensions

Observable characteristics of the UAVLights (static or flashing)
Color or icons

Awareness
Knowledge about the UAV’s route Information (e.g., through an app) about the

UAV, such as where it is going, where it
comes from, its speed, etc.

Familiarity with UAVs
Trust in the application

Distance
Distance Distance to the observant and altitude of the

UAVAltitude

Environment
Environment In which environment the UAV is seen: in the

city center, in a rural area, at the beach, etc.What is it compared with?

Formation Formation If the UAVs are flying in a line formation, in
groups, completely scattered, etc.

Movement Movement If the movement of the UAV or its speed has
an influence on how it is perceived

Noise Noise If the noise generated by the UAV increases
the visual pollution that it generates

Number of
UAVs Number of UAVs How many UAVs are visible at the same time

Purpose Purpose If the UAV is carrying cargo, passengers, or is
on an EMS mission

Temporal
component

Pattern
Factors related to the time of exposure or the
number of times that a person would see
the UAV

Time of exposure
Frequency
Trajectory

After establishing the list, the participants ranked the most important factors. Their results
are summarized in Figure 4. The consensus range was 68%, and the inconsistencies were fairly
high (up to 40% in one case), which means that the results have to be interpreted carefully.
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3.1.1. Factors Included in the Questionnaire

The questionnaire was designed to capture the following factors:

• Purpose: Purpose was considered as a main factor affecting visual pollution and was
thus included in the questionnaire, using two categories: EMS purpose, or not. To
introduce the variable, EMS UAVs were colored green and shown in the introduction
to make sure that every participant understood the meaning of this color code.

• Environment: It is reasonable to assume that the area in which a UAV is seen might
have an influence on the visual pollution score. Thus, two different backgrounds were
used, one urban and one rural.

• Distance: To study the effect of the distance between the observer and the UAV, the
same UAV was placed at different distances: 80 m, 160 m, 320 m, and 640 m, following
a similar approach as [26,34].

• Awareness: This factor tried to capture the possibility that a UAV might be less of a
pollutant if the viewer knows where it is going, its speed, where it comes from, etc. To
examine this, four existing images were complemented with information about the
UAV’s route, track, weight, speed, flight level, and a hypothetical owner company.

• Number of UAVs: Images with one, two, five, and ten UAVs were added to the
questionnaire to investigate how the number of UAVs seen at the same time affects
visual pollution.

3.1.2. Factors Not Included in the Questionnaire

The following factors were not added to the questionnaire:

• Movement: Although how the UAVs move might have a major influence on visual
pollution, due to the static image-based questionnaire methodology, it could not
be studied.

• Noise: Some studies (e.g., [30]) already concluded that viewing a noise’s source might
increase the noise annoyance. Nevertheless, and for the same reason as for movement,
noise was not considered.

• Temporal factors: Visual pollution is not just an instant measure. It is probably more
annoying to see a UAV for one minute than one hour. However, this factor was also
deemed too difficult to capture using the selected methodology.

• Formation and appearance: According to the results from the AHP rankings, these
two factors were perceived as minor when measuring visual pollution. Consequently,
only one kind of UAV was used (an EHang 216), and when there were multiple UAVs,
they had no specific formation.

The characteristics of each image can be seen in Table 2. The full survey can be seen in
Supplementary File S1 in the Supplementary Material.

Table 2. Factors examined in each image in the questionnaire.

Question Environment
Distance to
the Closest
UAV

Number of
UAVs Purpose Awareness

1 Rural 0

2 Rural 80 1 No EMS No

3 Urban 0

4 Urban 80 1 No EMS No

5 Urban 160 1 No EMS No

6 Urban 160 10 No EMS No

7 Rural 80 2 No EMS No
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Table 2. Cont.

Question Environment
Distance to
the Closest
UAV

Number of
UAVs Purpose Awareness

8 Rural 640 1 No EMS No

9 Urban 320 1 No EMS No

10 Rural 160 1 No EMS No

11 Urban 80 2 No EMS No

12 Rural 160 5 No EMS No

13 Urban 320 2 No EMS No

14 Rural 80 3 No EMS No

15 Rural 320 1 No EMS No

16 Rural 160 10 No EMS No

17 Urban 640 1 No EMS No

18 Urban 160 5 No EMS No

19 Rural 160 2 No EMS No

20 Urban 160 2 No EMS No

21 Rural 80 1 EMS No

22 Rural 160 1 EMS No

23 Urban 80 1 EMS No

24 Urban 160 1 EMS No

25 Urban 80 1 No EMS Yes

26 Urban 160 1 No EMS Yes

27 Rural 80 1 No EMS Yes

28 Rural 160 1 No EMS Yes

3.2. Results from the Questionnaire
3.2.1. General Analysis of Respondents

From the 227 responses, only 3 belonged to participants who were less than 18 years
old or older than 65. This meant that it was not possible to provide significant information
about those age groups. A total of 53% of the respondents were between 18 and 30 years
old, 25% were between 30 and 50 years old, and 18% were between 50 and 65 years
old. Regarding opinion, almost 80% of the surveyed population had a positive opinion
about UAVs, and only 14% had a negative opinion. The opinions were evenly distributed,
meaning there was no specific group that tended to have better or worse opinions about
UAVs. Concerning knowledge, most of the participants (also 80%) claimed to have a basic
or medium knowledge of UAVs; however, 11% of the respondents classified themselves as
experts and 9% claimed to have no knowledge at all about UAVs.

3.2.2. Comparisons among Different Groups of Respondents

Age did not appear to be a significant factor when analyzing visual pollution. After
removing the answers of the youngest and the oldest groups due to the lack of participants,
it was established that the means between all the other groups were almost identical and
that there was not enough evidence to state that the groups were not homogeneous. This is
in line with [47], where it was found that age is not an important factor when analyzing
public opinion on UAVs.
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The opinion, however, had an impact on the results, as the respondents with a neg-
ative opinion about UAVs gave higher visual pollution scores to the images than the
other respondents.

Regarding the respondents’ knowledge of UAVs, no clear differences between groups
could be seen.

3.2.3. Visual Pollution Function

An ANOVA analysis was carried out to understand which factors had the most
influence on the results:

• Environment: Surprisingly, this factor—considered the second most important during
the expert workshop—had almost no influence on the results. There was a difference
in the acceptance ratio, showing that, in general, UAVs would be more tolerable in an
urban environment. However, this difference was very small (four percentage units)
and therefore, the environment variable was not included in the model.

• Distance: Distance was a factor that clearly influenced the level of visual pollution. In
Figure 5, the scores (rank) given for one UAV flying at different distances are shown.

• Number of UAVs: The number of UAVs significantly increases visual pollution ac-
cording to the results, see Figure 6.

• Purpose: There were no significant differences in the results regarding the purpose of
the UAVs. However, the images with EMS UAVs received slightly lower scores than
those without EMS UAVs.

• Awareness: In four images, there was extra information about the UAV, which was
supposed to decrease visual pollution, familiarizing people with the UAV. However,
the result was the opposite. The mean score for the images that had no information
was 3.02, and the mean for those with additional information was 4.01. One possible
explanation is that the questionnaire design was not optimal, and the respondents did
not correctly understand the meaning of the information squares.
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After the ANOVA analysis of each factor, several tests were run to decide which
variables to include in the model, establishing that all factors should be included except
for the environment. This selection was confirmed by the forward stepwise selection and
the backward stepwise selection options provided by the Statgraphics software. Thus,
the factors accounted for in the model in order of importance are the Number of UAVs,
Distance from the closest UAV, Awareness, and Purpose.

The first approach was to carry out a linear regression. The first important output from
this regression was to verify that the four parameters included were significant. This was
the case, as they all presented p-values lower than 0.05. Then, the R2 factor was calculated
and resulted in R2

adjusted = 35.51%, which is quite low. This is because the responses are
scattered, and participants might not score in the same way, even if the overall trends
were similar. However, the tests proved a clear relationship between the scores and the
parameters, and therefore it provided relevant information.

Nevertheless, the linear approach did not appear to be the best fit for the data. There-
fore, the two main factors (Distance and Number of UAVs) were analyzed separately, and
it was found that both had a similar shape to squared-root or logarithm functions. Hence,
a non-linear regression was carried out using Excel. Twenty-one different models were
run, and the best model was selected based on characteristics such as the complexity of
the model, the number of variables, and the interpretability of the function. Finally, the
function selected to calculate visual pollution is:

VP =
3.83√
Dist

+ 0.97
√

Num + 20.12

√
Num
Dist

− 0.19Purp + 0.89In f o (1)

where Num is the number of UAVs that can be seen in the image, Dist is the distance from
the observant to the closest UAV in the image, Purp is the purpose of the UAV (1 if it is an
EMS UAV, 0 if it is not) and Info reflects if there is extra information regarding the UAV
(equal to 1 if there is extra information, else 0).
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A simplified function is also proposed. As the EMS factor proved not to have much
significance, and the impact that the additional information may have been uncertain, the
simplified function only accounts for the distance and the number of UAVs:

VP = 47.76
Num0.65

Dist0.67 + 1.37 (2)

During the rest of the paper, Function (2) will be referred to as the simplified model,
and Function (1) as the full model.

The characteristics of the full model are visualized in Figures 7 and 8. When a UAV is
further away, the visual pollution decreases, and more UAVs induce more visual pollution.
However, the decrease in pollution flattens out when the distance increases, so it does not
matter much if the distance increases from 1000 m to 1400 m, while it makes a big difference
if it increases from 50 m to 450 m. The same applies to the number of UAVs where the
difference between 1 and 2 UAVs is greater than between 8 and 9.
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The equivalent of Figure 8, but for the simplified model, is shown in Figure 9. The
results are very similar, and the simplified model also gives a more logical output when the
UAVs are far away, as the visual impact then goes toward the minimum level.



Drones 2023, 7, 396 14 of 18

Drones 2023, 7, x FOR PEER REVIEW  14  of  19 
 

 

Figure 7. Plot of the full visual pollution model depending on the distance. 

 

Figure 8. Plot of the full visual pollution model depending on the number of UAVs. 

The equivalent of Figure 8, but for the simplified model, is shown in Figure 9. The 

results are very similar, and the simplified model also gives a more logical output when 

the UAVs are far away, as the visual impact then goes toward the minimum level. 

 

Figure 9. Plot of the simplified visual pollution model depending on the distance. Figure 9. Plot of the simplified visual pollution model depending on the distance.

3.2.4. Validation of the Results

Images 7, 11, 13, and 14 in the questionnaire (Supplementary File S1 in the Supplemen-
tary Material) were not considered when training the model but were meant to be used as
validator items. However, 7 and 11 are identical, except for the environment (which is not
included in any of the models), and therefore, the models output the same rank for both.

The validation results are shown in Table 3, indicating that the models manage fairly
well to predict visual pollution as well as for images not used to train them. The errors
for the full model are naturally smaller than for the simplified model. However, since
the number of UAVs and the distance to the UAVs are the two dominating factors, the
differences are not great. Further analyses were made to understand the accuracy of the
models by representing all the values predicted with the models against the average rank
of all questions. When calculating the R2 value for the average of all the questions, the
result was 96.1% for the complete model and 91.1% for the simplified model. To get a better
understanding of this estimation, the images were sorted from the ones that had a lower
score (rank) to those that had a higher score, and the result can be seen in Figure 10. It is
clear that the full model offers a better fit, but the simplified model is almost as good and
has fewer variables, which makes it easier to use.
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Table 3. Comparative between the real average score provided by the respondents and the score
output from both models.

Image Distance
[m]

Number
of UAVs

True
Average

Predicted
Complete

Model

Error
[%]

Predicted
Simplified

Model

Error
[%]

7 80 2 4.8 5.0 3.9 5.2 8.8

11 80 2 5.0 5.0 0.1 5.2 4.6

13 320 2 3.7 3.2 15.0 2.9 23.1

14 80 3 6.4 6.0 6.1 6.4 0.2

4. Discussion

In this paper, we present a first attempt to calculate visual pollution from UAVs using
mathematical modeling. The functions produced, (1) or (2), can primarily be used to
compare different scenarios with each other. For instance, it is possible to calculate the
visual pollution induced by a set of UAVs flying specific paths over an area. This can be
compared to a scenario when the same UAVs fly different paths, giving less or more visual
pollution. To make these calculations possible, some assumptions must be made regarding
how to do spatial and temporal discretization and how to summarize the pollution values
over the routes considering the estimated affected population. These are aspects that were
identified in the expert workshop as important for visual pollution, but they could not be
included in the image-based questionnaire. Thus, it would be valuable to complement this
work with additional studies focusing on the missing aspects such as movement, noise,
and temporal factors.

Furthermore, path planning just taking into account visual pollution would not be
efficient. There are other aspects that should be considered; for instance noise pollution,
ground and air risk, travel time, and range limitations (see e.g., [48–50]. However, while
these other aspects have been studied previously, and models for calculating them exist,
this has not been the case for visual pollution. However, it is still an open question on how
to include all aspects in a multi-objective path planning model.

The results from the questionnaire were mixed between expected and unexpected.
That visual pollution increases with the number of UAVs and when the distance to the UAV
decreases can be regarded as trivial. However, the questionnaire data gave the possibility to
fit a mathematical function to these factors, making it possible to put a number on the visual
pollution. Also, the non-linear relationship between these factors and visual pollution is
useful from a planning perspective. For instance, it implies that flight corridors for UAVs
would be less visually polluting as this would cluster the UAVs closer together, compared
to allowing free path planning.

While knowing that it is an EMS UAV does not seem to lessen the perceived visual
pollution, the results indicate that the respondents are more likely to accept a higher level
of visual pollution from UAVs used in emergency situations. This result is in line with
previous research, e.g., [51], which shows that people have a higher level of acceptability
towards medical use cases for UAVs than for other purposes.

The results concerning the environment were surprising, as we expected the respon-
dents to find UAVs in a rural setting more polluting than UAVs in an urban setting.
However, similar to the results for EMS UAVs, people seem more accepting of visual
pollution in an urban environment. If using the developed visual pollution functions in
multi-objective path planning, it may thus be necessary to include some components for
the environment. Otherwise, an algorithm would always strive to route a UAV away from
highly populated, urban areas, as both visual and noise pollution as well as ground risk
increase with the number of affected people on the ground.

An expected result was that respondents with a negative opinion about UAVs gave
higher visual pollution scores. This indicates that when working toward a future large-scale
implementation of urban air mobility, it is important to take public opinion into account.
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While visual pollution is not one of the top concerns for the general public, it is likely that
all negative aspects that arise from an increased UAV presence are correlated. Thus, anyone
worried about integrity will also perceive UAVs as visually polluting. Therefore, it may be
important to improve the general opinion about UAVs, e.g., by early implementation of
use cases with high public acceptance, such as emergency medical services.

5. Conclusions

In this work, we identified and ranked factors that contribute to the visual pollution
produced by UAVs. Using an image-based questionnaire, we also tested the significance
and established the relationship between a selection of these factors. While some results
were intuitive, e.g., that visual pollution increases with the number of UAVs, other results
were not. For instance, we could not see that the environment matters much, indicating
that a UAV is equally visually polluting in the city center as in a rural area.

Using the visual pollution scores obtained from the questionnaire, we developed
visual pollution functions that can be used to calculate the visual pollution produced by
one or several UAVs. These can be used as input in strategic infrastructure planning, design
of U-space services, or when doing tactical or operational path planning for UAVs.

Possible future research directions include studying how temporal and dynamic
components (e.g., how the UAV moves through the air) affect visual pollution, or how noise
and visual pollution interact; something that could not be achieved using an image-based
questionnaire. Another interesting area is developing path planning algorithms capable
of doing trade-offs between visual pollution, noise pollution, risk, efficiency, and other
relevant factors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/drones7060396/s1, File S1: Questionnaire. File S2: Questionnaire
responses.
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