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Abstract: With the rapid growth of the global drone market, a variety of small drones have posed
a certain threat to public safety. Therefore, we need to detect small drones in a timely manner so
as to take effective countermeasures. At present, the method based on deep learning has made a
great breakthrough in the field of target detection, but it is not good at detecting small drones. In
order to solve the above problems, we proposed the IRSDD-YOLOv5 model, which is based on the
current advanced detector YOLOVS. Firstly, in the feature extraction stage, we designed an infrared
small target detection module (IRSTDM) suitable for the infrared recognition of small drones, which
extracted and retained the target details to allow IRSDD-YOLOV5 to effectively detect small targets.
Secondly, in the target prediction stage, we used the small target prediction head (PH) to complete the
prediction of the prior information output via the infrared small target detection module (IRSTDM).
We optimized the loss function by calculating the distance between the true box and the predicted box
to improve the detection performance of the algorithm. In addition, we constructed a single-frame
infrared drone detection dataset (SIDD), annotated at pixel level, and published an SIDD dataset
publicly. According to some real scenes of drone invasion, we divided four scenes in the dataset: the
city, sky, mountain and sea. We used mainstream instance segmentation algorithms (Blendmask,
BoxInst, etc.) to train and evaluate the performances of the four parts of the dataset, respectively. The
experimental results show that the proposed algorithm demonstrates good performance. The APsq
measurements of IRSDD-YOLOVS5 in the mountain scene and ocean scene reached peak values of
79.8% and 93.4%, respectively, which are increases of 3.8% and 4% compared with YOLOv5. We also
made a theoretical analysis of the detection accuracy of different scenarios in the dataset.

Keywords: drone defense; small target detection layer; instance segmentation; dataset

1. Introduction

Drone detection in complex, low-altitude environments is an important research area.
Visible light images have high resolutions and can capture drone target detail information
better, but visible-light-based drone detection systems cannot work in night scenes and
low-light conditions. Millimeter-wave radar has a long detection range and wide coverage,
but small quadrotor drones have a small reflection cross-section for millimeter-wave radar,
making millimeter-wave-radar-based drone detection systems unable to detect drones
better. Additionally, millimeter-wave radar is expensive. Infrared sensors are very sensitive
to the detection of heat sources and can measure the temperatures of objects at a certain
distance without making contact with the target. A working drone acts as a source of heat
radiation and will continuously radiate heat outward in flight, so infrared-thermography-
based detection is an important sensing method for defense against low-altitude drones,
especially in dark environments.

The accurate detection and identification of drones is extremely challenging due to
three main factors. The first factor is that the air contains infrared interference sources
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such as high, bright backgrounds with radiation sources, the background edges of complex
clouds and blind flash sourcein the system. The second factor is the small size of the drone
target and the fact that one always wants to find the target at a longer distance in order
to confirm the intrusion of the target as early as possible; such targets are imaged in the
image with a smaller area after being imaged by the infrared system. The third factor is the
poor quality of the resulting infrared image due to the sensitivity of the detection device,
atmospheric scattering, background temperature noise and other factors. We show four
infrared small drone targets in a complex scene at a low altitude in Figure 1. The first image
contains a ship in a complex urban scene with buildings in the background; the second
image presents a mountainous scene with numerous miscellaneous sources of radiation
similar in shape to the drone; the third image contains a faint, five-pixel-sized target in a
sea scene; the fourth image contains a highlighted target against a cloudy background. The
infrared images of the targets to be detected contain weak signals and lack contour and
texture information.
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Figure 1. Example image of the infrared small drone. The drone is represented by a red border and
enlarged in the lower right corner.

There are a number of traditional infrared target detection methods that can be used to
detect drones, including filter-based [1], patch-image [2], and rank-based [3] methods. The
detection performances of traditional detection methods rely heavily on the effectiveness
of manually extracting target features, which is insufficient for use in complex scenarios. In
particular, for drones flying at low altitudes with large target background differences and
unpredictable scene information, traditional detection methods cannot guarantee that they
will maintain their robustness in extreme environments. Therefore, the traditional methods
based on the manual extraction of target features are not suitable for practical applications.

The current target detection methods based on convolutional neural networks (CNNs)
have great potential because convolutional neural networks demonstrate strong repre-
sentability and can effectively extract target features for learning and training detection
algorithms [4-7]. The convolutional neural network algorithm effectively combines the
candidate box and a convolutional neural network, making a significant breakthrough
in the field of target detection. In the task of drone defense and identification based on
infrared images, due to the existence of multiple scenes and multiple drone spans, which
cause the target to present in a weak and small state in the IR image, the pixel resolution
accounts for a small percentage. According to the definition of small targets by international
standards, a target with fewer than 32 x 32 pixel values can be recognized as a small target,
and most of the pixel values of drones in images are less than 32 x 32, which are typical of
small infrared targets. Therefore, infrared small target detection based on a convolutional
neural network (CNN) is a challenging problem.

Recently, strategies based on segmentation methods are attracting an increasing
amount attention because of their ability to classify and locate objects at the pixel level [8].
Hao et al. proposed the use of BlendMask to extract more accurate instance segmentation
features by fusing top-level and low-level semantic information with a more reasonable
blender module [9]. Dai et al. proposed BoxInst, which only requires the box informa-
tion of a target to predict the mask of a target [10]. Zhi et al. was proposed CondInst
to ensure high accuracy without the assistance of a detector [11]. Daniel et al. proposed
YOLACT++, which demonstrates detection speeds up to 33.5 fps [12]. Wang et al. also
proposed SOLOV2, which was based on SOLO, and then proposed the idea of using dy-
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namic learning to segment the target mask, decomposing it into two branches: the learning
mask kernel and the generation mask [13]. He Keming et al. proposed Mask R-CNN, Mask
R-CNN can effectively detect the target and output high quality instance segmentation
mask [14]. YOLOv5 and YOLOv7 implemented instance segmentation by adding mask
branches [15]. Pixel-level target detection based on instance segmentation is expected
to suppress the influence of complex backgrounds and retain more infrared small target
information [16,17]. However, in the process of feature extraction, approaches based on
segmentation methods may still have the problem of target feature loss in the deep network,
which can be attributed to the four factors described below.

The first factor is the large size of the convolutional step in the convolutional neural
network. Target detection algorithms use convolutional neural networks as feature extrac-
tion tools; the feature map of the target continues to shrink during the convolution of the
network [18,19], and the convolution step length is likely to be larger than the infrared
small target size, which makes it difficult to transfer infrared small target features to the
deep network [20-22]. The second factor is that the distribution of the dataset is not ideal.
In the target detection datasets that are currently commonly used, such as MSCOCO [23],
the number of samples of small targets accounts for a relatively small number, and the size
difference between large and small targets is relatively large; thus, the detection algorithm
has difficulty in adapting to changes in the scale of the target.

The third factor is the suboptimal hyperparameter setting of the a priori anchor. The
sizes of infrared small targets often differ greatly from the set anchor box sizes, resulting
in only a small portion of priori boxes overlapping with the true boxes, thus affecting
detection performance. The fourth factor is the suboptimal setting of the intersection of
union (IoU) threshold. The IoU between the candidate bounding box and ground truth
box is small, the size of the IoU threshold directly affects the selection of positive and
negative samples.

Currently, the means of improving the performance of infrared small target detection
are mainly divided into four development directions.

(1) Generative Adversarial Networks

A generative adversarial network is a deep generative model that learns to generate
new data via adversarial training. A generator is used to generate an image after receiving
random noise. A discriminator is used to discriminate whether an image is a real image in
the dataset or a generator-generated image [24]. Li et al. proposed Perceptual to divide the
images into those containing small and large targets, providing the first work to improve a
small target detection algorithm based on GAN [25]. Kim et al. proposed a method that can
generate synthetic training data for infrared small target detection [26]. Noh et al. modeled
the target details by constantly adding new layers at the beginning of the training process
when the output resolution of the Generator and Discriminator was low [27]. A method
based on adversarial generative learning can effectively enhance the detail information of
images, but there are two difficulties. Firstly, the loss function of a GAN in the training
process is difficult to converge, leading to unstable experimental results. Secondly, during
the training process, the generator generates limited samples, and the model is prone to
collapse when the learning process stops, leading to errors in the final detection.

(2) Multi-Scale Learning

The working theory of multi-scale learning is to use the details in the shallow con-
volution layer to help provide the location information of an infrared small target and to
use the semantic information in the deep network to realize the classification of the target.
However, the training of CNN models based on feature pyramids has very high computing
power and memory requirements. In order to reduce computational resources and obtain
better feature fusion, Lin et al. created a feature pyramid with strong semantic features
at all levels using only one scale of input [28]. Cui et al. proposed a jump connection to
fuse more scale features for the problem that the feature information of small targets is still
incomplete after multiple samplings [29].
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(3) Use of Feature Context Information

Infrared small targets account for a very small proportion of an image, and the informa-
tion obtained from the local area of the image is very limited. In addition, infrared small target
detectors usually ignore the contextual features outside the local area. Therefore, researchers
have proposed a detection method based on contextual information by using the relationships
between small targets and other targets or the background. Zagoruyko et al. used the region
cropping method to crop four different multiples of regions at the center of the original region
proposal and then performed region of interest pooling to cascade the pooled information
together to achieve the effect of fusing contextual information [30]. Guan et al. constructed
context-aware features using the pyramidal pooling of multilayer context information [31].
Hu et al. designed context-aware target region pooling by adding the proportion of context
information to the feature map to avoid losing small target information [32].

(4) Improvement of Loss Function

The loss function is a means of measuring the gap between the predicted and actual
values of the output of a neural network. In a neural-network-based target detection task, a
metric called the intersection of union (IoU) is commonly used. The IoU can describe the
relationship between the prediction frame and the real frame well, but the value of the IoU
will be zero if the two target frames do not overlap [33]. Hamid et al. proposed the GloU,
which solves the problem that when the two target boxes do not intersect, the gradient is
zero and cannot train the network [34]. Zheng et al. proposed the DIoU, which considers
the distance between the target and the prediction, overlap rate and scale to make the target
box regression more stable [35]. The authors of the DIOU also proposed the CIOU, which
takes into account the aspect ratios of the boxes [35]. Zhang et al. proposed EIOU loss and
added focal to focus on high-quality predictor boxes, introducing focal loss to optimize
the sample imbalance in the bounding box regression task so that the regression process
focuses on high-quality anchor boxes [36].

In short, detecting small drones in infrared images is challenging. The traditional target
detection algorithm cannot adapt to the complex scene, especially when the drone target
scale is small and the background noise is complex. The target detection method based on
CNN cannot accurately detect the infrared small target. Pixel-level target detection based
on instance segmentation is expected to suppress the influence of a complex background
and retain more infrared small target information [16,17]. However, in the process of feature
extraction, there may still be the problem of target feature loss. To solve this problem, we
investigated the causes of infrared small target feature loss in the deep network and the
corresponding solutions.

Our research contributions will be detailed later and can be summarized as follows:

(1) We added an infrared small target detection module (IRSTDM) to effectively realize
the extraction and retention of infrared small target information based on the current
advanced segmentation detector YOLOVS.

(2) We introduced normalized Wasserstein distance (NWD) to optimize the boundary
frame loss function, aiming to solve the problem that the calculated loss function
based on the IOU is sensitive to the position of small targets.

(3) We built and published a new SIDD dataset, carried out pixel-level annotation on
infrared drone images in the dataset and published all masks used for segmentation.

(4) We conducted a large number of experiments between the proposed IRSDD-YOLOv5
and eight mainstream segmentation detection methods in the SIDD dataset and
verified that the proposed method is superior to the most advanced method.

The rest of this article is as follows. In Section 2, we introduce the construction of
the data set and describe in detail the IRSDD-YOLOVS5 structure and improved methods.
In Section 3, we introduce the details of the experiment and analyze the obtained results,
describing prospective work for future research. We summarize the entire research work in
Section 4.
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2. Materials and Methods
2.1. Dataset

Currently, in commonly used target detection datasets in which the sample number
of small targets is relatively small, such as MSCOCO, the size differences between large
targets and small targets are relatively large, and the lack of drone targets brings certain
difficulties for the network in adapting to the target [23]. In addition, the number of small
targets, such as a tiny person, in a specific small target dataset may be small in one image.
If the number of small targets is less than 20, it may be greater, such as more than 100 [37].
The different densities of small targets makes it difficult to use a unified method to improve
the effect of detecting of small targets.

Current datasets dedicated to detecting small drone targets based on IR images are
mainly the ground/air background infrared image weak aircraft target detection and
tracking dataset and the first CVPR anti-drone dataset. The ground/air context infrared
image weak aircraft target detection and tracking dataset is oriented to low-flying weak
aircraft target detection and tracking applications, and it provides a set of algorithm test
dataset with one or more fixed-wing drone targets as detection objects by field photography
and data preparation processing. The scenes in the datasetcover the sky, the ground and a
variety of backgrounds, with a total of 22 data segments, 30 traces, 16,177 frames of images,
and 16,944 targets; however, the targets in these dataset scenes are fixed-wing drones, while
in civilian black flights, most drones are quadrotor drones [38]. CVPR'’s first anti-drone
dataset provides a large amount of drone flight footage, but the data are based on videos of
drones with location information, without pixel-level annotation and without subdividing
the flight scenes of the drones. We proposed the SIDD dataset, which distinguishes four
scenarios in which drones may invade, provides pixel-level annotation of the targets and is
published at https://github.com/Dang-zy/SIDD.git (accessed on 27 April 2023).

The infrared drone target in the dataset image is a quadrotor drone, which is a typical
low and slow small target. In infrared images with complex backgrounds, the edge
information of the target is also difficult to describe clearly, and the interference sources
are different for different scenes. In order to restore the real intrusion scene of the drone
as much as possible, we distinguished between four scenes to explore the impacts of
different backgrounds on drone detection. The SIDD dataset contains 4737 images of
640 x 512 pixels, including 2151 images of mountain scenes, 1093 images of city scenes,
780 images of sky scenes, and 713 images of sea scenes, Figure 2 shows an example of
the SIDD dataset. We divided 80% of the dataset for training and 20% for testing. In
this study, we conducted extensive experiments on the SIDD dataset using mainstream
segmentation algorithms.

2.2. Proposed Method

In this section, we provide a general introduction to the proposed IRSDD-YOLOVS5,
and the following subsections describe the overall structure and main innovations of the
proposed network model.

According to the width and depth of the network, YOLOVS5 is divided into four
different hierarchical models, which are model s, model m, model I and model x. YOLOv5
is the network with the smallest depth and the smallest width of the feature graph in the
series. According to the target characteristics and practical application requirements of the
detection of infrared small drones, our segmentation network is model s. IRSDD-YOLOvV5’s
instance segmentation process is to create weighted summations between the prototype
mask outputted at the tail of the neck network and the mask coefficient outputted by the
prediction head so as to obtain the instance segmentation result. As shown in Figure 3, the
backbone network and neck network extract the feature information of the input image and
send it into the prediction head to output the mask coefficient. After NMS suppression, the
unnecessary coefficient can be removed. At the tail of the neck network, the prototype of
the target mask can be outputted, and it is weighted and summed with the mask coefficient


https://github.com/Dang-zy/SIDD.git

Drones 2023, 7, 393

6 of 22

after NMS suppression to obtain the target mask. After the threshold suppression, the mask
whose confidence is greater than the threshold value is finally displayed on the image.

ati MM kiR BES a0
FENETT WELL AW

Figure 2. Examples of SIDD dataset, from top to bottom: city scene, mountain scene, sponge scene
and sky background. The drone targets in the images are marked with red circles.

Mask
Coefficients
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Figure 3. Segmentation process of IRSDD-YOLOV5 network.

2.2.1. Overall Architecture

The network structure of IRSDD-YOLOVS5 is shown in Figure 4. It consists of two
parts: feature extraction and feature fusion prediction.

In order to provide a solution for the difficulty of detecting infrared small drones, we
added an infrared small target detection module (IRSTDM) to the neck network in the
original YOLOvV5 model so as to make full use of the global contextual information. A
prediction head for small target detection (the first prediction head) was also added to
constitute a new infrared small target detection layer. The new prediction head and the
other three prediction heads form a four-prediction-head structure that can mitigate the
negative impact of detecting changes on the scale of infrared small targets.

IRSDD-YOLOVS5 contains a total of four detection heads for detecting tiny, small,
medium and large objects. The C3 module and the Space Pyramid Pool Network (SPPF)
module are used as the backbone network of IRSDD-YOLOVS. The specific structures of the
C3 and SPPF modules are shown in Figure 5. At the same time, we also introduce ANWD to
optimize the positioning loss function twice, appropriately reduce the sensitivity to small
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targets and reduce the false alarm rate. Compared to YOLOVS5, our IRSDD-YOLOV5 can

handle captured drone images better.
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Figure 4. Overall architecture of IRSDD-YOLOvV5. A PANet-like structure is used in the neck network,
and the red part is the infrared small drone detection module added to the neck network. The four

prediction heads use the feature maps generated from the neck network to fuse information about

the targets. In addition, the number of each module is marked with an orange number on the left

side of the module.

L g - - ()

Shotcut

Figure 5. The specific structure of C3 and SPPF modules.

2.2.2. Infrared Small Drone Detection Module

Deep feature networks extract the semantic information of small targets; however, they
may risk losing spatial details of the infrared small targets. Shallow feature networks retain
spatial location information, but they lack a deep semantic understanding of the target.
The feature representation of infrared small drones is difficult when deep learning models
do not fully utilize the information from different feature layers. Xu et al. demonstrated
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that by concatenating the characteristic information output from the shallow network and
the previous shallow network,, more small target information and edge information can be
retained [39]. Inspired by Xu et al., we constructed a hierarchical contextual IRSTDM in the
intermediate feature layer of the neck network to make full use of the global information.
The module structure is shown in Figure 6.

Conv

=| G ] Bn l- Ups%m?];e

{Nl X Bottleneck I Conv ;::-*n [ N2 XBottleneck] Conv
(=
E Conv
= %
+

< ..‘—.
M, Bottleneck M, |
L S D S P -

Figure 6. The top part of the figure shows how IRSTDM works, and the bottom part shows the
detailed part of the module.

Our proposed infrared small target detection module (IRSTDM) can not only extract
rich semantic information of infrared small targets but can also maintain the depth feature
representations of infrared small targets and avoid the situation that infrared small targets
may be lost in the deep network. IRSTDM also further solves the problems of informa-
tion redundancy and insufficient feature fusion between different network layers. The
calculation method of IRSDDM using prior global context information is as follows:

H = M;(6(Conv(X)))®Y 1)

Z = My(Conv(H) ® Conv(X)) ()

where X and Y denote the semantic information from the deep network and the detailed in-
formation from the shallow network. ¢ denotes upsampling, and ® indicates the cascading
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of different inputs. After convolution, the shallow semantic feature graph X is up-sampled,
and after processing by the M; module, it is cascaded with the corresponding deep feature
graph Y to obtain H. H is then cascaded with the output of X after convolution to obtain
the feature map and then processed by M, to output Z.

M; and Mj,: Features can still be effectively activated when infrared small target infor-
mation is lost, and distinguishable features can be captured through multiple convolution
branch channels to replace standard empty convolution to reduce model complexity while
ensuring model accuracy. The calculation method is as follows:

M; = N; x B(Conv(x)) ® Conv(x) i=1,2,3,4 j=1,2 3)

where ® indicates the cascading of different inputs, B denotes the number of Bottleneck
modules and x represents the input of the M; module.

Regarding Bottleneck, generally, increasing the depth of the network can improve the
accuracy, but this will increase the amount of computation required, while Bottleneck can
increase the depth and save the computation, which is calculated by:

O = Conv(Conv(x)) @ S(x) 4)

where ® denotes the cascading of different inputs, x and O represent the input and output
representatives of the Bottleneck modules and S stands for the weighted shortcut function.

2.2.3. Optimization of Loss Function

The loss function in the YOLOv5-seg network model consists of Lcjass 10ss, Lbox loss
Lseg 10ss and Lobject losss Where Lejass 10ss and Lpox 10ss are the classification loss and the bound-
ing box loss, respectively, and Lgeg 10ss and Lopject 1oss are the segmentation loss and the
confidence loss.

Both the confidence loss and classification loss are calculated using the BCE with
Logits Loss function. The segmentation loss is calculated by the single_mask_loss function
to calculate the true mask value and the predicted mask value, while the bounding box and
segmentation loss are calculated by CloU using the following formula:

2
p~(b, bgt)
Lpox 1ou =1 — Liou + —az g

+ av 5)

In Equation (5), b denotes the prediction frame and bg; denotes the true box. ¢ denotes
the diagonal distance of the smallest closed area that can contain both the prediction box
and the true box, « is the balance parameter and v is used to measure whether the aspect
ratio is consistent.

4 Wgt w 2
v= ﬁ(arctanh—gt - arctanﬁ) (6)
v
=2 @)
(1 - Llou) tv

As can be seen from Equation (6), when the aspect ratio of the predicted box is as large
as that of the real frame, the value of v is zero. At this time, the penalty term of the aspect
ratio does not play a role, and the CIoU loss function does not achieve a stable work.

To solve the above problem, we introduced a new loss function, NWD, by analyzing
the target characteristics of an infrared small drone. There are often some background
pixels in the bounding box of the infrared drone target, and in these bounding boxes, the
foreground and background pixels are concentrated on the center and the boundary of
the bounding box, respectively. In order to better describe the weights of different pixels
in the bounding box, the bounding box can be modeled as a two-dimensional Gaussian
distribution in which the center pixel of the bounding box has the highest weight, and
the importance of the pixel decreases from the center to the boundary. Figure 7 shows



Drones 2023, 7, 393

10 of 22

the calculation process of NWD. Deviation is the deviation of the center pixel between
two boxes.

30 20 10 0 10 20 30

Deviation

Figure 7. Example of a procedure for calculating the NWD between two boxes.

The following shows the detailed NWD calculation process:
The similarity between the true bounding box a and the predicted bounding box b can
be translated into the Wasserstein distance between the two Gaussian distributions as:

wa ha T wy hy, L
WE(No, Ny) = [[[exar ey, o0 ] lexus ey, o0, 2] )1 B ®

where cx and cy are the central coordinate points of the bounding box, and w and # are the
width and height of the bounding box.

However, WZZ(NQ, Njp) is a distance metric and cannot be used directly as a similarity
metric. Therefore, we use its exponential form, normalized as IoU, to obtain a new metric
called the normalized Wasserstein distance (NWD).

W2 (Na, Np)
NWD(Ng, Ny) = exp(—+——z———) ©)

In this paper, we designed the bounding box loss function by analyzing the advantages
and disadvantages of different loss functions and optimizing the loss function by combining
the CIOU and NWD.

Lywp = 1— NWD(Np, Ng) (10)

Liox 1oss = (1= B)Lywp + B(1 — Lcrou) (11)

where N, is the Gaussian distribution model of the predicted enclosing frame and Ny is
the Gaussian distribution model of the real enclosing frame. (1 — ) are the proportions
occupied by Lywp.

3. Results and Discussion

In this section, we introduce qualitative and quantitative evaluations of the proposed
method using a self-made single-frame infrared small target drone dataset (SIDD) and ana-
lyze the detection results. Firstly, Section 3.1 describes the evaluation indexes of algorithm
performance, and Section 3.2 describes the details of the computer hardware configuration
and experiment implementation. Subsequently, in Section 3.3, qualitative and quantitative
comparisons are made between IRSDD-YOLOVS5 and the current most advanced instance
segmentation methods, and the reasons for the different accuracies of drone detection
achieved in different scenarios are analyzed. We present detailed results of the ablation
study in Section 3.4. Finally, in Section 3.5, we present certain expectations for future
research work based on current drone prevention and control technologies.

3.1. Evaluation Metrics

We consider drone detection a pixel-level instance segmentation task. Therefore, we
compare the performances of different algorithms using classical instance segmentation
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evaluation metrics to assess the abilities of different algorithms to accurately localize and
characterize the shape of small infrared targets to ensure that the network detects the target
and ensures as few false positives as possible.

(1)  Average precision (AP): The main algorithm evaluation metrics include APy 5,995},
APsg and APs. APy 5,95) is the average value for an IoU of {0.5, 0.55, ----, 0.95}, and
AP50 is the value taken for an IoU threshold of 0.5. AP; is the AP value for small
targets (less than 32 x 32 pixel values).

(2) Parameters (Para): The number of parameters refers to the value of the parameters
included in the model. Each number corresponding to the weight matrix in the
convolution and the fully connected layers used in the model is part of the number of
parameters. The number of parameters is the key to the machine learning algorithm.
The size of the model parameters reflects the complexity of the model to some extent.

(8) Frames per second (FPS): The higher the FPS value, the better is the real-time pro-
cessing ability of the model when running the detection algorithm under the same
hardware conditions. FPS = 1/latency, where latency is the time taken by the network
to predict an image.

3.2. Implementation Details

We used PyTorch 1.8 and TorchVision 0.9 to implement the proposed model on a
computer with a single GPU. The computer’s processor was the AMD Ryzen 7 5800H,
the GPU was an RTX3060, the initial learning rate of the network was set to 0.0025, the
weight attenuation was set to 0.005, the batch size was set to 2 and an AdaGrad training
optimizer was used. All images were adjusted to 640 x 640 pixels before being fed into the
network and were normalized to speed up network convergence. All CNN-based instance
segmentation models were trained on SIDD datasets for 50 cycles.

3.3. Comparison with the Latest Methods

To verify the superiority of IRSDD-YOLOV5, we compared it with several state-of-
the-art methods: a top-down meets bottom-up segmentation network (Blendmask) [9],
high-performance instance segmentation using only the box’s annotation (BoxInst) [10],
a segmentation network using dynamic mask headers (CondInst) [11], Yolact++ [12], a
segmentation network with a double-branch output generation mask (Solov2) [13], the
generation of a high-quality segmentation mask network for each target instance (Mask-
Renn) [14] and the You Only Lock Once series (Yolov5 and Yolov7) [15]. Traditional
methods (top-hat filtering and infrared patch-image modeling) were not considered due
to their inability to be trained by the dataset and their poor performance [1,2]. To ensure
the completeness of the experiments, we compared quantitatively and qualitatively the
detection results of different scenes in the SIDD dataset.

3.3.1. Quantitative Results

Tables 14 lists the quantization results of IRSDD-YOLOvVS5 and other advanced seg-
mentation detection methods in different scenarios of SIDD dataset. AP represents the
detection accuracy, para(M) represents the complexity of each different model and the
FPS calculation value describes the real-time computation of each of the different models.
In the tables, the best results for each column are highlighted in orange bold, the second
best in blue bold and the third best in green bold. The -- in each column represents a
zero result or a null output for an indicator of the algorithm. The detection results of
our proposed method in different scenes from the SIDD dataset are highlighted with grey
shading. From Tables 14, it can be seen that IRSDD-YOLOV5 obtained excellent detection
results in different scenes from the SIDD dataset, significantly improving the accuracy of
detecting an infrared small drone.
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Table 1. Performances of different algorithms for drone detection based on single-frame infrared

images in urban scenarios.

Methods City Scene
APyg.5.0.95 APsg APg Para(M) FPS
Blendmask 287.6 8.2
BoxInst 0.197 0.538 0.197 273.8 9.6
CondInst 0.565 0.936 0.564 272.6 9.6
Solov2 0.936 372.0 8.6
Mask-Renn 353.3 3.97
Yolov5 0.477 0.929 0.469
Yolov7 0.440 0.877 0.435
Yolact++ 0.423 0.902 -~ 199.0 10.77
ours 0473 0.469

Table 2. Performances of different algorithms for drone detection based on single-frame infrared

images in mountainous scenarios.

Mountain Scene

Methods
APg.5.0.95 APsg APg Para FPS
Blendmask 287.6 8.99
BoxInst - 0.013 -~ 273.8 10.26
CondInst 0.731 272.6 10.35
Solov2 -- - - 372.0 9.06
Mask-Renn 0.749 353.3 4.04
Yolov5 0.278 0.278
Yolov7 0.269 0.746 0.269
Yolact++ 0.177 0.625 - 199.0 11.93
ours 0.277 0.277

Table 3. Performances of different algorithms for drone detection based on single-frame infrared
images in sea surface scenarios.

Sea Surface Scene

Methods

APy 5:0.95) APs, AP Para FPS
Blendmask 0.842 287.6 7.83
BoxInst - - - 273.8 8.97
CondInst 0.292 0.819 0.292 272.6 8.86
Solov2 -- -- -- 372.0 8.08
Mask-Renn 353.3 4.04

Yolov5 0.334 0.894 0.334

Yolov7 0.355 0.930 0.355
Yolact++ 0.163 0.445 - 199.0 9.42

ours
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Table 4. Performances of different algorithms for drone detection based on single-frame infrared
images in sky scenarios.

Sky Background
Methods

APyg.5.0.95 APsg APg Para FPS
Blendmask 287.6 7.81
BoxInst 0.395 0.806 0.397 273.8 9.06
CondInst 0.673 0.648 272.6 8.91
Solov2 0.934 372.0 7.95
Mask-Renn 351.3 4.03

Yolov5 0.592 0.570

Yolov7 0.580 0.974 0.561
Yolact++ 0.561 0.958 - 199.0 9.74

ours 0.593 0.578

Asl shown in Tables 1 and 2, the APy 5,95y and AP5 values of IRSDD-YOLOVS5 in
urban scenes reached 47.3% and 93.9%, respectively, and the AP50 value is the second
highest, only 0.01% lower than that of the first-ranked Blendmask. However, in terms of
real-time performance, our algorithm is several orders of magnitude higher than Blend-
mask, ranking second among all algorithms. The APy 5,95, and AP5) measurements of
IRSDD-YOLOV5 in mountain scenarios reached 27.7% and 79.8%, respectively. Compared
with other algorithms, AP5) ranked first and reached a peak value of 79.8%, 3.8% higher
than YOLOv5. However, in the process of training data on the mountain scene, the loss
function value of the SOLOv2 algorithm did not converge because the background in the
mountain scene is relatively complex. Therefore, this algorithm provides no result for the
mountain scene.

As shown in Tables 3 and 4, in the sea surface scenario, the APy 5,951 and APsg values
of IRSDD-YOLOVS reached 37.5% and 93.4%, respectively. The AP5y value of IRSDD-
YOLOVS5 in the sea surface scenario reached 93.4%, ranking the first among all algorithms
and 4% higher than the APsy value of YOLOVS. Its real-time performance ranked second.
In the process of training on the sea surface scene data, the target in the sea surface scene is
generally too small. As a result, the value of the loss function of the SOLOV2 algorithm
did not converge, and the detection accuracy of BoxInst is close to 0. Therefore, these two
algorithms provide no results for the sea surface scene. In the sky scene, due to the simple
background, most detection methods achieved excellent detection results. However, the
IRSDD-YOLOVS5 proposed by us demonstrated faster real-time performance and fewer
parameters, ranking second in terms of real-time performance.

In general, we adopted IRSDD-YOLOV5 by adding a small target detection layer and
introducing the NWD to optimize the boundary frame loss function, which is improved
in all scenarios when compared with YOLOVS5. Due to the addition of the small target
detection layer, the network complexity of IRSDD-YOLOVS5 is increased. Compared with
YOLOVS5, the number of parameters is slightly increased, and the real-time performance
is somewhat decreased. However, under the condition of obtaining the same accuracy,
compared with other mainstream segmentation algorithms, the IRSDD-YOLOVS5 algorithm
proposed by us demonstrates greater real-time performance and detection accuracy. It is
worth noting that the real-time performance of two-stage network-based methods (such
as Mask-Rcnn) is poor, less than 5 FPS/s, because a two-stage algorithm usually first uses
a selective search algorithm to locate the candidate regions in the image and then uses
a classifier to classify each candidate region. These two steps require a large amount of
computing resources, so the efficiency of a two-stage algorithm is relatively low.
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3.3.2. Qualitative Results

Figure 8 shows the qualitative results obtained using the proposed IRSDD-YOLOv5
algorithm and other methods in four scenes with different backgrounds on the SIDD dataset.
In the sea scenario, Blendmask and BoxInst have missed and false detections for the target,
CondlInst has a missed detection for the target; in the mountain scenario, Mask-Renn has a
false detection, Yolact++ has a missed detection for the target. It is worth noting that the
segmentation results of IRSDD-YOLOV5 have no errors, which indicates that it shows good
detection performance for small targets in complex backgrounds (such as mountains and
the sea surface).

Input

Blendmask

BoxInst CondInst Mask-renn Yolact Yolovs IRSDD-Yolovs GT
| e ——
| S ——

Figure 8. Visualization of target detection results. The leftmost is the input map, and from left to right
is the mask map of target results of mainstream segmentation methods. The target area marked by
red circle is enlarged in the upper right corner. GT represents the real area region of the target mask.

Figure 8 shows the segmentation results of IRSDD-YOLOvV5 and other methods in
four scenarios with different backgrounds on the SIDD dataset. As the detected target
was too small, we kept the target mask areas of the segmentation results in the figure,
and the background parts are represented in black area so that the instance segmentation
results can be more clearly displayed. In the mountain scene, Mask-Rcnn misdetected
the target, while Yolact++ failed to detect the target. In the sea surface scene, Blendmask
and BoxInst have an omission and a false detection for the target, while CondInst has an
omission for the target. It is worth noting that the segmentation result of IRSDD-YOLOv5
has no error, which indicates that it has good detection performance for small targets in
complex background (such as mountains and the sea surface) and is more robust to these
scenario changes.

Figures 9 and 10 show the three-dimensional visualization detection results of different
detection methods in different scenes in the SIDD dataset, with the images missed by this
algorithm containing a blue plane. It can be seen from the synthesis of Figures 9 and 10 that
the scale of the drone in the urban scene is large, while that of the drone in the sea scene
is the smallest. For targets with relatively large scales, although the current mainstream
segmentation methods have achieved good detection performance, there are still false
detections for small-scale targets. Because there’s no false detections, YOLOv5 was superior
to the other segmentation methods in terms of its detection accuracy, but IRSDD-YOLOvV5
obtained a position distribution more consistent with the real region of the target, and its
detection results were more accurate.
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Input

Blendmask | BoxInst | CondInst || Mask-renn

Figure 9. Three-dimensional visualization qualitative results of different instance segmentation
methods. From left to right is the input original image, the segmentation result of BLendmask,
BoxInst, CondInst, Maskrcnn. From top to bottom are the city scene, mountain scene, sea scene and
sky scene.

In summary, the qualitative and quantitative results show that the scales of the drone
targets in the SIDD datasets vary greatly, the backgrounds are complex, the shapes and
sizes of targets vary and many targets have unclear boundaries. However, IRSDD-YOLOv5
can obtain a higher detection accuracy with a lower parameter number and a higher real-
time performance and can accurately detect targets in different scenarios and different
scales, indicating that the detection performance of IRSDD-YOLOVS5 is robust and that
our algorithm can more accurately detect complex scenarios and multi-scale changing
targets. Our proposed method of adding a small target detection layer and improving
the loss function not only obtains clear target boundary information but also maintains
and integrates sufficient infrared drone target image context information so that IRSDD-
YOLOVS has excellent performance.



Drones 2023, 7, 393

16 of 22

| Input

Yolact+ |  Yolov5s | IRSDD-Yolov5 | GT

Figure 10. Three-dimensional visualization qualitative results of different instance segmentation
methods. From left to right is the input original image, the segmentation results of Yolact++, YOLOV5,
IRSDD-YOLOVS. The real area of the target (GT). From top to bottom are the city scene, mountain
scene, sea scene and sky scene.

3.3.3. Analysis of the Reasons for Detection Accuracy

Due to the variability in the detection accuracy in different scenes, we quantitatively
and qualitatively analyzed the relationships between the drone targets and backgrounds in
different scenes and evaluated the impacts of noise and interference sources on detection
accuracy in different scenes.

As can be seen from Table 5, the signal-to-noise ratio (SNR) of the target in the sky
scene is the highest, followed by the sea background, while the target SNR in the image
with a mountain background is the lowest. As can be seen from Figure 6, in the global
three-dimensional gray scale image of the sky scene, there is less background clutter in the
whole image, and the distinction between the target and the surrounding background is
clear, followed by the city. However, in the mountain and sea scenes, the entire images
contain significant amounts of clutter noise. In particular, it can be seen from the three-
dimensional local gray scale that the drone target boundary is not clear, and there is a large
amount of clutter near the target in the mountain scene.
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Table 5. Local signal-to-noise ratios of targets and backgrounds for different scenes. Secl-Sec5 are

five representative single-frame images in different scenes, and SCR is the average values of local
signal-to-noise ratios of five single-frame images.

Scenes

SCR

SCR SCR SCR SCR SCR

Urban

Secl

2.950

Sec2 1.848 Sec3 6.366 Sec4 0.686 Secb 0.622 2.494

Mountain

Secl

0.880

Sec2 0.506 Sec3 0.283 Sec4 1.280 Sech 1.822 0.954

Sea

Secl

5.219

Sec2 2.255 Sec3 3.952 Sec4 4.852 Secb 3.744 4.004

Sky

Secl

3.769

Sec2 5.898 Sec3 3.790 Sec4 2.600 Secb 7.594 4.730

It can also be seen from the combination of Table 5 and Figure 11 that drone detection
in the mountain background image is the most complex, followed by the sea scene, and it
is difficult to distinguish the target from the background. Although there are some complex
objects in cities, such as buildings, the clutter noise in the city scene is relatively small.
There are mainly clouds in the sky image, but there is almost no clutter. Although the target
occupies fewer pixels in the image, it can still have relatively distinguishable features.

Original image Global 3D grayscale map Local 3D grayscale map Target 3D location map

Figure 11. Infrared drone images in different scenes compared with different three-dimensional im-
ages.

From the above analysis results, we know the reasons for the relatively low detection
accuracies in the mountain scene and the sea scene. When generating the training data,
although the location and area of the target are manually labeled, there will still be some
challenges in detection using the current advanced segmentation methods.

3.4. Ablation Studies

In order to demonstrate the effectiveness of the structural design and network module
of IRSDD-YOLOVS5, different variables were constructed to perform detailed ablation exper-
iments to determine whether the contributions of the different variables were reasonable.
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In addition, for the validity and reasonableness of the ablation, we selected mountain and
sea scenarios for the ablation experiments. The results of the ablation experiments for the
different variables are presented in Tables 6 and 7, where the larger the measured values of
APyg5.095), APso and APs, the better the performance. The best results in each column of
Table 7 are highlighted in bold red font, and the second-best results are highlighted in bold
blue font.

Table 6. Results of ablation experiments with the infrared small target detection module.

With/without Mountain Background Sea Background
IRSTDM APys095  APso APs AP 5095  APso AP
With 0.277 0.798 0.277 0.375 0.934 0.375
Without 0.279 0.773]) 0.279 0.339) 0.898] 0.339)

Table 7. Results of ablation experiments with loss functions; -- refers to experimental results that do
not take into account the NWD loss function.

Mountain Background Sea Background

g AP s5095  APso APs AP 5095  APso AP
- 0.278 0.760 0.278 0.345 0.912 0.345
0.1 0.278 0.760 0.278 0.345 0.912 0.345
0.2 0.275 0.767 0.275 0.346 0.914 0.346
0.3 0.286 0.792 0.286 0.348 0.894 0.348
04 0.311 0.910 0.311
0.5 0.284 0.783 0.284 0.351 0.911 0.351
0.6 0.279 0.773 0.279 0.339 0.898 0.339
0.7 0.282 0.748 0.282 0.905
0.8 0.286 0.771 0.286 0.359 0.359
0.9 0.273 0.732 0.273 0.334 0.906 0.334
1.0 0.275 0.732 0.275 0.346 0.889 0.346

(1) Ablation study for small target detection module

We set up an ablation module for the cross-layer feature fusion of infrared small targets
to explore the effect of information interaction between shallow detail features and deep
semantic features. In the ablation study for the infrared small target detection module
(IRSTDM), we fixed the {3 value of the bounding box loss function to 0.5 by adding or not
adding the small target detection module to demonstrate the effectiveness of the small
target detection module. The results in the table show that the APs5y of IRSDD-YOLOv5
in the mountain scenario decreases by 2.5% if the small target detection module is not
added. The AP50 in the mountain scenario decreased by 2.5%, The AP50 in the sea scenario
decreased by 3.6%. The experimental results show that the key to improving the network’s
ability to detect small drones is to maximize the advantages of the small target feature layer.

(2) Ablation study for loss functions

We considered the advantages and disadvantages of different loss functions and
designed the bounding box loss function as shown in Equation (11) by adjusting the value
of 3 in order to explore the impact of optimizing the loss function by combining the CIOU
with the NWD. The results in the table show that at a 3 value of 0.4, the AP 5,095y and
APsy measurements of IRSDD-YOLOVS5 in the mountain scenario are improved by 1.5%
and 3.3%, respectively. The maximum improvement is achieved at a value of 3 of 0.8, when
the AP50 value of IRSDD-YOLOVS5 in sea scenes are improved by 2.2%. The experimental
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results show that combining the advantages of different loss functions can effectively
improve the detection performance of an infrared small target detection network.

3.5. Future Outlook

In this section, we discuss in detail the specific trends in infrared drone detection
methods based on practical application requirements. Although our proposed IRSDD-
YOLOV5 has made significant progress in drone detection based on single-frame infrared
images, there are still two issues that need to be considered in future research.

3.5.1. Multiple Infrared Drone Detection

In the SIDD dataset for infrared drone detection proposed in this paper, the image size
is 640 x 512 pixels, and there is only one target in each image. To evaluate the performance
of the proposed IRSDD-YOLOVS5 for the infrared detection of multiple drones, we processed
the SIDD dataset by stitching four images into one image containing four targets, and the
stitching process is shown in Figure 12.

W W
2W
jas Imagel o Image2
Splice
W A\ i
an Image3 an Image4

Figure 12. The process of stitching four images containing a single object into one image containing
four objects.

3.5.2. Introduction of a Priori Clue Detection

At present, the identification of drone prevention is usually completed via radar-
guided photoelectric or infrared cameras. When the radar detects the drone, the radar
cannot accurately obtain the direction of the drone and conduct further tracking. At this
time, the radar can provide the infrared camera with the general direction of the drone,
and as a prior clue, the algorithm searches and detects small areas in the viewing field. The
specific process is shown in Figure 13. Limiting the field of view of an infrared image to the
area detected by radar is a common practice in drone detection which helps to improve
detection efficiency. Under different experimental conditions, the limit range of an infrared
image should be selected according to the actual situation.

Figure 13. An example of narrowing the detection area by introducing prior information from radar.
The yellow sector indicates the general location of the drone.

4. Conclusions

In this study, we proposed a new infrared small drone detection method, IRSDD-
YOLOVS. Firstly, we constructed a small target detection module (IRSTDM) by cascading
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the target semantic information of a deep network and the target spatial location infor-
mation of a shallow network while preserving and focusing the features of an infrared
small drone. Secondly, we calculated the Wasserstein distance between two boundary
frames based on the Gaussian distribution of the boundary frame so as to optimize the loss
function and further improve the accuracy of target detection. Finally, the proposed method
and the most advanced methods were trained and tested on the self-made SIDD dataset.
The experimental results show that the proposed method achieves excellent performance,
among which the APs5y measurements of the mountain scene and ocean scene in the dataset
reached 79.8% and 93.4%. They were 3.8% and 4% greater than YOLOv5. We also con-
ducted extensive ablation experiments to verify the effectiveness of the proposed method.
In addition, we published the SIDD dataset based on instance segmentation detection.
However, some unsolved problems, such as multi-target detection and real-time detection,
are worth further research.
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