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Abstract: The fast piezo-driven scanner (FPDS) compensates for vibrations in the unmanned aerial
vehicle (UAV) image stabilization system. However, the hysteresis nonlinearity reduces the position-
ing accuracy of the FPDS. To address this challenge, this paper presents a novel weighted polynomial
modified Bouc–Wen (WPMBW) model cascaded with a linear dynamic model to describe counter-
clockwise, asymmetric, and rate-dependent hysteresis loops of an FPDS. The proposed approach
utilizes the weighted polynomial function to describe the asymmetric characteristic and the linear
dynamic model to capture the rate-dependent behavior. By modifying the last two terms in the
classical Bouc–Wen (CBW) model, the modified BW model directly characterizes the counterclockwise
hysteresis loops with fewer parameters, circumventing the algebraic-loop problem that arises in the
inverse CBW model. The pseudorandom binary sequence (PRBS) input is employed to decouple the
linear dynamic model from the WPMBW model. The sinusoidal input is then applied to stimulate
the hysteresis phenomenon, and the parameters of the WPMBW model are estimated by the particle
swarm optimization (PSO) toolbox. Experimental results on a commercial FPDS show that the
proposed model is superior to the CBW and traditional asymmetric BW models in modeling accuracy
and feedforward hysteresis compensation.

Keywords: fast piezo-driven scanner; UAV image stabilization system; hysteresis nonlinearity;
Bouc–Wen model; feedforward hysteresis compensation

1. Introduction

Unmanned aerial vehicles (UAVs) have achieved rapid advances in recent years,
opening up a broad range of applications, such as precision agriculture [1], wireless com-
munication [2], mining [3], and disaster management [4]. Typically, UAV-based applications
require a robust image stabilization system to capture high-quality photos for detailed
analysis and accurate decision-making [5]. However, during UAV flight, the camera experi-
ences vibrations that adversely affect the quality of captured images. The fast piezo-driven
scanner (FPDS), known for fast response speed, compact size, low power consumption, and
high positioning precision, can compensate for vibrations in the UAV imaging system [6].
Unfortunately, an FPDS is hindered by hysteresis, a nonlinear phenomenon caused by the
inverse piezoelectric effect that considerably diminishes positioning accuracy, resulting in
undesirable image distortions [7]. Consequently, hysteresis modeling and compensation
are crucial for realizing the full potential of an FPDS in the UAV image stabilization system.

Several compensation algorithms have been explored to mitigate the hysteresis phe-
nomenon of an FPDS, which can be categorized into two primary groups: hysteresis
model-free and hysteresis model-based approaches [8]. Concerning the hysteresis model-
free strategy, the hysteresis is regarded as a bounded disturbance to the nominal system [9].
Different advanced feedback controllers, such as sliding mode control [10,11], adaptive
control [12,13], and fuzzy control [14,15], have been developed to alleviate the hysteresis
effect. On the other hand, the hysteresis model-based approach aims to establish the hys-
teresis model as accurately as possible [16,17]. The inverse model based on the obtained

Drones 2023, 7, 392. https://doi.org/10.3390/drones7060392 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7060392
https://doi.org/10.3390/drones7060392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-1326-0456
https://orcid.org/0000-0002-3870-2361
https://doi.org/10.3390/drones7060392
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7060392?type=check_update&version=2


Drones 2023, 7, 392 2 of 23

hysteresis model is utilized as a feedforward controller to eliminate the hysteresis effect.
The performance of the inverse hysteresis feedforward controller relies heavily on the
precision of the identified hysteresis model. Hence, an accurate hysteresis model is of
paramount importance.

For this purpose, various types of phenomenological and mathematical hysteresis
models have been proposed. The phenomenological hysteresis modeling is mainly based
on a thermodynamic framework. Zhou et al. [18] revealed frequency-dependent polariza-
tion and strain characteristics of soft lead zirconate titanate (PZT) piezoelectric ceramics
under electric field loading. Additionally, they observed an elevated coercive field with
increasing loading frequency, which was tentatively ascribed to rate-induced influences
in the domain-switching mechanism. Delibas et al. [19] proposed a three-dimensional
micromechanical model for simulating the rate-dependent behavior of specific perovskite
tetragonal piezoelectric material, and incorporating a probability function allowed for a
more accurate description of hysteresis curves. Other works can be found in [20–22].

The mathematical hysteresis models can be classified into three main categories [23].
The first category contains operator-based (OPRB) hysteresis models, such as the Preisach
model [24], Prandtl–Ishlinskii (PI) model [25], and Krasnosel’skii–Pokrovskii (KP) model [26].
The second category includes differential equation-based (DEB) hysteresis models, for
instance, the Duhem model [27], backlash-like model [28], and Bouc–Wen (BW) model [29].
The third category comprises artificial intelligent-based (AIB) hysteresis models using a
support vector machine [30] or neural network [31]. Compared to the OPRB and AIB
hysteresis models, the DEB hysteresis models demand less computational power because
of the simpler mathematical structures and fewer parameters. In particular, the classical
BW (CBW) model has attracted much attention since it employs only a first-order nonlinear
differential equation. Furthermore, the CBW model is capable of incorporating real-life
physical properties into mathematical problems [32].

The CBW model is limited to simulating symmetric and rate-independent hysteresis
loops, whereas in practice, the hysteresis loops of an FPDS often exhibit counterclockwise,
asymmetric, and rate-dependent characteristics [33]. Therefore, several attempts have been
made to modify the CBW model to capture the hysteresis loops of an FPDS more precisely.
For instance, to describe asymmetric hysteresis loops, Zhu et al. [34] incorporated an asym-
metric formula into the CBW model, while Wang et al. [35] augmented the CBW model with
a polynomial-based non-lagging component. To capture rate-dependent hysteresis loops,
Zhu et al. [36] integrated a frequency factor into the CBW model, while Kang et al. [37]
introduced two fractional operators into the CBW model. Additionally, some recent works
adopted the Hammerstein structure cascading the rate-independent hysteresis component,
such as the CBW model, with the rate-dependent component, such as the transfer function,
to extend the hysteresis model over a wide range of frequencies [38–40].

Although impressive outcomes have been achieved in previous works, they are still
not entirely satisfactory, particularly in the investigation of the directions of hysteresis loops.
To describe counterclockwise hysteresis loops, the CBW model is generally expressed as
y(t) = du(t)− h[u(t)], where u(t) and y(t) refer to the input voltage and output displace-
ment, respectively, d denotes the piezoelectric coefficient, and h[u(t)] represents the solution
of the CBW model. The inverse multiplicative structure (IMS) [29] is commonly employed
to construct the inverse CBW feedforward compensator, i.e., u(t) = 1/d(y(t) + h[u(t)]).
However, to calculate u(t), we need the value of h[u(t)], but to determine h[u(t)], we need
the value of u(t). This circular dependency makes it challenging to find a unique solution
for u(t) and h[u(t)] simultaneously, leading to the algebraic-loop problem. To address this
issue, a constant time delay or a low pass filter is typically incorporated into the IMS [41].
Nevertheless, this operation introduces additional compensation errors.

Based on the Hammerstein structure, this paper proposes a novel weighted polyno-
mial modified BW (WPMBW) model cascaded with a linear dynamic model to describe
counterclockwise, asymmetric, and rate-dependent hysteresis loops observed in an FPDS.
The introduced weighted polynomial function describes the asymmetric characteristics,
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and the linear dynamic model captures the rate-dependent behavior. The MBW model
directly describes counterclockwise hysteresis loops with fewer parameters by modifying
the last two terms of the CBW model, thereby avoiding the algebraic-loop issue that arises
in the inverse CBW model. The relationship between the parameters of the WPMBW model
and the shape of hysteresis loops is studied. In particular, the output bound of the MBW
model is derived. Taking inspiration from the decoupling identification research of the
Hammerstein system [42], the linear dynamic model is stimulated with the pseudorandom
binary sequence (PRBS) input, and the linear parameters are estimated using the MAT-
LAB system identification toolbox. Meanwhile, a sinusoidal signal is employed to excite
the hysteresis phenomenon, and the particle swarm optimization (PSO) toolbox [43] is
used to determine the parameters of the WPMBW model. Using the identified WPMBW
model, the inverse WPMBW feedforward controller is also implemented to mitigate the
hysteresis effect. Comparative experiments conducted on a commercial FPDS demonstrate
that the proposed model provides better modeling accuracy than the CBW model [29] and
traditional asymmetric BW model [36], achieving superior hysteresis compensation results.

The remainder of this paper is organized as follows. Section 2 presents the hysteresis
modeling of an FPDS. The characteristics of the proposed WPMBW model cascaded with a
linear dynamic model are discussed in Section 3. The hysteresis identification, verification,
and compensation experiments are carried out in Section 4 to validate the effectiveness of
the proposed model. Finally, Section 5 concludes this paper.

2. Hysteresis Modeling of an FPDS

This section introduces the hysteresis properties of an FPDS, followed by the develop-
ment of the proposed WPMBW model cascaded with a linear dynamic model.

2.1. Hysteresis Characterization

As depicted in Figure 1, the FPDS acts as an active isolation device to compensate
for disturbances during the UAV flight [44]. Prior to modeling the hysteresis nonlinearity
of the FPDS, it is imperative to analyze the impact of input amplitudes and frequencies
on the shape of hysteresis loops. Therefore, sinusoidal inputs with varying amplitudes
and frequencies are applied to the x-axis of the FPDS, as shown in Figure 2. As can
be seen, the hysteresis loops of the FPDS include two phases, namely the ascending
and descending phases. Moreover, the direction of hysteresis loops from the ascending
phase to the descending phase is counterclockwise. Figure 2a illustrates the amplitude-
dependent property of hysteresis loops because the width between the ascending and
descending phases increases with rising input amplitudes. Figure 2b reveals the frequency-
dependent characteristic of hysteresis loops as the hysteresis effects between the ascending
and descending phases become more pronounced with increasing input frequencies.

Image Stabilization System

Active Isolation

FPDS

Figure 1. Schematic diagram of an FPDS in the UAV image stabilization system.
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Figure 2. Counterclockwise hysteresis loops of the x-axis of an FPDS under varying sinusoidal
inputs u(t) = 0.5A[1− cos(2π f t)] (V). (a) Amplitude-dependent hysteresis loops under increasing
amplitudes where A = 5, 7, 9 V, and f = 1 Hz. (b) Frequency-dependent hysteresis loops under
increasing frequencies where f = 1, 10, 20 Hz, and A = 10 V.

In general, hysteresis loops can be decomposed by subtracting a linear component
l(t) from a hysteretic component h(t) [36]. Figure 3 shows an example of the hysteresis
loop decomposition result where a and b are inflection points during the ascending and
descending phases. Figure 3b indicates the asymmetric property of hysteresis loops since
the absolute value of a and b is unequal. To sum up, the hysteresis loops of an FPDS exhibit
counterclockwise, asymmetric, amplitude-dependent, and rate-dependent features.

a

(a) (b)
b

Ascending

Descending

Figure 3. An example of the hysteresis loop decomposition result under u(t) = 5[1− cos(2πt)] (V).
(a) The linear component. (b) The hysteretic component.

2.2. The CBW Model

The CBW model, for its simplicity of expression and capability of describing extensive
hysteretic systems, has been widely employed to represent the hysteresis phenomenon of
piezoelectric actuators. In this work, the hysteresis dynamics of an FPDS with the CBW
model can be expressed as follows:

y(t) = du(t)− h(t) (1)

ḣ(t) = αu̇(t)− β|u̇(t)|h(t)− γu̇(t)|h(t)| (2)

where u(t) represents the input voltage to the FPDS; y(t) denotes output angles of the FPDS;
d > 0 is the piezoelectric coefficient; and α, β, and γ are parameters used to determine the
magnitude and shape of the CBW hysteresis operator h. The mathematical and physical
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consistency of the CBW model was comprehensively discussed in [45,46]. It has been
proven that if α, β, and γ satisfy,

α > 0, β + γ > 0, β− γ ≥ 0 (3)

then the CBW model exhibits properties of the bounded-input-bounded-output (BIBO)
stability, passivity, and inherent thermodynamic admissibility.

Lemma 1. If α, β, and γ satisfy (3), then (2) can only produce stable clockwise hysteresis loops [46].

Therefore, the subtraction operation on the right-hand side of (1) is introduced to
generate the counterclockwise hysteresis loops when modeling an FPDS with the CBW
model. Since the inverse model of (2) cannot be solved explicitly, the IMS is adopted to
construct the inverse CBW model, i.e., u(t) = 1/d(y(t) + h[u(t)]). However, the algebraic-
loop problem arises in the inverse CBW model. This issue motivates us to modify the CBW
model to avoid the algebraic-loop problem when solving its inverse model.

2.3. Proposed MBW Model

To address the algebraic-loop issue, we first transform (2) into the following form:

ẇ(t) = ρ(u̇(t) + λu(t)|ẇ(t)| − µw(t)|ẇ(t)|) (4)

where parameters ρ, λ, and µ are positive constants used to decide the magnitude and
shape of the MBW hysteresis operator w. Compared to (2), the second and third terms
on the right-hand side of (2) are modified. It is notable that the right-hand side of (4) also
contains ẇ(t). Substituting |ẇ(t)| = ẇ(t)sgn(ẇ(t)) into (4), it yields

ẇ(t) = u̇(t)
ρ

1− ρλu(t)sgn(ẇ(t)) + ρµw(t)sgn(ẇ(t))
(5)

If the hysteresis behavior of a system displays saturation characteristics, wherein the
output remains constant as the input increases, then (5) can be cascaded with a saturation
operator, such as the arctangent-polynomial operator [47]. However, since the hysteresis
dynamics of an FPDS do not exhibit saturation features, we only need to consider the
scenario that the sign of u̇(t) always matches that of ẇ(t). In other words, sgn(ẇ(t)) can be
replaced by sgn(u̇(t)) in (5). To this end, the proposed MBW model is derived as follows:

ẇ(t) =

u̇(t) ρ
1−ρλu(t)+ρµw(t) , if u̇(t) ≥ 0

u̇(t) ρ
1+ρλu(t)−ρµw(t) , if u̇(t) ≤ 0

(6)

The denominator in (6) can be regarded as a feedback mechanism that causes w(t) to
regulate its own growth rate, thereby maintaining the stability of the system. According
to (6), the computation of w(t) relies not only on the current input voltage but also on its
previous values. Therefore, (6) effectively explains the nonlocal memory of hysteresis loops.

Compared to the CBW model (1) and (2), our proposed MBW model (6) can directly
describe counterclockwise hysteresis loops with fewer parameters. Moreover, (6) has a
direct inverse model, which solves the algebraic-loop problem. The counterclockwise
property and inverse model of (6) will be studied in the next section.

2.4. Proposed WPMBW Model Cascaded with a Linear Dynamic Model

Inspired by the work in [37], to capture the asymmetric hysteresis loops of the FPDS,
the weighted polynomial function is cascaded with the MBW model (6) as follows:

v(t) =
L

∑
i=1

ci(w(t))i (7)
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where ci and L are the coefficient and order of the polynomial function v(t), respectively.
Combining (6) with (7), the asymmetric WPMBW hysteresis model is obtained.

To describe the rate-dependent hysteresis phenomenon, a linear dynamic model is
cascaded with (6) and (7) as follows:

n

∑
i=0

an−iy(n−i)(t)−
m

∑
j=0

bm−jv(m−j)(t) = 0 (8)

where an−i and bm−j represent the coefficient of the (n − i)-th derivative of y(t) and
(m− j)-th derivative of u(t), respectively.

To this end, the proposed WPMBW model cascaded with a linear dynamic model
is synthesized by (6)–(8), as shown in Figure 4. The WPMBW model captures the coun-
terclockwise, asymmetric, and amplitude-dependent hysteresis loops, whereas the linear
dynamic model describes the rate-dependent features of hysteresis loops. Figure 4 also
depicts that the proposed model (6)–(8) is formulated based on the Hammerstein structure,
wherein the nonlinear component is cascaded with the linear component. Thus, when
identifying the proposed model, the PRBS signal can be applied to decouple the WPMBW
model from the linear dynamic model, thereby considerably simplifying the identification
complexity. The characteristics of the proposed model will be comprehensively discussed
in the following section.

MBW Model 
(Equation (6))

Weighted Polynomial 
Function (Equation (7))

Linear Dynamic 
Model (Equation (8))

WPMBW Model

u(t) w(t) v(t) y(t)

Figure 4. Schematic diagram of the proposed WPMBW model cascaded with a linear dynamic model.

3. Characteristics of the WPMBW Model

This section highlights the relationship between the counterclockwise, asymmetric,
amplitude-dependent, and rate-dependent features of the proposed WPMBW model cas-
caded with a linear dynamic model and its model parameters. Additionally, the inverse
WPMBW model is established.

3.1. Counterclockwise Characteristics

To investigate the direction of hysteresis loops produced by (6), the second derivative
is derived as follows:

d2w(t)
du(t)2 =

u̇(t) ρ2(−ρµ+λ−ρλ2u(t)+ρλµw(t))
(1−ρλu(t)+ρµw(t))3 , if u̇(t) ≥ 0

u̇(t) ρ2(ρµ−λ−ρλ2u(t)+ρλµw(t))
(1+ρλu(t)−ρµw(t))3 , if u̇(t) ≤ 0

(9)

Since the signs of u̇(t) and ẇ(t) remain the same, one can obtain

ρ2

(1− ρλu(t) + ρµw(t))3 > 0 (10)

and
ρ2

(1 + ρλu(t)− ρµw(t))3 > 0 (11)
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Combining (10) and (11), the sign of (9) relies on the signs of the following two terms:

φ(t) = −ρµ + λ− ρλ2u(t) + ρλµw(t) (12)

χ(t) = ρµ− λ− ρλ2u(t) + ρλµw(t) (13)

Consequently, the proposed MBW model (6) can produce counterclockwise hysteresis
loops when φ(t) ≥ 0 and χ(t) ≤ 0. On the contrary, clockwise hysteresis loops can be
generated when φ(t) ≤ 0 and χ(t) ≥ 0. That is to say, the proposed MBW model can
describe either the counterclockwise or clockwise hysteresis loops by varying parameters,
as demonstrated in Figure 5.

Ascending

Descending Ascending

Descending

(a) (b)

Figure 5. Different directions of hysteresis loops generated by the MBW model (6) under
u(t) = 5[1− cos(2πt)]. (a) The clockwise hysteresis loop with ρ = 0.7, λ = 0.3, and µ = 0.6. (b) The
counterclockwise hysteresis loop with ρ = 0.5, λ = 0.4, and µ = 0.45.

In this study, we only focus on the counterclockwise hysteresis loops generated by
(6) because our primary goal is to model the FPDS. From φ(t) ≥ 0 and χ(t) ≤ 0, one can
obtain φ(t)− χ(t) ≥ 0. Substituting (12) and (13) into this inequality, we have

λ ≥ ρµ (14)

It should be noted that (14) is a critical condition for counterclockwise hysteresis loops
generated by (6). On the other hand, we can infer that λ ≤ ρµ for clockwise hysteresis
loops. Moreover, it is possible to explore the output constraints of the MBW model (6)
under T-period inputs.

Definition 1 ([48,49]). Suppose that u(t) is continuous in [0,+∞) and periodic with a period of T
(T > 0). There exists a peak time T+ and an integer m within the period [0, T)m = [mT, mT + T)
such that u̇(t) > 0 for t ∈ (0, T+)m and u̇(t) < 0 for t ∈ (T+, T)m. Umin = u(mT) and
Umax = u(mT + T+) denote the minimum and maximum values of the input u(t), respectively.
This kind of ascending-descending input signal shape is regarded as a T-period input, as illustrated
in Figure 6.
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0 T+ T mT mT+T+ mT+T
Umin

Umax

Time

A
m
pl
itu
de

Ascending

Descending

Figure 6. Schematic diagram of the T-period input signal.

If φ(t) ≥ 0 and χ(t) ≤ 0, we have{
w(t) ≥ λ

µ u(t)− λ−ρµ
ρµλ , if u̇(t) > 0

w(t) ≤ λ
µ u(t) + λ−ρµ

ρµλ , if u̇(t) < 0
(15)

Since u(t) is a continuous T-period input, the output bounds of the MBW model (6)
are obtained as follows:

λ

µ
u(t)− λ− ρµ

ρµλ
≤ w(t) ≤ λ

µ
u(t) +

λ− ρµ

ρµλ
(16)

Furthermore, (16) reveals how the parameters influence the shape of MBW hystere-
sis loops. To facilitate discussion, we denote the lower bound of w(t) as wl(t) and the
upper bound as wu(t). Notably, wl(t) and wu(t) are both linear functions of u(t), i.e.,
wl(t) = kwu(t)− bw and wu(t) = kwu(t) + bw, where the slope kw = λ/µ, and the intercept
bw = (λ− ρµ)/ρµλ. Figure 7 depicts different shapes of MBW hysteresis loops by varying
kw and bw. As shown in Figure 7a, the tilt angle of MBW hysteresis loops can be deter-
mined by the slope kw. The greater the value of kw, the more pronounced the tilt angle of
hysteresis loops. From Figure 7b, it can be observed that the intercept bw controls the width
of MBW hysteresis loops. The higher the value of bw, the larger the width of hysteresis
loops. Therefore, based on the above analysis, the relationship between the parameters
and the shape of MBW hysteresis loops has been established. It also indicates that the
proposed MBW model is flexible to model extensive shapes of hysteresis loops by adjusting
the parameters.

(a) (b)

Figure 7. Different shapes of MBW hysteresis loops by varying kw and bw under u(t) = 5[1− cos(2πt)].
(a) kw increases while bw remains unchanged. (b) bw increases while kw remains unchanged.
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3.2. Asymmetric Characteristics

The weighted polynomial function captures the asymmetric characteristic. Figure 8
intuitively presents the impact of different orders of v(t) on the asymmetric feature. When
w(t) is positive, the weighted polynomial function v(t) of second-order and above can
produce asymmetric behavior. The asymmetric features become more prominent with
increasing orders of the weighted polynomial function. Figure 9 demonstrates that the
proposed WPMBW model can produce asymmetric hysteresis loops.

Symmetric

Asymmetric

Figure 8. The relationship between different orders of v(t) and the asymmetric characteristic.

Asymmetric

Symmetric

Figure 9. Comparison of hysteresis loops generated by the MBW and WPMBW models under
u(t) = 5[1− cos(2πt)], where the parameters of the MBW model are ρ = 0.45, λ = 0.8, and µ = 0.9;
the second-order weighted polynomial function is expressed as v(t) = 0.8w(t) + 0.05w(t)2; and the
third-order weighted polynomial function is formulated as v(t) = 0.8w(t) + 0.05w(t)2 + 0.001w(t)3.

3.3. Amplitude-Dependent and Rate-Dependent Characteristics

Figure 10a demonstrates that the hysteresis loops produced by the WPMBW model are
amplitude-dependent. The WPMBW hysteresis loops become wider with increasing input
amplitudes, which aligns with the hysteresis phenomenon observed in FPDS experiments
(see Figure 2a). In Figure 10b, it is shown that the WPMBW hysteresis loops remain
unchanged with increasing input frequencies, revealing that the WPMBW hysteresis loops
are rate-independent.
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(a) (b)

Figure 10. Different hysteresis loops generated by the WPMBW model under u(t) = 0.5A[1− cos(2π f t)],
where ρ = 0.6, λ = 0.7, µ = 0.8, c1 = 0.8, and c2 = 0.02. (a) The input amplitude increases
while the frequency remains unchanged. (b) The input frequency increases while the amplitude
remains unchanged.

However, the hysteresis loops of an FPDS are dependent on the input frequencies
(see Figure 2b). To address this issue, the linear dynamic model (8) is cascaded with the
WPMBW model. As shown in Figure 11, the proposed WPMBW model cascaded with a
linear dynamic model can describe rate-dependent hysteresis loops. The hysteresis effect
becomes more pronounced with higher input frequencies, which is the same conclusion
drawn from FPDS experiments.

Figure 11. Different hysteresis loops generated by the WPMBW model cascaded with the second-
order linear dynamic model under u(t) = 5[1− cos(2π f t)], where ρ = 0.6, λ = 0.7, µ = 0.8, c1 = 0.8,
c2 = 0.02, ξ = 0.8, and ωn = 200π.

3.4. Inverse WPMBW Model

In addition to the counterclockwise, asymmetric, amplitude-dependent, and frequency-
dependent features, the proposed WPMBW model cascaded with a linear dynamic model
offers promising potential in hysteresis compensation thanks to its Hammerstein structure.

The order of the weighted polynomial function should be chosen based on a trade-off
between the model accuracy and the identification complexity. In this work, a second-order
weighted polynomial function, i.e., v(t) = c1w(t) + c2w(t)2, is employed to describe the
asymmetric characteristic. Thus, the inverse weighted polynomial function is calculated
as follows:

w(t) =
−c1 +

√
c2

1 + 4c2v(t)

2c2
(17)
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The negative root is ignored since w(t) ≥ 0. It is worth noting that the roots of the
third-order weighted polynomial function can be calculated using the Cardano formula. For
higher-order weighted polynomial functions, the Newton iteration method can be utilized
to find the roots. Previous works have demonstrated that the second-/third-order weighted
polynomial function is sufficient to specify the piezoelectric asymmetric behavior [33,35,37].

Since the signs of u̇(t) and ẇ(t) remain the same, based on (6), the inverse MBW model
can be directly obtained as follows:

u̇(t) =

ẇ(t) 1−ρλu(t)+ρµw(t)
ρ , if ẇ(t) ≥ 0

ẇ(t) 1+ρλu(t)−ρµw(t)
ρ , if ẇ(t) ≤ 0

(18)

Thus, by cascading (17) with (18), the inverse WPMBW model is obtained, as illustrated
in Figure 12. Notably, the proposed WPMBW model provides a direct inverse model,
avoiding the algebraic-loop problem that arises from the inverse CBW model. After
the parameters of the WPMBW model are identified, the inverse WPMBW model can
be constructed using (17) and (18), which makes it possible to implement the hysteresis
compensator in a simple manner.

Inverse Weighted 
Polynomial Function 

(Equation (17))

Inverse MBW Model 
(Equation (18))

Inverse WPMBW Model

v(t) w(t) u(t)Inverse Linear 
Dynamic Model

y(t)

Figure 12. Schematic diagram of the inverse WPMBW model.

4. Hysteresis Identification, Verification, and Compensation

In this section, the parameters of the proposed WPMBW model cascaded with a linear
dynamic model are identified on a commercial FPDS system. Furthermore, the effectiveness
of the proposed model is verified through comparative experiments.

4.1. Experimental Setup

In this work, the two-degree-of-freedom (2-DOF) FPDS (model: P-T04K010), supplied
by Physik Instrumente (PI) Shanghai branch, is employed to validate the proposed WPMBW
model cascaded with a linear dynamic model. The FPDS was customized and developed
based on the S-335 platform (https://www.physikinstrumente.com/en/products/nanoposi
tioning-piezo-flexure-stages/piezo-flexure-tilting-mirrors/s-335-piezo-tiptilt-platform-3007
11 (accessed on 1 September 2019)) by PI Shanghai branch. The FPDS shares certain core
components with the S-335 platform. The FPDS comprises four identical piezoelectric stack
actuators (PSAs) and embedded SGS resistive sensors. Each pair of PSAs forms a push-pull
motion to realize the fast scan function. The closed-loop maximum scan angle of the FPDS
is ten mrad. In the UAV image stabilization system, the FPDS can act as an active isolation
device to compensate for disturbances during the flight.

Figure 13 shows the experimental hardware connection. The target computer is
composed of a PC104 controller (model: LX3160) based on the VxWorks operating system
and a data sampling board (model: ADT800) with 16-bit A/D and 12-bit D/A converters,
both from Shengbo Co. The programs are developed using the Tornado software on the
host computer and then downloaded to the target computer. The control box (model: E517),
manufactured by PI Co., contains signal conditional and voltage amplifier modules. The
output angles of the FPDS are measured by its embedded capacitive sensors, which are
then filtered through the signal conditioner. The filtered signals are converted to digital
form by the A/D channel of the data sampling board and sent to the controller. Meanwhile,

https://www.physikinstrumente.com/en/products/nanopositioning-piezo-flexure-stages/piezo-flexure-tilting-mirrors/s-335-piezo-tiptilt-platform-300711
https://www.physikinstrumente.com/en/products/nanopositioning-piezo-flexure-stages/piezo-flexure-tilting-mirrors/s-335-piezo-tiptilt-platform-300711
https://www.physikinstrumente.com/en/products/nanopositioning-piezo-flexure-stages/piezo-flexure-tilting-mirrors/s-335-piezo-tiptilt-platform-300711
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the input command is generated by the controller and then converted to analog form by
the D/A channel of the data sampling board. Subsequently, the command is magnified ten
times by the voltage amplifier to drive the FPDS. The input voltage range is 0–10 V. Since
the mechanical design completely decouples the two axes (x-axis and y-axis) of the FPDS,
only the x-axis is examined in this study.

TCP/IP 

Host Computer Target Computer Control Box FPDS
Driving
Voltage

Sensor 
Signal

DAC

ADC

Controller Plant

Figure 13. Schematic diagram of hardware connection.

4.2. Parameter Identification

As illustrated in Figure 4, the proposed WPMBW model cascaded with a linear
dynamic model is formulated based on the Hammerstein structure. The identification
of Hammerstein-based systems has garnered significant attention [42,50–52]. It has been
proved that under the excitation of the PRBS signal, the output of the rate-independent
nonlinear component would eventually be stable as the PRBS signal. Therefore, previous
works commonly apply the PRBS signal to decouple the Hammerstein model. Additionally,
the PRBS signal provides several advantages for system identification, including broad
frequency range excitation, good correlation properties, easy implementation, and a non-
repetitive pattern. This work employs the PRBS signal to decouple the WPMBW model
from the linear dynamic model. The decoupling identification approach for the proposed
model consists of the following two steps, as summarized in Figure 14.

PSO Optimization Toolbox

Sinusoidal Signal Input

WPMBW Model

Measured FPDS Output

Step 2

Matlab Identification 
Toolbox

PRBS Signal Input

Linear Dynamic Model

Measured FPDS Output

Step 1

Figure 14. Flow chart of the two-step decoupling identification approach for the proposed WPMBW
model cascaded with a linear dynamic model.

First step: Identification of the linear dynamic model (8). In order to capture the
high-frequency content of the FPDS, the generation period of the PRBS signal is set to 1 ms.
The PC104 controller generates an 11-bit PRBS signal with a 4.5 to 5.5 V voltage range.
The designed PRBS signal repeats five times to average the measurement noise. Figure 15
depicts the PRBS input and the corresponding FPDS output angles that were measured be-
tween 2 and 2.5 s. Considering the presence of a DC offset in the PRBS input, it is necessary
to subtract the average value of both the PRBS input and the measured FPDS output angle
from their respective signals. Removing the means serves to mitigate the impact of bias. It
allows the identification algorithm to focus on the dynamic behavior and variations of the
system, which is often the region of interest for modeling system dynamics. Using the iden-
tification toolbox of MATLAB, the parameters of the linear dynamic model (8) are identified
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as follows: a0 = 5.4210× 1012, a1 = 1.1830× 1010, a2 = 1.0460× 107, a3 = 8.7530× 103,
a4 = 1, b0 = 5.4210× 1012, b1 = −4.0020× 108, and b2 = 4.0830× 106.
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(a) (b)

Figure 15. The PRBS input and the corresponding FPDS output angles that were measured from 2 to
2.5 s. (a) The designed PRBS input from 4.5 to 5.5 V. (b) The measured FPDS output angles.

The rate-independent nonlinear component is denoted as H(·) and the rate-dependent
linear dynamic component as G(·). It has been demonstrated that any pair of (ηH(·), G(·)/η)
where η 6= 0 will produce an identical output if the input is the same [42]. Therefore, in
this work, the gain of the linear dynamic model is fixed to unit to ensure the uniqueness of
the identified results.

It is worth noting that the accuracy of the linear model estimation results could be
improved by increasing the degrees of the linear dynamic model (n and m). However, the
model complexity also increases, which takes up more computational resources. As a result,
there is a trade-off between the model accuracy and complexity. As depicted in Figure 16,
the experimental response exhibits a sharp decline followed by an ascent at approximately
180 Hz, resembling the shape of the letter v, indicating that the system model contains a
notch filter. Consequently, it can be hypothesized that the system model encompasses a
minimum of three poles and two zeros. Through this experiment, it was found that the
optimal estimation result was attained when n = 4 and m = 2. When increasing the values
of both m and n beyond the determined optimal values, the computational complexity
escalates accordingly. However, the resulting enhancement in model accuracy is marginal.

Figure 16. Amplitude response of the measured data and the identified linear dynamic model.

Figure 16 also compares the amplitude response of the identified linear dynamic
model with the experimental data. It is evident that the identified response exhibits a good
fit with the experimental response (remove means) up to 100 Hz. In the high-frequency
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range, due to the limited number of orders utilized in our identification model, there
exists a certain level of discrepancy between the identified response and the experimental
response. However, overall, the identification model still captures the general trend of the
experimental response and follows its variations. Moreover, since the frequency of the
desired tracking trajectory is under 20 Hz, the identified model can reasonably simulate
the dynamic behavior of an FPDS.

Second step: Identification of the WPMBW model (6) and (7). Since the hysteresis
loops of an FPDS are amplitude-dependent, a sinusoidal signal with varying amplitudes is
applied as follows:

u(t) = 5.45e−0.21t[sin(2πt + 1.5π) + 1] V (19)

Given that the input frequency of (19) is only 1 Hz, the effect of the linear dynamic
model can be ignored. Based on the training input (19) and measured output angles, the
PSO approach is employed to find the best parameters of the WPMBW model. The cost
function is defined as follows:

F(ρ, λ, µ, c1, c2) =
1
N

N

∑
i=1

[y(i)− v(i)]2 (20)

where N is the total number of sampling points and y(i) and v(i) denote the ith mea-
sured output angle of the FPDS and the ith simulated output angle of the WPMBW
model, respectively.

Figure 17 illustrates the PSO iteration process of the WPMBW parameters. It can
be observed that the PSO algorithm terminated at about 1800 epochs because the global
minimum value of the cost function was not altered by a magnitude of at least 1× 10−25

for a continuous span of 250 epochs. The identified results of the WPMBW model are
ρ = 0.6485, λ = 0.7217, µ = 0.7440, c1 = 0.9268, and c2 = 0.0048.
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Figure 17. The PSO iteration process of the WPMBW parameters. (a) The iteration process of the cost
function (20). (b) The iteration process of ρ. (c) The iteration process of λ. (d) The iteration process
of µ. (e) The iteration process of c1. (f) The iteration process of c2.

To this end, the parameters of the proposed WPMBW model cascaded with a linear
dynamic model have been determined by the two-step decoupling identification approach.
In what follows, more experiments are carried out to verify the effectiveness and feasibility
of the identified model.

4.3. Model Verification

In the following comparative experiments, the CBW model (1) and (2) and the tradi-
tional asymmetric BW model in [36] are implemented:

(1) The CBW model. Based on the training input (19) and measured output angles of the
FPDS, the parameters of the CBW model are identified through the PSO algorithm, as
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illustrated in Figure 18. The identified parameters of the CBW model are as follows:
α = 0.3554, β = 0.3485, γ = 0.2111, and d = 0.9248.

(2) The traditional asymmetric BW model is introduced here as follows:{
mÿ(t) + bẏ(t) + ky(t) = k(d0u(t)− h(t))
ḣ(t) = α0u̇(t)− β0|u̇(t)||h(t)|nh−1h(t)− γ0u̇(t)|h(t)|nh − δu(t)sgn(u̇(t))

(21)

where m, b, and k represent the mass, damping, and stiffness coefficients of the FPDS,
respectively; d0 denotes the piezoelectric coefficient; and parameters α0, β0, γ0, and δ
are used to regulate the shape of hysteresis loops. In particular, the term δu(t)sgn(u̇(t))
accounts for the asymmetric feature of hysteresis loops. It should be mentioned that the
original term k0/τe−t/τu(t) in [36] has been replaced by d0u(t) since the piezoelectric
coefficient is a constant [53]. Similar to the identification procedure of the CBW model,
the parameters of the traditional asymmetric BW model are acquired as follows:
m = 0.1029, b = 81.3370, k = 3.1628× 104, d0 = 0.9221, α0 = 0.3050, β0 = 0.5913,
γ0 = 0.1649, δ = 0.0415, and nh = 1.7170, as shown in Figure 19.
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Figure 18. The PSO iteration process of the CBW parameters. (a) The iteration process of the cost
function. (b) The iteration process of α. (c) The iteration process of β. (d) The iteration process of γ.
(e) The iteration process of d.

C
os

t F
un

ct
io

n

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 19. The PSO iteration process of the traditional asymmetric BW parameters. (a) The iteration
process of the cost function. (b) The iteration process of m. (c) The iteration process of b. (d) The iteration
process of k. (e) The iteration process of d. (f) The iteration process of α0. (g) The iteration process of β0.
(h) The iteration process of γ0. (i) The iteration process of δ. (j) The iteration process of nh.
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Figure 20 depicts the identification results of the CBW model, the traditional asym-
metric BW model [36], and the proposed WPMBW model cascaded with a linear dynamic
model in comparison with the measured training output angles. It can be observed from
the magnified plot of Figure 20c that both the model in [36] and the proposed model can
describe the asymmetric hysteresis loops. However, the estimated angles of the proposed
model match better with the measured angles. To more clearly demonstrate the identifi-
cation accuracy of each model, the following two performance indices are employed: the
maximum percentage modeling error (MPME) and the root-mean-square error (RMSE).
They are defined as follows:

MPME(%) =
max

i
|y(i)− ŷ(i)|

max(y)−min(y)
× 100% (22)

RMSE(mrad) =

√√√√ 1
N

[
N

∑
i=1

(y(i)− ŷ(i))2

]
(23)

where y(i) and ŷ(i) are the ith measured and ith estimated angles, respectively. The
corresponding identification errors are summarized in Table 1. Concerning the MPME, the
proposed model achieves the lowest value of 4.58%, followed by the model in [36] with a
value of 8.90%, and the CBW model with the highest value of 11.99%. Similarly, the RMSE
of the proposed model is 52.17% lower than that of the CBW model and 38.43% lower
than that of the model in [36]. Overall, the identification results highlight the superior
performance of the proposed model compared to the other two models.

Figure 20. Identification results of the CBW model, the traditional asymmetric BW model in [36],
and the proposed WPMBW model cascaded with a linear dynamic model. (a) Training input (19).
(b) Ouput angles. (c) Hysteresis loops. (d) Model output errors.

Table 1. Identification errors of the CBW model, the model in [36], and the proposed model.

Errors CBW Model Model in [36] Proposed Model

MPME (22) 11.99% 8.90% 4.58%
RMSE (23) 0.0345 0.0268 0.0165
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To further evaluate the rate-dependent performance of each identified model, a test
input with increasing frequencies is applied as follows:

u(t) = 4(1− cos(2π f t)) V (24)

where f = 5, 10, 15, and 20 Hz. Figure 21 compares hysteresis loops of the experimental
response and three identified models under different input frequencies. The corresponding
modeling errors are depicted in Figure 22 and calculated in Table 2. It can be observed that
both the MPME and RMSE of the model in [36] and the proposed model are significantly
lower than those of the CBW model at all frequencies. For example, at 5 Hz, the MPME of
the CBW model is 29.37%, while that of the model in [36] and the proposed model are 6.36%
and 2.17%, respectively. The RMSE of the CBW model at the same frequency is 0.1578,
while that of the model in [36] and the proposed model are 0.0273 and 0.0113, respectively.
Similar observations can be made for other frequencies. These results demonstrate that the
CBW model cannot capture the rate-dependent and asymmetric hysteresis loops. Between
the model in [36] and the proposed model, it can be seen that the former has bigger MPME
and RMSE than the latter at all frequencies. The MPME of the model in [36] ranges from
6.36% to 25.83%, while that of the proposed model ranges only from 2.17% to 15.01%.
Regarding the RMSE, the proposed model is 64.00%, 50.38%, 42.98%, and 37.63% less than
that of the model in [36] at frequencies of 5 Hz, 10 Hz, 15 Hz, and 20 Hz, respectively.
Therefore, the proposed WPMBW model cascaded with a linear dynamic model can well
describe the asymmetric and rate-dependent hysteresis loops of an FPDS.

Figure 21. Hysteresis loops of the experimental response, the CBW model, the model in [36], and
the proposed WPMBW model cascaded with a linear dynamic model under test input (24). (a) 5 Hz.
(b) 10 Hz. (c) 15 Hz. (d) 20 Hz.
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Figure 22. Test errors of the CBW model, the model in [36], and the proposed WPMBW model
cascaded with a linear dynamic model under test input (24). (a) 5 Hz. (b) 10 Hz. (c) 15 Hz. (d) 20 Hz.

Table 2. Test errors of the CBW model, the model in [36], and the proposed model.

Frequency Errors CBW Model Model in [36] Proposed Model

5 Hz MPME 29.37% 6.36% 2.17%
RMSE 0.1578 0.0273 0.0113

10 Hz MPME 51.91% 11.39% 5.03%
RMSE 0.3073 0.0595 0.0295

15 Hz MPME 73.14% 18.07% 9.56%
RMSE 0.4506 0.1037 0.0592

20 Hz MPME 92.96% 25.85% 15.01%
RMSE 0.5886 0.1576 0.0983

4.4. Hysteresis Compensation

Furthermore, feedforward hysteresis compensation experiments on an FPDS are car-
ried out to validate the performance of the identified models. The feedforward controllers
based on the CBW model and the model in [36] are designed using the IMS and are
presented as follows: {

u(t) = 1
d (yd(t) + ĥ(t))

˙̂h(t) = αu̇(t)− β|u̇(t)|ĥ(t)− γu̇(t)
∣∣∣ĥ(t)∣∣∣ (25)

and u(t) = 1
d0

(
1
k (mÿd(t) + bẏd(t) + kyd(t)) + ĥ(t)

)
˙̂h(t) = α0u̇(t)− β0|u̇(t)||ĥ(t)|nh−1ĥ(t)− γ0u̇(t)|ĥ(t)|nh − δu(t)sgn(u̇(t))

(26)

where yd is the desired reference. It is noteworthy that (25) and (26) encounter algebraic-
loop issues, as the calculation of ĥ(t) requires the value of u(t). Therefore, a constant time
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delay is employed to solve this problem. As described in Section 3.4, the proposed WPMBW
model has a direct inverse model, circumventing the algebraic-loop issue. The feedforward
controller based on the proposed model is given as follows:

u̇(t) =

 ˙̂w(t) 1−ρλu(t)+ρµŵ(t)
ρ , if ˙̂w(t) ≥ 0

˙̂w(t) 1+ρλu(t)−ρµŵ(t)
ρ , if ˙̂w(t) ≤ 0

ŵ(t) = −c1+
√

c2
1+4c2 v̂(t)

2c2

v̂(t) = 1
b0

(
∑n

i=0 an−iy
(n−i)
d (t)

) (27)

It should be noted the zero points of (8) are ignored when calculating the inverse linear
dynamic model.

It can be observed from Figure 2 that an FPDS cannot return to its zero position after
the first period. Therefore, a bias should be added to the given reference yr to make yr
trackable. However, the bias may lead to a poor transient response at the initial stages
of the experiments since an FPDS is a less-damped system. To achieve a smoother initial
transient response, the full-pass filter is implemented as follows:

ÿd(t) + 2ξωnẏd(t) + ω2
nyd(t) = ÿr(t) + 2ξωnẏr(t) + ω2

nyr(t) (28)

where ξ and ωn denote the damping ratio and natural frequency, respectively. In this work,
ξ = 1 and ωn = 100π. When ζ = 1, the full-pass filter is critically damped, resulting in
a rapid convergence of the output signal yd towards yr without any oscillation. Greater
values of ωn correspond to faster response times, whereas lower values lead to slower
response times. However, if a smoother response with reduced sensitivity to rapid input
changes is desired, opting for a lower ωn might be more appropriate. Hence, the selection
of ωn should strike a balance between response time and smooth response. Considering
the maximum input frequency of 20 Hz and the desired smooth response during the initial
stage, ωn is therefore set to 100π. Using (28), yd always starts from the zero position,
avoiding the bias issue and resulting in a better initial transient response. Moreover, yd
eventually coincides with yr after a short period.

The schematic diagram of the feedforward hysteresis compensation is illustrated in
Figure 23. Two typical tracking references are designed as follows:

yr1(t) = 3.45e−0.21t[sin(2πt + 1.5π) + 1] + 1 mrad (29)

yr2(t) = 3.25e−0.15t[sin(20πe−1.1tt + 1.5π) + 1] + 1 mrad (30)

where yr1 is the reference with fixed frequency but varying amplitudes, while yr2 is the
reference with varying amplitudes and frequencies.

Full-Pass Filter 
(Equation (28))

Feedforward 
Compensator 

(Equations 25/26/27)
FPDS

yr(t) yd(t) u(t) y(t)

Figure 23. Schematic diagram of feedforward hysteresis compensation.

Figure 24 depicts the feedforward hysteresis compensation results based on the CBW
model, the model in [36], and the proposed model. The corresponding tracking errors are
tabulated in Table 3. The 45◦ line is introduced to demonstrate the hysteresis compensation
performance. Ideally, if the hysteresis is fully compensated, the mapping between desired
and measured angles will perfectly align with the 45◦ line. On the other hand, in the
presence of poor hysteresis compensation, the hysteresis loop will widen, leading to
deviations from the 45◦ line. From Figure 24, it is evident that the hysteresis loops of the
CBW model exhibit greater width compared to the model in [36] and the proposed model,
indicating the poorer hysteresis compensation performance. Regarding tracking errors of
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the first desired trajectory (29), the CBW model achieves an MPME of 24.10%, which is 9.23%
and 10.25% bigger than that of the model in [36] and the proposed model, respectively.
Similarly, in terms of the RMSE, the CBW model exhibits a value of 0.0366, while the
model in [36] achieves a lower RMSE of 0.0227, and the proposed model demonstrates
the best performance with an RMSE of 0.0111. Since the CBW model cannot describe
the asymmetric and rate-dependent hysteresis loops, the hysteresis compensation results
continue to deteriorate for the second desired trajectory (30), where the MPME and RMSE
are 44.70% and 0.0608, respectively. In contrast, the proposed model offers the lowest
MPME of 13.78%, which is 30.92% and 4.03% smaller than that of the CBW model and
the model in [36], respectively. Meanwhile, the RMSE of the proposed model is 79.44%
less than that of the CBW model and 38.73% less than that of the model in [36]. Therefore,
experimental results demonstrate the effectiveness and superiority of the proposed model
in hysteresis modeling and compensation.

Figure 24. Tracking results of different feedforward hysteresis compensators based on the CBW model,
the model in [36], and the proposed model. (a) Hysteresis reduction under the desired reference (29).
(b) Tracking errors under (29). (c) Hysteresis reduction under the desired reference (30). (d) Tracking
errors under (30).

Table 3. Feedforward hysteresis compensation errors of the CBW model, the model in [36], and the
proposed model.

References Errors CBW Model Model in [36] Proposed Model

(29) MPME 24.10% 14.87% 13.85%
RMSE 0.0366 0.0227 0.0111

(30) MPME 44.70% 17.81% 13.78%
RMSE 0.0608 0.0204 0.0125

4.5. Discussion

According to the experiments mentioned above, it is convincing that the proposed
WPMBW model cascaded with a linear dynamic model offers higher modeling accuracy
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than the existing CBW and traditional asymmetric BW models [36]. The primary factor
behind this improvement is the incorporation of the weighted polynomial function and
the linear dynamic model, which effectively capture the asymmetric and rate-dependent
hysteresis characteristics, respectively. The MBW model can directly describe the counter-
clockwise hysteresis loops with fewer parameters than the CBW model. Furthermore, the
MBW model provides a direct inverse model, which solves the algebraic-loop problems
encountered in the inverse CBW model. The developed two-step decoupling identification
approach simplifies the identification process. Specifically, only five parameters are re-
quired to be adjusted by the PSO toolbox. The feedforward hysteresis compensators based
on the three identified models are implemented using (25)–(27). It is worth mentioning that
the inverse linear dynamic model is disregarded when the desired signal is not smooth.
In this work, the desired signal is predefined to evaluate the hysteresis compensation
performance of the identified models.

Since the hysteresis behavior is effectively compensated, the FPDS can be treated as a
linear system with perturbations. For linear systems, there are various feedback control
techniques to enhance tracking performance, such as PID control, adaptive control, and
sliding mode control, just to name a few.

Due to the ongoing development of the UAV image stabilization platform based on
an FPDS, this research cannot provide the image effects after disturbance compensation.
However, existing studies, such as in [44], demonstrate the successful implementation of
voice coil actuators for drone camera stabilization. Considering the higher positioning
resolution and open-loop bandwidth offered by an FPDS, it can be anticipated that they
will likewise achieve favorable outcomes.

5. Conclusions

To meet the challenge of the UAV image stabilization system, a novel WPMBW model
cascaded with a linear dynamic model is presented to describe the counterclockwise,
asymmetric, and rate-dependent hysteresis loops of an FPDS in this paper. The weighted
polynomial function is utilized to capture the asymmetric characteristic, while the linear
dynamic model is used to specify the rate-dependent feature. Compared to the CBW
model, the MBW model requires fewer parameters and provides a direct inverse model,
circumventing the algebraic-loop problem. The relationship between the parameters of
the WPMBW model and the shape of hysteresis loops is also investigated, including
the derivation of the output bound of the MBW model. Inspired by the Hammerstein
structure, a two-step decoupling identification methodology is formulated. First, the PRBS
signal is employed to identify the linear dynamic model, and the parameters of the linear
dynamic model are predicted through the MATLAB identification toolbox. Second, the
sinusoidal signal is applied to stimulate the hysteresis phenomenon, and the parameters of
the WPMBW model are estimated by the PSO toolbox. Comparative experimental results
demonstrate that the proposed model outperforms the CBW and traditional asymmetric
BW models in modeling accuracy and hysteresis compensation. In the future, FPDS will be
integrated into the UAV image stabilization system to compensate for disturbances during
the flight.
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