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Abstract: Multi-object tracking in unmanned aerial vehicle (UAV) videos is a critical visual perception
task with numerous applications. However, existing multi-object tracking methods, when directly
applied to UAV scenarios, face significant challenges in maintaining robust tracking due to factors
such as motion blur and small object sizes. Additionally, existing UAV methods tend to underutilize
crucial information from the temporal and spatial dimensions. To address these issues, on the one
hand, we propose a temporal feature aggregation module (TFAM), which effectively combines
temporal contexts to obtain rich feature response maps in dynamic motion scenes to enhance the
detection capability of the proposed tracker. On the other hand, we introduce a topology-integrated
embedding module (TIEM) that captures the topological relationships between objects and their
surrounding environment globally and sparsely, thereby integrating spatial layout information.
The proposed TIEM significantly enhances the discriminative power of object embedding features,
resulting in more precise data association. By integrating these two carefully designed modules
into a one-stage online MOT system, we construct a robust UAV tracker. Compared to the baseline
approach, the proposed model demonstrates significant improvements in MOTA on two UAV multi-
object tracking benchmarks, namely VisDrone2019 and UAVDT. Specifically, the proposed model
achieves a 2.2% improvement in MOTA on the VisDrone2019 benchmark and a 2.5% improvement
on the UAVDT benchmark.

Keywords: multiple object tracking; unmanned aerial vehicle videos; feature aggregation; deformable
attention; topological relationships

1. Introduction

Visual multi-object tracking is a fundamental computer vision task that aims to deter-
mine the trajectories of objects of interest in video sequences. With the advancement of deep
learning, multiple-object tracking (MOT) techniques have rapidly evolved over the past
decade [1–5]. However, the majority of research has focused on tracking objects in fixed or
horizontally moving camera settings, such as handheld or vehicle-mounted cameras, with
limited perceptual range. In recent years, unmanned aerial vehicles (UAVs) have gained
widespread popularity in various domains, such as search and rescue, agriculture, sports
analysis, and geographical surveying [6–10]. Multi-object tracking in airborne camera
views faces more complex challenges than with fixed or horizontally moving cameras,
such as small target sizes and fast camera movements [11,12]. As a result, there is a grow-
ing need for innovative techniques that can handle the unique complexities present in
UAV scenarios.
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In the past, MOT mainly used the paradigm of detection followed by tracking [13–15],
which consists of two steps: detection and data association. These algorithms extract
the object representation features from the bounding boxes and combine the trajectory
location information for data association, namely separate detection and embedding (SDE)
methods. This paradigm mainly focuses on extracting features for target re-identification
and optimizing the data association step. With the development of object detection [16–19]
and re-identification techniques [20], this type of approach has achieved rapid development.
However, this cascading architecture is not efficient enough and cannot be jointly optimized.

A more practical approach is to directly extend the one-stage object detector [21,22]
to jointly perform object localization and ReID feature extraction, i.e., joint detection and
embedding (JDE) approaches. Nonetheless, the high observation altitude and fast flight
speed of UAVs present challenges in object perception. These factors in combination with
video blurring further make the detection of small objects more difficult. As a consequence,
the single-frame-based methods are prone to generating temporally inconsistent detection
results, such as false negatives. This, in turn, negatively impacts the overall tracking
performance. In addition, the topological relationships between objects and contextual
information are disregarded during the extraction of object re-identification features. In
contrast, recent studies [23–25] have demonstrated that taking into account the relationships
between objects can enhance the discriminative power of the ReID embedding features,
which subsequently improves the accuracy of data association. Consequently, a one-stage
tracker that does not utilize contextual information is sub-optimal.

To address the aforementioned challenges, we explore the utilization of temporal
consistency information within the video, along with the incorporation of topological
relationships pertaining to the objects and background. The difference between the SDE
methods, the JDE methods, and the proposed method is briefly illustrated in Figure 1.
In earlier frames, objects that are currently occluded and blurred might be identifiable.
Therefore, by leveraging the features from previous frames, we can enhance the current
features and recover potentially overlooked objects. First, we propose a novel temporal
feature aggregation module (TFAM) that leverages features from previous frames to sup-
plement the information of missing objects in the current frame. Specifically, this module
leverages the spatial correlation between the current frame and the previous frames to
obtain offsets, which are subsequently used in a deformable convolution [26] layer to warp
the features of the previous frames. Next, the propagated features and the features of
the current frame are fused to improve the coherence of object detection. Further, we
design an object topology-integrated embedding module (TIEM) to model the topological
relationships between the objects and the environment. More specifically, we exploit a
global and sparse approach based on a deformable attention mechanism for effective global
relationship modeling.

In summary, the main contributions of this paper are as follows:

• We design a novel temporal feature aggregation module to enhance the temporal
consistency of network perception. By adaptively fusing multiple frame features, we
improve the robustness of perception in UAV scenarios, including occlusion, small
objects, and motion blur.

• We propose a topology-integrated embedding module to model the long-range depen-
dencies of the entire image in a global and sparse manner. By incorporating global
contextual information through a deformable attention mechanism, the discrimina-
tive power of the object embedding is enhanced, leading to improved accuracy in
data association.

• Combining the two proposed modules together, our approach shows advanced per-
formance on two existing UAV multi-object tracking benchmarks: VisDrone [11] and
UAVDT [12].
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Figure 1. Comparison between (a) the separate detection and embedding method, (b) the joint
detection and embedding method, and (c) the proposed tracker. The TFAM module aggregates
multi-frame features, and TIEM establishes topological relationships between the object and other
objects as well as the environment.

This paper is organized as follows. Section 2 reviews the related work. Section 3
describes our proposed model. Section 4 provides the experimental results and ablation
analysis. Section 5 concludes the paper.

2. Related Work
2.1. Multi-Object Tracking (MOT)

MOT is a technology with diverse applications that has garnered significant attention
from scholars. In its early stages, researchers primarily focused on leveraging optimization
algorithms to derive object trajectories [27,28]. To make the multi-object tracking algorithm
more practical, Bochinski et al. proposed the simplest IOUTracker [29], which relies solely
on the intersection over union of bounding boxes to achieve tracking. Based on this,
researchers added the motion model [13] and the Kalman filter [30] to predict the position
of the target in the next frame. Despite exhibiting fast running speeds and significantly
improved performance, this model not perform well in challenging scenarios, such as those
with occlusion and object loss. To this end, researchers [14,15] introduced re-identification
(ReID) features as appearance models to improve the accuracy of the association between
trajectories and detection results. MOANA [31] is an adaptive appearance model that learns
online the long-term changes in the appearance of objects. Its main focus is on solving the
problem of object appearance changes to improve tracking performance. However, the
additional introduction of the ReID model with individual object image patches as inputs
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makes it a computational bottleneck in the overall tracking system. Furthermore, it is
imperative to note that the ReID feature extraction approach, which relies on object patches,
may manifest itself as being unreliable, consequently leading to sub-optimal tracking
outcomes. Wang et al. [32] proposed a tracklet booster algorithm that can be embedded
into existing trackers.

2.2. Joint Detection and Tracking

To improve the speed of operation of the entire tracking system, researchers [22,33,34]
integrated the object detection and extraction of ReID features into the same neural network
to share most of the computations. JDE [33] was the first work to do so, with the innovative
addition of a ReID branch to the one-stage detector, YOLOv3 [35]. FairMOT [22] achieved
more balanced detection and recognition tasks by reducing anchor ambiguity using an
anchor-free detector, CenterNet [18]. In addition to these joint detection and embedding
methods, some other one-stage trackers have emerged. Tracktor [21] implements the
inter-frame association of object trajectories directly using the detector’s regression head.
CenterTrack [36] and ChainedTracker [37] employ a multi-frame approach to predict the
bounding boxes for consecutive frames, which facilitates efficient short-term associations,
ultimately obtaining long-term trajectories. Nevertheless, these techniques tend to generate
numerous identity switches owing to their inability to capture long-term dependencies.

2.3. Regression-Based Tracking Method

Feichtenhofer et al. [38] proposed a multi-task network to perform joint detection and
tracking. This network makes use of a convolutional neural network to extract features
from input frames and generate corresponding feature response maps. A correlation layer is
then employed to compute the local similarity between the feature maps of two consecutive
frames. Finally, position-sensitive region of interest (RoI) pooling is performed on the
feature response maps of each frame to obtain detection results on a single frame. The same
process is executed on the correlated features to compute the objects’ offsets in adjacent
frames, facilitating the association of objects across neighboring frames. Tracktor [21]
utilizes a two-stage object detector, Faster R-CNN [39], where region of interest (RoI)
layers in the current frame are generated based on the bounding boxes of objects in the
previous frame. The bounding box in the current frame is considered as the same object
if its intersection over union (IoU) with the object’s bounding box in the previous frame
is deemed sufficiently high, thus establishing the association. CTrack [37] integrates the
regression results of two paired bounding boxes generated for overlapping nodes that
cover two adjacent frames. Inter-frame regression is accomplished via target attention
and identity attention, which are introduced by the detection module. This method boasts
a simple structure and operates at a high speed. Building upon Tracktor, Guo et al. [40]
proposed a method to improve tracking performance by leveraging the synergistic effect
between position prediction and embedded association. These two tasks were correlated
through time-aware object attention and interference attention, as well as identity-aware
memory aggregation. Specifically, the attention module directs predictions to focus more on
the target and reduce interference, thus extracting more reliable embedding for associations.
On the other hand, these reliable embeddings enhance identity awareness through memory
aggregation, strengthening the attention module and suppressing drift. This synergistic
effect between position prediction and embedded association improves robustness to
occlusions and yields better performance in occluded scenarios.

2.4. Attention-Based Methods

In recent years, the success of transformer-based models in computer vision, particu-
larly in the field of object detection, has led to the emergence of several transformer-based
approaches for MOT. Notable among them are TransTrack [41], TrackFormer [42] and
MOTR [43], all of which are online trackers based on DETR [44] and its variants. Track-
Former utilizes track queries to maintain object identities and suppress duplicate tracks.
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TransTrack, on the other hand, employs previous object features as track queries to acquire
tracking boxes and associates detection boxes based on IoU matching. Additionally, MOTR
performs end-to-end object tracking by iteratively updating the track query without requir-
ing post-processing. MeMOT [45] is an end-to-end tracking method similar to MOTR based
on attention, which enables the prediction of object states through the attention mechanism.
GTR is an offline transformer-based tracker that employs queries to divide detected boxes
into trajectories all at once instead of generating tracking boxes. Although these methods
explore new tracking paradigms, their performance is still sub-optimal to that of advanced
tracking algorithms.

2.5. Graph-Based Methods

The use of graph optimization [27,46] for MOT is a technique that was commonly used
in the past, which uses a single object obtained by cropping as a node. However, recent
advancements have shown that graph-neural-network (GNN)-based methods [23,47,48]
are a promising alternative. STRN [47] uses a graph convolutional network (GCN) to
propagate features across spatial–temporal space. Another approach, MPN [23], utilizes
a message-passing network (MPN) to parse the information and associate detections
through edge classification. GM-Tracker [48] models the relationships between tracklets
and the intra-frame detections as a general undirected graph. These methods model the
relationships between objects at the instance level only. In contrast to alternative approaches,
our methodology operates at the frame feature level. This technique confers a notable
advantage by enabling the extraction of information from both foreground and background
elements while minimizing the loss of contextual information.

3. Method

Given a video sequence {It ∈ R(H×W×3)}T
t=1 obtained by a moving UAV, we aim to

give the categories, bounding boxes, and object identities for all objects of interest. Figure 2
shows the overall pipeline of the proposed method. Our approach consists of five main
components, namely, generic feature extraction, multi-frame feature aggregation, detection,
object embedding enhancement, and association. At first, the backbone Φ (DLA-34 [49])
extracts the feature map f ∈ R(H′×W ′×C) of each frame, where H′ = H

4 and W ′ = W
4 . Our

main contributions lie in the proposal of the temporal feature aggregation module (TFAM)
and the topology-integrated embedding module (TIEM). In the association stage, we utilize
the Hungarian [50] matching algorithm to allocate the detected objects to the corresponding
trajectories based on the acquired detection results and object embedding features.

𝚽

𝑰𝒕 𝟐

𝑰𝒕 𝟏

𝑰𝒕

𝑭𝒕 𝟐

𝑭𝒕 𝟏

𝑭𝒕

TFAM
𝑭𝒕

Detection

Re-ID

heatmap

width and height

center offset

TIEM embeddings

Affinity matrix

Detections Tracklets

Inputs AssociationFeature extraction and aggregation

Figure 2. An overview of the proposed method.

3.1. Temporal Feature Aggregation

Addressing motion blur and occlusion is a critical aspect in UAV scenarios, and a
key strategy involves supplementing the missing object cues. In the context of videos,
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where a temporal dimension is present, it is often assumed that absent object cues in the
current frame may have been visible in previous frames. Thus, utilizing previous frames
to enhance feature representation is a natural approach. However, due to the motion of
objects and the UAV, the features of different frames are not spatially aligned, which further
exacerbates the problem. To solve this problem, we design a novel temporal feature fusion
module, shown in Figure 3. It consists of two steps, feature propagation and adaptive
feature aggregation.

3.1.1. Feature Propagation

Denote by Fq ∈ RH′×W ′×C and Fr ∈ RH′×W ′×C the feature map of the current frame
(or query frame) and a reference frame (namely, a previous frame), respectively. To achieve
the propagation of the reference feature maps, we exploit a single layer of deformable
convolution (DCN) [26]. DCN takes a reference feature map Fr and a spatial offset D as
input and outputs a calibrated feature F̃r. We first calculate the spatial offset D based on
the spatial correlation [51] between Fq and Fr. Formally, the ’correlation’ of two patches
centered at xq in Fq and xr in Fr can be formulated as

c(xq, xr) = ∑
o∈[−k,k]×[−k,k]

Fq(xq + o)Fr(xr + o)T . (1)

The above operation will cover a spatial area of d × d centered on xq. The larger
the d, the larger the range of position offsets that can be handled. The output of the
correlation is in four dimensions, where each pair of 2D positions produces a corresponding
correlation value. In practice, we reshape the relative displacements in channels and
obtain S ∈ RH′×W ′×d2

. Then, the spatial offset D ∈ RH′×W ′×2K2
is calculated by three

convolutional layers, where K is the size of the DCN convolutional kernel. Then, given
the spatial offset D and a previous feature map, the propagated feature is obtained via a
DCN as

F̃r = DCN(D, Fr). (2)

𝑭𝒕 𝟐

𝑭𝒕 𝟏

𝑭𝒕
C

C

C DCN

DCN
𝑭𝒕 𝟐

𝑭𝒕 𝟏𝑪𝒐𝒏𝒗.

𝑪𝒐𝒏𝒗.

H W d H W 2𝐾 𝑭𝒕

Correlation DCN Deformable Conv. Element-wise Sum

H W d H W 2𝐾

Figure 3. The architecture of the proposed temporal feature aggregation module. For the sake of
simplicity, the adaptive feature aggregation step is not shown in the above figure.

3.1.2. Adaptive Feature Aggregation

We propose to improve the perception of the tracker for occlusion, blur, and small
objects by aggregating the propagated features of L previous frames and the feature map
of the current frame Ft. Specifically, we first obtain the global and local information of each
feature map by global average pooling and a point-wise convolution operation. Then, the



Drones 2023, 7, 389 7 of 19

adaptive weights for each frame are obtained from a convolutional layer and subsequent
softmax calculations. The adaptive weight indicates the importance of the buffer feature
maps {F̃L, F̃L−1, · · · , Ft} at each spatial location. The reinforced feature map is denoted as
F̂t, which can be calculated by the following equation:

F̂t = wt ⊗ Ft +
L

∑
j=1

wt−j ⊗ F̃t−j, (3)

where w ∈ RH′×W ′×1 and ∑L
j=0 wt−j = 1. ⊗ denotes the element-wise multiplication. The

reinforced feature map F̂t is fed into the subsequent head network to obtain the bounding
boxes and object embedding features. This has the potential to detect missed objects and
improve the consistency of the object ID features, resulting in more complete trajectories.

3.2. Topology-Integrated Embedding Module

It is an intuitive approach [22] to extract the object embeddings based on the object
center location directly from the feature map obtained from the ReID branch. Never-
theless, utilizing extracted point-wise embeddings directly, without taking contextual
information into account, results in weak discriminative capabilities. As a consequence, it
leads to inaccurate matching and sub-optimal tracking outcomes. Exploiting an attention
mechanism [52] for long-range modeling is a straightforward strategy, but the quadratic
complexity of its global operations limits fast training and applications to larger-resolution
feature maps.

Given the ReID feature map Fid ∈ RH′×W ′×C, we reshape it as a sequence x ∈ RN×C,
where N = H′W ′. With x as input, the vanilla multi-head self-attention mechanism (MHSA)
can be formulated as follows:

q = xWq, k = xWk, v = xWv,

z(m) = φ

(
q(m)k(m)>
√

d

)
v(m), m = 1, . . . , M,

z = Concat
(

z(1), . . . , z(M)
)

Wo,

(4)

where Wq, Wk, Wv, and Wo ∈ RC×C are learnable projection matrices. φ(·) denotes the
softmax function, m denotes the number of heads, and d = C/M is the dimension of each
head. The computational complexity is O(N2C), which grows quadratically with respect
to the size of the input feature map.

To maintain the long-range dependence of the attention mechanism and reduce compu-
tational expenses, we design an object-topology-integrated embedding module, illustrated
in Figure 4, which incorporates deformable attention [53]. This module enables the es-
tablishment of a global sparse relationship with both other objects and the surrounding
environment. Specifically, a uniform grid p ∈ R(HG×WG) is generated as reference for the
input feature map Fid, where HG = H′/r, WG = W ′/r, and r is the down sampling factor.
A lightweight sub-network θ(·) takes q as input and predicts the offset ∆p = θ(q) for it.
For training stability, the size of ∆p is constrained by a preset coefficient s to avoid too large
an offset, i.e., ∆p← stanh(∆p). Then, the features can be sampled based on the reference
grid p and offsets ∆p to obtain values and keys. We thus have

q = xWq, k̃ = x̃Wk, ṽ = x̃Wv,

With ∆p = θ(q), x̃ = G(x, p + ∆p).
(5)

where k̃ and ṽ denote the deformed keys and values, respectively. Since ∆p is usually
fractional, the sampling function G(·, ·) is implemented by bilinear interpolation to achieve
a differentiable equation
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G(I; (px, py)) = ∑
(ix ,iy)

g(ix, px)g(iy, py)I[ix, iy, :], (6)

where g(a, b) = max(0, 1− |a− b|) and (ix, iy) indexes all locations on I ∈ RH′×W ′×C. In
addition to a deformable multi-head attention(DMHA) block, the TIEM also contains a
feed-forward network (FFN) and a layer normalization layer (LN) layer [54]. The TIEM
module can be formulated as

ẑ = DMHA(z) + z

z = LN(FFN(ẑ)) + ẑ,
(7)
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Figure 4. Diagram of the proposed feature enhancement module.

3.3. Optimization Objectives

The proposed network contains detection and re-identification branches and multiple
optimization objects. Here, we present the optimization objects of the task separately.

Detection branch. First, the central location of the objects of interest is obtained by the
heatmap branch. The expected response of a location within a heatmap is one when it
coincides with the center of the ground-truth object. The response value decreases expo-
nentially as the distance between the heatmap location and the object center increases.
For each bounding box annotation bi

m = (xi
1, yi

1, xi
2, yi

2) of class m in the image, we

can obtain its central location (ci
mx, ci

my) as ci
mx =

xi
1+xi

2
2 and ci

my =
yi

1+yi
2

2 , respectively.
Next, by dividing down the sampling stride, its position on the feature map becomes

(c̃i
mx, c̃i

my) = (b ci
mx
4 c, b

ci
my
4 c). Suppose the image has N object bounding boxes. The heatmap

ground truth of the class m can be obtained by the following equation:

Ymxy =
N

∑
i=1

exp(−
(x− ci

mx)
2 + (y− ci

my)
2

2(σp)2 ), (8)

where Ymxy is the pixel value at coordinate (x, y) in the rendered heatmap, and σp represents
the standard deviation of the object size. Ŷmxy denotes the predicted heatmap pixel at (x, y).
The loss for this predicted value can be calculated by the following equation:

Lh
mxy =

{
(1− Ŷmxy)

α log Ŷmxy, if Ymxy = 1;

(1−Ymxy)
β(Ŷmxy)

α log(1− Ŷmxy), otherwise,
(9)

where α and β are hyper-parameters [18]. Further, we can formalize the loss function of the
heatmap for M categories, as follows:

Lheat = −
1
N

M

∑
c=1

H

∑
y=1

W

∑
x=1

Lh
xy. (10)
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Then, the object is located more precisely by offset and size branches. In this case,
the offset branch serves to eliminate the error of up to four pixel values introduced by the
down-sampling process. The optimization objectives of these two branches are given in the
following equation:

Lbox =
N

∑
i=1
‖oi − ôi‖1 + λs‖si − ŝi‖1, (11)

where oi and si are the predicted values of the offset and size branches, respectively. The
weighting parameter λs is set to 0.1, as in the original CenterNet [18].

ReID branch. We formalize the ReID task as a classification problem, where objects of
the same identity are treated as the same category. Based on the center position (c̃i

x, c̃i
y)

of the GT annotation in the heatmap, we extract the ReID feature vector exy of the object
at the corresponding position on the feature map output from the ReID branch. Addi-
tionally, a fully connected layer and a softmax operation are exploited to transform it to
the distribution vector P = {pi}K

i=1, where K is the total number of categories. Suppose
the one-hot annotation of the ReID task is Q = {qi}K

i=1; then, the loss function can be
formalized as follows:

Lid =
N

∑
i=1

K

∑
j=1

qj log(pi). (12)

Overall Losses. By adding up the above losses, we can train both the detection and ReID
branches. Specifically, we adopt uncertainty loss [55] to automatically balance the detection
and re-identification tasks.

Ldet = Lheat + Lbox, (13)

L =
1
2
(

1
ew1

Ldet +
1

ew2
Lid + w1 + w2), (14)

where w1 and w2 are learnable coefficients that balance the two tasks.

3.4. Online Tracking

In this subsection, we describe the online tracking process of the proposed method
in detail. We adopt the cascade association strategy used in previous works [15,22,33]. In
the first round of association, we calculate the object embedding features similarity Ae
between candidate objects and the existing trajectories. Furthermore, we use a Kalman
filter [30] to predict the spatial coordinates of tracklets in the current frame. Subsequently,
the Mahalanobis similarity, denoted as Am, is calculated between the predicted tracklet
positions and the corresponding detected bounding boxes as in DeepSORT [14]. Next, we
fuse Ae and Am by the following equation to obtain the final affinity matrix A:

A = αAe + (1− α)Am, (15)

where α is a weighting coefficient and is set to be 0.98. Finally, we obtain optimal bipartite
matching results using the Hungarian algorithm [50]. It is worth noting that in cases
where the tracklet and the candidate target are located at a significant spatial distance, the
corresponding match will be deemed as unreasonable and rejected.

In the second association process, we rely solely on the intersection over union (IOU)
value of the bounding box between unmatched objects and trajectories to make associations.
Unmatched candidates are initialized as new tracks, and unmatched tracklets are kept for
up to 30 frames in case of reappearance. To address the variations of objects in appearance,
we update the identity embedding of tracklets that have been successfully matched in each
time step t. This update is performed according to the following equation:

ẽt = βẽt−1 + (1− β)e, (16)
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where e represents the object feature embedding of the assigned object and ẽt indicates the
embedding of a tracklet at time step t. β is a momentum coefficient for smoothing and is
set to be 0.9.

4. Experiments
4.1. Datasets and Metrics
4.1.1. Dataset

To verify the effectiveness of the proposed method, research experiments were con-
ducted on two existing UAV video multi-object tracking datasets, namely VisDrone2019 [11]
and UAVDT [12]. VisDrone2019 contains 56 training video sequences, 7 validation se-
quences, and 17 test-dev sequences. The videos includes a diverse range of scenarios,
including sports fields, commercial streets, highways, and suburbs. In evaluating the
multi-object tracking task, five categories of objects were considered: cars, buses, trucks,
pedestrians, and vans. In contrast, only a single category of objects, cars, is tracked in
the UAVDT dataset. This dataset consists of 50 videos (30 for training and 20 for testing),
mainly taken in plazas, intersections, and highways under different lighting conditions
(e.g., day, night, fog, etc.). Videos captured by UAVs face more complex challenges than
other multi-object tracking benchmarks [2,3]. These challenges include a higher proportion
of small objects (whose pixel values are less than 32 × 32) and motion blur caused by
the motion overlap between the UAV and the objects. These challenges may cause object
tracking to fail.

4.1.2. Metrics

We used the official evaluation toolbox provided by these two benchmarks to evaluate
the performance of our algorithms. The evaluation metrics mainly include multiple object
tracking accuracy (MOTA) [56], the number of false negatives (FN), the number of false
positives (FP), and the number of identity switches (IDs). The MOTA is defined as follows:

MOTA = 1− FN + FP + IDs
GT

, (17)

where GT is the number of ground truth bounding boxes. The identification F1-score
(IDF1) [57] matches the ground truth and the predicted trajectories and calculates the
corresponding F1-score on the trajectory level. It is defined as:

IDF1 =
|IDTP|

|IDTP|+ 0.5|IDFN|+ 0.5|IDFP| , (18)

where IDTP, IDFN, and IDFP are the true-positive, false-negative, and false-positive trajec-
tories. IDF1 mainly focuses on measuring the association performance of trackers. MOTA
and IDF1 are the main metrics for measuring the models’ tracking performances.

4.2. Implementation Details

We trained the proposed network with a backbone of a variant DLA-34 pre-traind on
the COCO dataset [58]. The parameters of the proposed model were updated by exploiting
the Adam optimizer [59] with an initial learning rate of 7 × 10−5 for 30 epochs. The
learning rate was decreased by a factor of 10 at the twentieth epoch. We used common
data augmentation techniques, including rotation, scaling, and color jittering, and the input
image was resized to 1088× 608. During the training phase, a set of L reference frames
was randomly selected from a range of 5 frames centered around the current frame. In
the inference phase, the L consecutive previous frames were utilized. We conducted the
experiments using two NVIDIA A100 GPUs with a batch size of 12.
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4.3. State-of-the-Art Comparison

As can be seen from Table 1, our method achieves the best performance regarding
MOTA, IDF1, and MT. Our method achieves 30.9% MOTA and 42.7% IDF1, which represent
significant improvements over the baseline method, FairMOT [22], by 2.2% and 2.9%,
respectively. Meanwhile, compared with the transformer-based end-to-end approach,
Trackformer [42], the proposed tracker has more significant advantages, reaching values
of 5.9% and 12.2% for the MOTA and IDF1 metrics, respectively. In addition, our method
outperforms all other methods in terms of MT metrics, which indicates that our method
maintains a more complete trajectory.

UAVDT. We further evaluated the proposed method on the UAVDT benchmark.
As can be seen from Table 2, our method outperforms the previous methods in most
metrics. Notably, our proposed method outperforms FairMOT [22] by 2.5% and 1.5% in the
evaluation metrics of MOTA and IDF1, respectively. Furthermore, our proposed tracker
achieves the highest scores in terms of the MT, FN, and IDs compared to the existing
methods. These findings collectively demonstrate the outstanding performance of our
proposed model, which can be attributed to the TFAM and TIEM modules that are designed
to improve the consistency of the detection and obtain discriminative object embedding.

Table 1. Results on VisDrone2019 test-dev dataset. The best results are shown in bold.

Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDs↓ FM↓

MOTDT [15] −0.8 21.6 68.5 87 1196 44,548 185,453 1437 3609
SORT [13] 14.0 38.0 73.2 506 545 80,845 112,954 3629 4838
IOUT [29] 28.1 38.9 74.7 467 670 36,158 126,549 2393 3829
GOG [60] 28.7 36.4 76.1 346 836 17,706 144,657 1387 2237
MOTR [43] 22.8 41.4 72.8 272 825 28,407 147,937 959 3980
TrackFormer [42] 25.0 30.5 73.9 385 770 25,856 141,526 4840 4855
FairMOT [22] 28.7 39.8 75.1 449 758 22,771 137,215 3611 6162
Ours 30.9 42.7 74.4 491 668 27,732 126,811 3998 7061

Table 2. Results on UAVDT test dataset. The best results are shown in bold.

Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDs↓ FM↓

CEM [61] −6.8 10.1 70.4 94 1062 64,373 298,090 1530 2835
SMOT [62] 33.9 45.0 72.2 524 367 57,112 166,528 1752 9577
GOG [60] 35.7 0.3 72 627 374 62,929 153,336 3104 5130
IOUT [29] 36.6 23.7 72.1 534 357 42,245 163,881 9938 10,463
CMOT [63] 36.9 57.5 74.7 664 351 69,109 144,760 1111 3656
SORT [13] 39.0 43.7 74.3 484 400 33,037 172,628 2350 5787
DeepSORT [14] 40.7 58.2 73.2 595 338 44,868 155,290 2061 6432
MDP [63] 43.0 61.5 73.5 647 324 46,151 147,735 541 4299
FairMOT [22] 44.5 66.3 72.2 640 193 71,922 116,510 664 6326
Ours 47.0 67.8 72.9 652 193 68,282 111,959 506 5884

4.4. Ablation Analysis

We trained the model on the training set of VisDrone 2019 and validated the effective-
ness of the proposed method on the VisDrone validation set. In this section, we adopted
FairMOT with a backbone of variant DLA-34 [18] as the baseline. We conducted a se-
ries of ablation analyses on the critical components and related hyper-parameters of the
proposed method.

4.4.1. Component-Wise Analysis

As shown in Table 3, the proposed temporal feature aggregation module brings a 2.4%
gain in MOTA, verifying that fusing multi-frame features can improve detection consistency
and reduce false positives. The topology-integrated embedding module improves IDF1
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from 43.2% to 45.7%, indicating its effectiveness in enhancing the discriminative nature of
target embedding. Finally, by combining the two, our method achieves a boost compared
to the baseline method, with MOTA and IDF1 improving by 3.1% and 2.9%, respectively.

Table 3. Component-wise analysis of the proposed method. The best results are shown in bold.

TFAM TIEM MOTA↑ IDF1↑ FP↓ FN↓ IDs↓

26.0 43.2 10,648 41,605 1019
X 28.4 44.0 9074 41,398 948

X 27.3 45.7 11,645 39,601 971
X X 29.1 46.1 9589 40,380 938

4.4.2. Effect of Different Feature Fusion Strategies

As shown in Table 4, we compared different strategies for fusing video frame features.
Among them, the first strategy directly added F̃L−1 with Ft in an element-wise manner. The
second strategy cascaded them directly, resulting in a 0.5% MOTA improvement compared
to the former. The adaptive convergence strategy further improves the MOTA by 1.3%
compared to the cascade strategy, indicating that adaptive fusion based on the feature map
is optimal.

Table 4. The ablation study of feature aggregation strategy. The best results are shown in bold.

Fusion Strategies MOTA↑ IDF1↑ FP↓ FN↓ IDs↓

Addition 26.6 45.5 11,109 40,635 1001
Concatenation 27.1 45.8 10,815 40,708 851
Adaptive feature aggregation 28.4 44.0 9074 41,398 948

4.4.3. Effect of Different Sizes of Local Regions

Table 5 showcases the impact of different local sizes, d. As described in Section 3.1, a
larger value of d covers a broader spatial area and enables the handling of larger motion off-
sets. The results indicate that increasing the local size can enhance the tracking performance
by expanding the spatial coverage and accommodating larger motion changes. Therefore,
an appropriate local size d of 16 was adapted to optimize the tracking performance.

Table 5. Effect of spatial local size d. The best results are shown in bold.

d MOTA↑ IDF1↑ FP↓ FN↓ IDs↓

4 26.6 44.4 11,532 41,187 905
8 27.4 46.4 11,112 40,122 912
16 28.4 44.0 9074 41,398 948
20 26.3 45.6 11,279 40,710 937
24 25.1 44.7 12,369 40,549 906

4.4.4. Effect of Number of Previous Features

In addition to the aforementioned analysis, we investigated the impact of fusing
different numbers of previous features (as defined in Equation (3)) and present the results
in Table 6. It was found that the optimal value of MOTA (28.4%) is achieved when the
number L of preceding features is chosen as 2. However, continuing to use more previous
frame features does not result in more gain, so L was set to 2. As expected, aggregating
multi-frame features helped to improve the perception of the tracker.
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Table 6. Ablation studies on number of previous features, L. The best results are shown in bold.

L MOTA↑ IDF1↑ FP↓ FN↓ IDs↓

1 28.1 44.4 9679 41,077 900
2 28.4 44.0 9074 41,398 948
3 27.5 45.4 9958 41,253 850
4 27.4 43.2 9034 42,429 735
5 27.6 44.2 8759 42,501 791

4.4.5. Effect of Different Sizes of the Coefficient s

As demonstrated in Table 7, we explored the impact of different sizes of s in the
topology-integrated embedding module on the tracking performance, particularly focusing
on the IDF1 metric, which measures trajectory consistency. A noteworthy observation is
the significant improvement in IDF1 (from 44.3% to 45.7%) when s is increased from 2 to 4.
However, when s is further increased beyond this point, there is a decline in performance.
To strike a balance between MOTA and IDF1, we set the value of s to 4.

Table 7. Ablation on the sizes of the coefficient s. The best results are shown in bold.

s IDF1↑ MOTA↑ FP↓ FN↓ IDs↓

2 44.3 25.4 11,434 41,155 976
3 44.7 27.7 8880 42,300 796
4 45.7 27.3 11,645 39,601 971
5 43.4 25.4 10,175 42,422 968
6 44.5 25.7 12,027 40,307 1034

4.5. Qualitative Results

In this section, we first give the visualization results of the proposed method and
analyze its robustness. We compare the proposed method with the baseline method
FairMOT in Figure 5. As shown in Figure 5a,b, FairMOT failed to detect and track a large
number of objects in the areas marked by red dashed boxes, while our proposed method
successfully located and tracked these objects in these challenging low-light scenes, which
we attribute to the proposed multi-frame feature fusion module and target embedding
feature enhancement module. This validates the idea that multi-frame features can provide
more temporal contextual cues and that the spatial–topological relationships can improve
the discriminative power of object feature embeddings. In addition to showing two random
cases in the VisDrone2019 dataset, we also present another case in the UAVDT dataset in
Figure 5c. Overall, our experimental results demonstrate the superiority and effectiveness
of our proposed method compared to FairMOT.

We also present more qualitative results on the VisDrone2019 [11] test set (refer to
Figure 6) and the UAVDT [12] test set (refer to Figure 7) in this section. It can be observed
that our approach is effective in detecting objects at different scales (even with small objects)
and maintaining their identity correctly. Moreover, it can be noticed that the proposed
tracker performs robustly in a variety of scenarios (during the daytime and nighttime and
over commercial streets and intersections) and performs well even in crowded scenarios.
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Figure 5. Robustness analysis of the proposed method compared with FairMOT. The yellow arrows
and red dashed boxes mark the missed objects.
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Figure 6. Qualitative results of the proposed method on VisDrone2019 test-dev set. The different
colored bounding boxes represent different identities, and the frame number is displayed in the
upper-left corner of each frame. Best viewed in color and zoomed in.
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Figure 7. Qualitative results of the proposed method on UAVDT test set. The different colored
bounding boxes represent different identities, and the frame number is displayed in the upper-left
corner of each frame. Best viewed in color and zoom in.

5. Conclusions

In this paper, we propose a novel method for tracking multiple objects in UAV videos
that fully utilizes both temporal and spatial information. Our approach incorporates
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a novel temporal feature aggregation module (TFAM), which effectively incorporates
temporal context to improve the accuracy and consistency of the tracker’s perception
ability. Additionally, we introduce a topology-integrated embedding module (TIEM), which
captures topological relationships between objects and their environments, resulting in
the enhanced discriminative power of the object embedding features. Through extensive
experiments on the VisDrone2019 and UAVDT benchmarks, we demonstrate that our
approach achieves state-of-the-art performance.
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