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Abstract: Since unmanned aerial vehicles (UAVs), such as drones, are used in various fields due to
their high utilization and agile mobility, technologies to deal with multiple UAVs are becoming more
important. There are many advantages to using multiple drones in a swarm, but, at the same time,
each drone requires a strong connection to some or all of the other drones. This paper presents a
superior approach for the UAV network’s routing system without wasting memory and computing
power. We design a routing system called the geolocation ad hoc network (GLAN) using geolocation
information, and we build an adaptive GLAN (AGLAN) system that applies reinforcement learning
to adapt to the changing environment. Furthermore, we increase the learning speed by applying a
pseudo-attention function to the existing reinforcement learning. We evaluate the proposed system
against traditional routing algorithms.

Keywords: UAV; ad hoc; RL; geographic location; routing

1. Introduction

Unmanned aerial vehicles (UAV) were originally developed and used for military
purposes, but as drone technology gradually develops, drones are becoming more popular
and are being used in various fields [1]. There are various advantages in utilizing multiple
drones as a swarm [2]. Since the UAV network generally covers a wide range of maps in a
variety of environments, it is essential to ensure a strong connection between objects within
the drone squadron. This connection allows the remote ground control unit to receive
control messages and UAVs in the swarm to transmit messages to each other. However,
the traditional routing algorithms have limitations because they do not guarantee several
UAV characteristics, such as mobility, communication instability, lightweight equipment,
and wireless communication [3]. In order to prevent data omission when transmitting and
receiving UAV data and to reduce data transmission delays, it is necessary to establish an
optimal routing algorithm suitable for the UAV environment [4]. In this case, it is possible to
form an ad hoc network in which data can be transmitted via multiple unmanned moving
objects [5]. Ad hoc routing methods use a UAV exchange link or node state data in the UAV
network to obtain a routing path in order to send information to a specific UAV [6]. Ad
hoc is suitable for an environment that utilizes a mobile host due to its mobility feature. It
enables networks between mobile hosts in an environment where centralized management
is not supported [7]. However, ad hoc routing can lead to unnecessary delays and frequent
network partitioning, as each UAV is extremely mobile and the communication link is
unstable, resulting in constantly changing routing paths for each pair of UAVs [8].

Location-based routing in ad hoc networks has the advantage of enabling efficient
routing by using the geographical location information of nodes [9]. In this process, all
transmission nodes deliver the data packet to their nearest neighbor node as the destination
node. The periodic exchange of location information between UAVs is required to perform
reliable routing. However, this process has two problems: the first is unnecessary energy
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consumption by nodes in areas where there is no data transfer, and the second is the
inaccuracy of neighbor node location information at the time of data transfer [10]. The
location-based routing algorithm proposed in this paper can cope with the large amount of
communication, irregular mobility, and wide range of communication that occurs when
operating multiple UAVs.

When multiple UAVs form a network with each other, numerous communications
between UAVs can occur, which can burden the network and degrade the quality of
communication [11]. In addition, UAVs have a characteristic in that the type of network
and transmission path can be flexibly changed according to a given environment and task
due to their high mobility [12]. In this case, additional communication between UAVs takes
place. At this time, since each UAV establishes a new communication path in a different
communication environment, it becomes more burdensome to build a network. If some
UAVs in the cluster are accidentally located outside the network range, cluster network
communication is disrupted and errors occur during transmission. In this paper, we
propose a routing algorithm called the geolocation ad hoc network (GLAN) that minimizes
the communication burden and adapts to the changing communication environment.

We construct an adaptive geographic ad hoc routing algorithm for UAV swarms based
on location information. This routing protocol communicates through broadcasting, but by
forwarding range settings learned using reinforcement learning (RL), routes are designed
by connecting only the necessary links for data transmission, as shown in Figure 1.

Figure 1. Forwarding system in GLAN.

The traditional routing method, LAR, is finite because it estimates the expected area us-
ing the last known destination location to reduce the search space for the desired route [13].
Our system continuously updates the location of the destination so that an accurate route
can be set. GFG is performed in a greedy manner, forwarding packets to neighbors closer
to the destination’s physical location; it can be repeated at intermediate nodes and overload
the network [14]. GLAN enables optimized routing by learning the optimal path through
simulation according to the given environment.

Compared to conventional mapping technologies, our proposed system has several
advantages, as described below.
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• Routing algorithm considering UAV characteristics. Previous approaches require the
maintenance of routing tables to pass data, which can waste memory and power and
can lead to network bottlenecks. This algorithm can deliver data in any environment,
without a routing table, because all UAVs have IP settings related to geographic
location information in consideration of mobility, which is a UAV characteristic.

• End-to-end principle preserved. Previously, when forwarding data, passing nodes
needed to check whether they were the final destination of the data. The proposed
system does not pass datagrams with the support of the application layer while
changing the source and destination information. This means that our correspondence
does not violate the end-to-end principle.

• Accurate delivery. The routing method used to deliver UAV data so far has been
unable to solve communication problems that occur in the middle. However, since
this system primarily delivers data through broadcasting, the probability of data being
delivered to the destination is high; moreover, since it divides the forwarded area,
data can be delivered accurately with less power.

The rest of this paper is organized as follows. In Section 2, we introduce the related
research and show differences and similarities with our system. Then, we introduce the
routing protocol design of our system in Section 3 and the RL approach on GLAN in
Section 4. We describe our system’s performance and compare it with other algorithms in
Section 5. Finally, Section 6 concludes the paper.

2. Related Work

In this section, we address the motivation and the major approaches to the system
design. One major issue of the routing protocol between UAVs in a wireless network is that
it is difficult to avoid delays on the network because of the altering positions of UAVs [15].
A minor delay between the sending and receiving of data can have a huge impact on the
quality of the experience. Numerous network routing protocols have been proposed to
solve this problem.

2.1. Location-Based Network

Location-based routing algorithms help to improve the QoE. Location-aided routing
(LAR) is a method of broadcasting only in a limited area using the location information
of the source node and the destination node [16]. It is assumed that each node knows its
physical location using GPS. LAR operates by setting an expected area based on location
information between a source node and a destination node to gradually reduce the flooding
area. As a result, route request messages are less often sent to unnecessary locations, which
can provide more resources for data transmission. LAR is an advantageous routing protocol
for dense networks. Greedy Perimeter Stateless Routing (GPSR) involves transmitting data
by selecting the node closest to the destination among the nodes in its transmission range
using its location information [17]. This method delivers data through the most optimized
path between the source and the destination. Each node configures the routing table by
periodically sending notification messages to each other to maintain information between
neighboring nodes. GPSR consists of only information on nodes within its transmission
range, not information on the entire network. Therefore, since a message is not sent to the
entire network when searching for a route, the number of cases in which a route request
message is delivered to an unnecessary location is reduced. It is a routing protocol used to
secure a minimum path from a source node to a destination node. Location-based network
routing still causes unnecessary interruptions and overloads the network.

2.2. Ad Hoc Networking

Ad hoc networks are primarily used in changing environments and can be used to
address the limitations of infrastructure networks [18]. They are suitable for cases in which
it is difficult to construct a wired network or can be used for a short period after the network
is constructed. Ad hoc networks have the advantage of fast network configuration and
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low costs, because there is no restriction on host movement and there is no need for wired
networks and base stations [19].

The Optimized Link State Routing (OLSR) protocol is a routing method that main-
tains routing information for all destinations based on the link state and distance vector,
calculates routes in advance, generates routing tables, and updates the routing tables after
determined periods of time [20]. It is suitable for an ad hoc network with a large amount
of location movement. However, it is not suitable for real-time communication because it
requires a search of the entire network when a route is requested, and this may generate a
large amount of control traffic. The Ad Hoc On-Demand Distance Vector (AODV) records
the addresses and hops of the nodes passed by because the source node floods the packet
to find a destination, floods it back to the neighboring nodes that received it, and then
responds to the source node [21]. This routing protocol is a method that transmits data as a
representative reactive routing protocol that sets a routing path only when the topology
changes, and it does not set a routing path if data are not delivered. Ad Hoc Multicast
Routing (AMRoute) and the Ad Hoc Multicast Routing Protocol Utilizing Increasing ID
NumberS (AMRIS) are protocols in which the unique shortest path is determined from
the source side to each destination and data are transmitted through it [22,23]. The On-
Demand Multicast Routing Protocol (ODMRP) and Core-Assisted Mesh Protocol (CAMP)
are protocols in which data are transmitted through one or more paths [24,25].

The Mobile Ad Hoc Network (MANET) and Flying Ad Hoc Network (FANET) con-
sider mobility, which is the most important point for UAV communication [26,27]. MANET
has the advantage that the network is decentralized and the devices are mobile. FANET is
a protocol optimized to track the fast speeds of nodes and rapid network topology changes
by using the concept of a routing protocol in MANET. The ad hoc network has a mobility
feature because it uses mobile hosts, and this makes communication link instability worse.

2.3. Reinforcement Learning

Reinforcement learning (RL) is applied to various fields because it learns through
experience, so it can solve highly complex problems without an accurate mathematical
modeling process [28]. RL, which learns through trial and error to find goals, aims to
learn weights and biases using the concept of rewards, similar to existing neural networks
learning weights and biases through labeled data. In addition, deep reinforcement learning
(DRL), which combines deep learning, has attracted interest among researchers in various
fields because it has the ability to solve large-scale, complex problems [29].

RL is generally recognized as suitable for solving optimization problems related to
the routing of distributed systems. Moreover, it is an efficient alternative to improve the
online awareness of routing protocols in changing environments. Therefore, RL can be used
to optimize resource utilization while providing a high level of QoS. Boyan and Littman
first proposed a Q-learning-based hop-by-hop routing algorithm called Q-routing [30].
Q-Learning Modified AODV (QLMAODV) uses RL to optimize AODV for routing in
MANETs [31]. The RL-Based Self-Routing Protocol (RLSRP) applies reinforcement learning
to address rapid topology changes in FANETs consisting of flying nodes [32].

3. System Design and Algorithm

The following subsections discuss the concepts and details of geographic protocol design.

3.1. Concept of GLAN Protocol

We constructed the GLAN protocol, overcoming traditional routing protocol and ad
hoc network limitations, considering UAV characteristics. Figure 2 shows the concept of
our proposed system. Our system advances from the flooding method, which was based
on UAV routing. GLAN finds a forwarding region (FR) by computing a forwarding angle
to form optimal routes from source nodes to destination nodes by utilizing geographic
location information from each UAV. We optimize the calculated angles using RL and apply
them to UAV systems. In the environment setting before learning, the mobility error for
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each episode is changed significantly so that the mobility characteristics of the UAV can be
considered. The data requested for forwarding are delivered only when the UAV receiving
the data is within the output angle area of the learning model. To check whether it is in the
FR, the system obeys the end-to-end rule of data transmission by comparing only the IP
addresses, rather than using the entirety of the received data.

Figure 2. Concept of GLAN.

3.2. System Overview

Figure 3 is an overall overview of the proposed system. Each UAV in the cluster
extracts the geographic location from a sensor device such as GPS and converts the cor-
responding information into an IP address. Because UAVs can always determine their
positions through positioning devices such as GPS, the algorithm proposed in this system
can be used. Accordingly, the UAV can determine the IP address of another UAV in the
cluster only by location information, without a routing table. After setting the IP address,
the UAVs in the swarm form an ad hoc network. Through this process, the UAVs in the
system are reliable and can communicate with each other much faster.

The UAVs in the swarm that is set up deliver geographic location information to the
UAV server, and the server creates a 3D simulation environment containing the received
location information. Since this system does not use a routing table for data transmission,
it does not select a path to be transmitted but broadcasts to all nodes within the network
scope. Each node verifies that the received data are its own data.

Since the broadcast method is used, data are transmitted to all neighboring nodes,
and when each node broadcasts the transmitted data again, many unnecessary duplicate
messages are transmitted. To solve this problem, our system sets the FR to determine
whether the data are heading toward the destination through the previously created
environment. In order to deliver data between UAVs in the cluster by the optimal route, the
intermediate nodes check whether they are in the FR. The server calculates a forwarding
angle that determines the FR through information on the start node, the arrival node, and
the passing node. In addition, in order to further increase the probability of successful
data transmission, the forwarding angle is learned in consideration of the characteristics
of UAVs whose positions continuously change, so that there is no problem with data
transmission even if the position deployed in the environment changes to a predictable
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extent. By limiting the forwarding area using the forwarding angle, the flooding packet is
reduced, the packet can be trusted, and the packet can be transmitted efficiently.

Figure 3. The overall overview of the proposed system.

The UAV server delivers the learned angle to all UAVs in the cluster, and each UAV
sets routing rules by considering the location and angle of its own node according to the
received angle. The established routing rules determine whether they are in the FR by
considering their IP address, the IP address of the start node, and the IP address of the
final destination node. If the node is in the FR, it continues to forward the data; otherwise,
it discards the data. Through this process, the intermediate node can only serve as a
router, reducing the time spent on data transmission and eventually reducing the network
resources consumed. This system allows a drone in one location to exchange packets with
a drone in another location without the need to run ad hoc routing. In addition, since
broadcasting is used, data exchange is possible without a separate configuration or the
exchange of information between UAVs, such as the link or node status, and the FR is
optimized using RL to reduce unnecessary network resource consumption.

3.3. Geographic Protocol Design

When communicating through a UAV, a problem may occur if a communication
protocol that does not consider the characteristics of the UAV is used. In particular, com-
munication between UAVs can cause problems with data transfer beyond the network
range, because the locations of drones change frequently. If the data to be sent are de-
livered through broadcasting, they can be delivered quickly at once, but this is not safe
because it has a negative effect on the network bandwidth and anyone can receive the
data. Conversely, if we communicate by setting a route, data can be transmitted safely and
quickly, but a large overhead occurs when maintaining or re-establishing a routing table.
A routing system suitable for UAV communication should safely transmit data, consider
UAV mobility, and set a low network load. The protocol proposed in this paper reliably
delivers data through broadcasting and forwarding. Our system reduces the network load
and increases the reliability by adding routing rules, and it also considers the mobility
characteristics of UAVs.

The network area is designed using the current location of the UAV so that the UAVs in
the cluster can transmit and receive data through an optimal route. Longitude, latitude, and
altitude information is obtained through a GPS sensor and the information is entered into
the private A-class IP address of the connected network interface controller (NIC). Therefore,
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the IP addresses of all UAVs contain their own physical address information. UAVs in
the swarm recognize each other’s location addresses to maintain the topology, so they can
access the IP without the need for a separate routing table or re-establishment. Therefore,
it is possible to reduce the overhead that occurs when maintaining or re-establishing a
routing table required for data transmission.

All UAV addresses in the swarm are passed to the main UAV server, and the server
builds a UAV squadron simulation environment using the location information. When a
data transmission request comes from a UAV squadron, the server identifies the source and
destination and calculates the FR angle through the GLAN algorithm in the simulation.
The server delivers the calculated FR angle back to the swarm, and all UAVs in the cluster
set routing rules according to the information received, to determine whether to forward
or discard the received broadcast data. In particular, we use geolocation information to
identify network addresses between UAVs in the swarm, to reduce the need to maintain
routing tables and establish forwarding areas to enable efficient communication. Through
this process, even if the UAV location changes and data are broadcasted, the network load
can be reduced and reliable data can arrive safely.

3.4. GLAN Algorithm

For readability, we define the terminology used in this paper in Table 1.

Table 1. GLAN terminology.

Term Math Expression Meaning

Forwarding angle U The angle of the forwarding
region

Network range T The network range

Source node S A source node with a
geographic location

Intermediate node I An intermediate node with a
geographic location

Destination node D A destination node with a
geographic location

x coordinates xn Longitude of node n

y coordinates yn Latitude of node n

z coordinates zn Altitude of node n

Distance dis (a,b) The distance between a node
and b node

Angle Ang (n) The angle of node n

Cosine cos (n) The cosine of node n

Arccosine acos (N) The arccosine of an angle N

In this subsection, we introduce the GLAN algorithm, which can deliver data in an
optimal direction even when broadcasting. When a data transmission request reaches the
UAV server, the locations of S and D are confirmed in a simulation. Figure 4 presents the
map of the GLAN system.
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Figure 4. Map of GLAN system.

We consider a situation wherein data need to be passed from node S to node D. If the
final destination of transmission is not within the T of the transmitted UAV, a forwarding
process is required. The distance from S to D can be obtained through an equation that can
be expressed as

dis(a, b) =
√
(xa − xb)2 + (ya − yb)2 + (za − zb)2 , (1)

where a is S and b is D. According to Equation (1), since node D is outside the T of node S,
forwarding is required to transmit the data successfully. Therefore, S requests forwarding
to nodes within the T through broadcasting. The intermediate node checks whether its
position is in the FR. The distances between S, D, and I can be obtained through Equation (1),
and the cos value of Ang(S) can be obtained through Equation (2), which can be expressed as

cos(Ang(a)) =
dis2(a, b) + dis2(a, c)− dis2(b, c)

2× dis(a, b)× dis(a, c)
, (2)

where a is node S, b is node I, and c is node D for the situation in Figure 4. Ang(S) can be
obtained through Equation (3), which can be expressed as

d
da

arccos a =
d
da

cos−1 a =
−1√
1− a2

, (3)

where a equals Ang(S). When Ang(S) is obtained through Equation (3), it determines
whether to forward or discard the data by comparison with U. Because Ang(s) has a lower
value than U, the data are forwarded to node D. It can be seen that node I is in the FR,
while nodes Q and R are not.

The process of the GLAN algorithm is expressed in Algorithm 1. Firstly, the algorithm
calculates the distance from node S to I to check whether node I is in the network range
of node S. If d has a larger value than T, it means that node I is out of range of Node S, so
we discard the packets. Otherwise, the algorithm compares U and Ang(S) to determine
whether node I is in the FR. If node I is in the FR, the data are forwarded to node D. This
algorithm is repeated until the packet arrives at its destination.
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Algorithm 1: GLAN algorithm procedure
Input : Routing information: U, T

Geographic location: S, I, D
1 //Initialization
2 s← dis(I, D)
3 i← dis(S, D)
4 d← dis(S, I)
5 Ang(S)← acos(equation(2))
6 if d > T then
7 //check distance from S to I is in network range T

Discard packets
8 else
9 if Ang(S) < U then

10 //check whether Ang(S) is in FR
Forward packets

11 else
12 Discard packets
13 end
14 end

This proposed system reduces the number of links that generate the network load,
which is a problem when broadcasting data through the GLAN algorithm, and delivers
data through an optimized path. The overhead is reduced by allowing the same cluster to
send and receive data by connecting to the IP through location information, without the
need for a routing table. In addition, the reliability of broadcast data that anyone can access
is secured through the UAV swarm ad hoc key.

4. Adaptive GLAN Using Reinforcement Learning

In this section, we present an adaptive GLAN (AGLAN) protocol for UAV networks.
We aim to reduce the memory and computational requirements by applying RL to the
GLAN algorithm. Learning is carried out to converge the angle of the FR determined by the
GLAN algorithm to an optimal angle using attention-enabled deep Q-networks (aDQN). A
customized RL algorithm, aDQN, learns quickly and accurately by combining the attention
mechanism and the existing DQN.

RL is an algorithm that finds a goal by learning through mistakes and rewards. The
objective is to learn the optimal behavior or policy. Since it is a UAV environment where
missions must be performed quickly with little data, a value-based algorithm is more
suitable than a policy-based algorithm. Furthermore, by applying the attention mechanism
to DQN, we speed up the learning rate of DQN. In addition, aDQN can set target policies
so that the UAV network can be optimized, establish optimal policies through sufficient
exploration, and improve the learning accuracy by reducing correlations between states
using experience replay.

We obtain location information and set the routing address of each node. By asso-
ciating the IP address with the geographic location, the FR is determined. Thus, in the
routing process, the unnecessary waste of resources can be prevented. However, this FR is
crucial. To obtainan optimal FR, several aspects should be considered, besides the positions
of UAVs.

4.1. AGLAN Environment Setting

Since the UAVs are clustered, it is necessary that they maintain a specific topology.
The topology used in this system is in the form of a 2 × 2 cube, as in Figure 5. The UAV
swarm topology can be set to a sphere, pyramid, etc. In addition, there is no difficulty in
applying various cluster topologies that are different from the topology discussed in this
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paper, as long as the location information can be easily obtained. We proceeded in the form
of a cube topology that is easy to understand spatially. In Figure 5, the blue UAV is the
source and the red UAV is the destination, and the rest of the UAVs are intermediate nodes.
We applied the simulation environment containing geographic location information and
data transfer information as an RL environment. We considered UAV mobility that varied
according to the environment by adding mobility errors within a certain range defined for
each UAV model to the current location. AGLAN considers possible mobility errors for
each UAV and blocks possible variables by reflecting the information in advance to the
RL environment. In each episode, all UAVs in the swarm were set to randomly change
positions within the mobility error range at their respective locations.

Figure 5. 2 × 2 cube topology setting in RL environment.

If a mobility error is applied in the environment, as shown in Figure 6, there are a
couple of network changes, such as disconnecting links or creating new network links. For
example, with node A, it can move out of the network range of the previously connected
node, disconnect the existing connection, and form a new network with another node that
is within the coverage range, or a new link can be created, such as node B. In this system,
the situation in which the mobility error occurs at a fixed location is implemented, and then
the best result is found through learning.

Figure 6. Mobility error considered.
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4.2. Reinforcement Learning in AGLAN with aDQN

Figure 7 depicts the structure of aDQN in our system. When the UAV swarm de-
livers geographic location and data communication information to the server, the server
creates a simulation environment based on the information and covers the expected UAV
mobility by giving changes less than the mobility size to all UAVs at every episode. The
proposed system provides an optimized zone over the existing forwarding region through
learning. In DQN, overestimation problems often occur when the action value becomes
excessively large during learning. To prevent this, in this paper, an estimation function
called the pseudo-attention layer is added to give a relative value to each action through
the evaluation of the action in the current state. This pseudo-attention serves to direct the
routing closer to the destination. Even considering random mobility from the source UAV
to the destination UAV, we reduce the reward weight for actions that overload the network.
Through this process, we can learn at a relatively fast speed by reducing the learning that
was overestimated.

Figure 7. aDQN target network structure of AGLAN system.

Algorithm 2 is the integrated pseudocode of aDQN including experience replay and
the target network. A buffer called replay memory is created to store samples generated
at each step, and randomly extracted samples are used for Q-update learning. By using
experience replay, data efficiency can be increased as one sample can be used for multiple
model updates, and the update variance can be reduced by removing sample correlation
by randomly extracting data. In addition, the behavior policy is averaged to suppress
the oscillation and divergence of parameters during learning, increasing the learning
stability. It replicates the existing Q-network identically to create a dual structure of the
main Q-network and target network. By having a dual network structure through the target
network, learning instability due to the moving target value is improved. The Q-network
is used to obtain the action value Q, which is the result value, using the state and action,
and the parameters are updated at every step. The target network is used to obtain a target
value, which is the reference value for an update. Since the target value network is also
parameterized with θ, as with the main Q-network, it is not updated every time, but the
model is updated in the desired direction in synchronization with the main network at
every c step.
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Algorithm 2: AGLAN learning with attention deep Q-network

1 Initialize replay memory D to capacity N;
2 Initialize action-value function Q with random weights θ ;
3 Initialize target action-value function Q̂ with weights θ− ;
4 foreach episode = 1, M do
5 //UAV Random Move in range mobility error;
6 //Reset states, rewards, time ;
7 //Calculate a distance to destination UAV;
8 Initialise sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1);
9 foreach t = 1, T do

10 //Count time to obtain network efficiency;
11 With probability ε select a random action at;
12 otherwise select at = maxa Q(φ(St), a; θ);
13 Execute action at in emulator and observe reward rt and image xt+1;
14 Estimate action with β according to pseudo-attention;

Prt =

{
rt ∗ (1− β) if selected forwarding angle forwards to destination;
rt ∗ β otherwise.

15 Set st+1 = St, at, xt+1 and preprocess φt+1 = φ(st+1);
16 Store transition (φt, at, Prt, φt+1) in D;
17 Sample random minibatch of transitions (φt, at, Prt, φt+1) from D;

f (z) =

{
Prj if episode terminates at step j+1;
Prj + γ maxa′ Q(φj+1, a

′
; θ−) otherwise.

18 Perform a gradient descent step on (yj −Q(φj, aj; θ))2 with respect to the
network parameters θ ;

19 Every C steps reset Q̂ = Q

4.3. System Environment

An agent performs learning and continuously interacts with the environment, so the
environment must be configured well. In this system, the FR angle changes as the episode
progresses and determines the network coverage range. In the proposed system, it is
initially planned to train using 100 episodes of 100-step functions. This subsection provides
a detailed description of the state, action, and reward.

4.3.1. State Space

The states used for learning are as follows:

SAGLAN,t = [SFRangle,t, Stime,t] (4)

The state consists of the FR angle and time that best represent the AGLAN network.
First, the FR angle is the angle of the receiving zone. As the FR angle increases, the FR range
widens, increasing the possibility that data will arrive at its destination reliably. Conversely,
if it is smaller, the number of nodes to be covered is reduced and the network load can
be reduced. Second, time refers to the time taken to travel from the starting point to the
destination, or the time for which it does not arrive. As the FR range narrows, the arrival
time to the destination is likely to be shortened and communication failures can be checked
quickly, while the wider the FR range, the more stable it is. Since these two elements can
represent various characteristics of the AGLAN network, they are suitable as components
of the state for the learning model.
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4.3.2. Action Space

The action used for learning is as follows:

aAGLAN,t = [−Ax, 0, Ax] (5)

The proposed system uses AGLAN’s FR angle change as an action for learning. It
does not cover all 360 degrees randomly and changes the FR angle within a certain range
from the value set as default in AGLAN. As the FR angle changes, both states are affected,
and, as a result, the action is repeated, leading to a change in the next state, enabling the
smooth learning of the entire system.

4.3.3. Reward

The rewards used for learning are as follows:

R(t) =
{

Rlink if node link is made
RAGLAN,t = Htime ∗ Rarrived + Htime ∗ Rtimeout

(6)

Each episode learns according to the changed position due to the mobility characteris-
tics of the UAV. First, if the data successfully arrive at their destination, a large reward is
given. Conversely, if they do not arrive, it is determined that the learned reward value is
not suitable for learning and a negative reward is given accordingly. In addition, negative
compensation is given when a network link between UAVs is created to reduce the network
load. AGLAN’s reward is calculated as the weighted product of the hyperparameter Htime
and the time component.

5. Performance Evaluation

We designed the AGLAN system and constructed an environment that could per-
form real tasks. In this section, we present details of our implementation and a series of
experiments to verify its operations and evaluate its performance.

5.1. Implementation

The experiment was conducted in the Ubuntu 20.04 environment using Odroid, a
single-board computer that can be mounted on a real drone. A network interface controller
(NIC) was installed on Odroid to communicate, and the GPS address was obtained through
MAVROS. The obtained GPS information was reflected on the private A-class IP address
and connected through an ad hoc network to form a UAV swarm network.

The UAV server used Python to configure the simulation environment, and the location
information of the UAVs was updated when they arrived at the server [33]. It was assumed
that the UAV swarm followed a constant formation topology and a 2 × 2 cube topology
was used [34]. After the positions of all UAVs in the swarm were updated on the simulation,
when a data transmission request arrived from one UAV, the source node and destination
node were set, and the appropriate FR angle was set as the default at the current position.
Learning was started to optimize the fixed FR angle according to the situation.

Prior to full-scale learning, the location was randomly changed within the mobility
error range of the UAV for each episode to form a network suitable for the UAV network.
Figure 8a is an example in which 27 UAVs form a 2 × 2 cube topology and the network
range is set to 42 m. Figure 8b–d are examples with the mobility error set to 13 m.
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(a) (b)

(c) (d)
Figure 8. (a) 2 × 2 cube topology, (b) 2 × 2 cube topology considering UAV mobility for episode 1,
(c) 2 × 2 cube topology considering UAV mobility for episode 10, (d) 2 × 2 cube topology considering
UAV mobility for episode 50.

5.2. Reinforcement Learning Results

AGLAN considers the mobility error situation and secures the stability of data delivery
through broadcasting and optimizes it through learning. In the UAV swarm environment
where the UAV mobility error is applied to the cube topology, 100 steps are executed per
episode. At each step, an action is randomly selected and we learn the FR angle previously
set as the default. The optimal UAV routing can be achieved by calculating the reward
through the network change that occurs as the FR changes. Figure 9 shows the reward
graph when learning is progressing. At first, the reward is very low, but, as the episode
progresses, it can be seen that it is gradually optimized. In addition, the learning speed
is improved when pseudo-attention is applied to aDQN. It can be seen that Figure 9b
converges faster than Figure 9a.
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Figure 9. Cont.
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Figure 9. (a) aDQN episodic reward results; (b) aDQN with pseudo-attention episodic reward results.

5.3. Network Efficiency Experiment

When the aDQN is completed, the server delivers the learning information to all
UAVs in the swarm in order to apply the learned FR angle to actual routing communication.
Each UAV chooses whether to forward or discard by adding routing rules that check
whether it belongs to the FR when it receives the broadcast data. We compared the network
bandwidth when each routing algorithm was used in all UAVs in the swarm. Figure 10
shows that AGLAN maintains a more stable network BW than LAR.
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Figure 10. Comparison of BW among flooding, LAR, and AGLAN.

Figure 11 is a graph depicting the packet loss that occurs when flooding, LAR, and
AGLAN are executed. Datagrams lost for 300 s were measured. Flooding resulted in
1995 packet losses, 7.4% of a total of 26,753 packets, and LAR caused 408 packet losses, 1.5%
of 26,158 packets. In contrast, AGLAN only incurred 169 packet losses, which is 0.63% of
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26,753 packets. It can be seen that AGLAN is 6.77% better than flooding and 0.87% better
than LAR.
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Figure 11. Comparison of packet loss among flooding, LAR, and AGLAN.

Figure 12 is a graph comparing the jitter of the GLAN system, the system with RL
added to GLAN, and flooding, an existing routing algorithm. As we can see in the graph,
GLAN applies the default FR angle according to the current position, so, depending on the
situation, it may be worse than flooding or show similar values to the learned GLAN. The
trained GLAN with RL always gives better results than flooding. AGLAN has an average
jitter value that is 61% lower than that of flooding.

Figure 13 is a bandwidth comparison graph. It can be seen that the bandwidth
performance of GLAN is almost equal to or greater than that of flooding. The average
bandwidth shows that AGLAN is 9% better than flooding.
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Figure 12. Comparison of jitter among flooding, GLAN, and AGLAN.
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Figure 13. Comparison of bandwidth among flooding, GLAN, and AGLAN.

6. Conclusions

As UAV technology develops gradually, it is necessary to optimize the ever-changing
UAV networks. In a UAV network, data are transmitted and received based on broadcasting
or ad hoc routing. Although broadcasting can deliver data reliably to the destination, the
network load is high. In comparison, ad hoc routing wastes the network bandwidth and
introduces network delays in transmitting the routing information needed to establish an
effective communication path. Based on these observations, we proposed a method of
optimizing data transmission through UAV networks based on RL to exploit the advantages
of the two methods. In the proposed system, we utilized geographic location information in
a situation where the location changed due to the movement of the UAV and also devised
a new DQN called aDQN to optimize the forwarding area.

We have several directions for future work. The proposed system can be further
improved by using more learning algorithms besides aDQN. Instead of flooding, it may be
possible to derive a more advanced routing system by identifying how different routing
algorithms are used in the UAV environment and configuring optimization plans. Al-
ternatively, we can increase the accuracy of existing routing algorithms by considering
the mobility errors used in AGLAN. In addition, we plan to build an optimized routing
path by utilizing the GLAN algorithm in a communication environment where network
information is not accurate or does not arrive on time. Regarding security issues, we wish
to solve the problem of allowing only data with a separate network key to be transmitted
and received.
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