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Abstract: Faba bean is an important member of legumes, which has richer protein levels and great
development potential. Yield is an important phenotype character of crops, and early yield estimation
can provide a reference for field inputs. To facilitate rapid and accurate estimation of the faba bean
yield, the dual-sensor (RGB and multi-spectral) data based on unmanned aerial vehicle (UAV) was
collected and analyzed. For this, support vector machine (SVM), ridge regression (RR), partial least
squares regression (PLS), and k-nearest neighbor (KNN) were used for yield estimation. Additionally,
the fusing data from different growth periods based on UAV was first used for estimating faba bean
yield to obtain better estimation accuracy. The results obtained are as follows: for a single-growth
period, S2 (12 July 2019) had the best accuracy of the estimation model. For fusion data from the
muti-growth period, S2 + S3 (12 August 2019) obtained the best estimation results. Furthermore, the
coefficient of determination (R2) values for RF were higher than other machine learning algorithms,
followed by PLS, and the estimation effects of fusion data from a dual-sensor were evidently better
than from a single sensor. In a word, these results indicated that it was feasible to estimate the
faba bean yield with high accuracy through data fusion based on dual-sensor data and different
growth periods.

Keywords: machine learning algorithms; phenotype; unmanned aerial vehicle; growth periods; model

1. Introduction

The market demand for protein is high in China. As shown in many scientific stud-
ies, excessive animal protein intake can cause various noncommunicable diseases and
metabolic disorders; as such, the development and use of new, high-quality, and more
sustainable vegetable proteins are required [1-4]. In this regard, legumes are the best source
of vegetable protein, and soybeans, lentils, and chickpeas, but not faba beans, have been
widely studied because of their nutritional value. Notably, faba beans contain an average
of 27.6 g of protein per 100 g, which is higher than that of most pulses on the market [4].
Owing to this rich protein content, the faba bean shows potential as an excellent source of
vegetable protein; therefore, faba bean yield needs to be explored. Yield is an important
phenotypic parameter and is the final purpose of crop breeding. According to the Food
and Agriculture Organization of the United Nations (http:/ /www.fao.org/, accessed on
15 December 2022) statistical data, from 2018 to 2020, faba bean (dry) accounted for over
0.8 million hectares of cultivated area in China, corresponding to ~31.3% of the global total
faba bean cultivated area. During this period, the total faba bean yield in China was over
1.7 million tons, accounting for approximately 31.8% of the total global faba bean yield. In
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other words, the faba bean market in China shows substantial potential for development.
The estimation of early yield can guide field management and cost control; however, tra-
ditional phenotypic data collection and yield estimation techniques are time-consuming,
labor-intensive, expensive, and destructive; thus, new, timely, and effective methods of
phenotype collection and yield estimation are necessary. To date, UAV remote sensing has
been widely used to obtain phenotypic data, and the problems associated with phenotype
collection have gradually been solved [5,6].

In the 1990s, J. Pefiuelas [7] applied visible-spectrum (RGB) technology to plant pheno-
types to identify physiological changes caused by water and nitrogen stress, confirming the
possibility of evaluating vegetation physiological traits using visible spectrum information.
At the end of the 1990s, remote sensing and multi-spectral (MS) techniques were applied
to distinguish plants, and the relationship between MS image information and important
parameters, such as leaf area index and growth rate, were explored [8]. However, some
studies have shown that the use of a single sensor to estimate specific phenotypic traits of
crops features several limitations [9,10]. Therefore, researchers have gradually begun to
fuse and analyze RGB, MS, and other sensor-based data to improve the estimation accuracy
of chlorophyll, aboveground biomass, yield, and other phenotypic characters [11,12]. This
combined technology has been applied to wheat [6,13,14], maize [15,16], soybean [17],
barley [18], and other crops. However, research on the faba bean involving the fusion of
dual sensors is limited. Therefore, the aim of this study was to close this gap in the research
and explore the impact of dual-sensor data on the yield prediction model for faba beans.

With the development of computer science, machine learning (ML) algorithms, such
as support vector machine (SVM), ridge regression (RR), partial least squares regression
(PLS), and k-nearest neighbor (KNN), have been increasingly applied to constructing plant
characteristic estimation models [13,14,19-21]. The application of ML methods has gradu-
ally led to an understanding of correlations between remote-sensing data and models, thus
indirectly leading to the application of UAV remote-sensing technology for the estimation
and collection of crop phenotypes. However, the performance of the same ML algorithm
may vary for different crop species or land states. For example, random forest (RF), with a
mean R? of 0.602, achieved the highest wheat yield estimation accuracy for the early filling
period; however, for the mid-filling period, RR outperformed RF [13]. This confirms that
different models exhibit different estimation accuracies for different growth periods [13,22].
The use of ML algorithms to estimate different traits in the same crop features similar
limitations. For example, Zhang et al. [23] found that RF (R? = 0.754) exhibited the highest
accuracy in estimating soybean leaf area index values according to multiple growth periods.
However, in terms of soybean yield estimation, Tunrayo found that the RF model was
not the best forecasting model; the Cubist and RF models exhibited similar performances
for soybean yield estimation, and both models performed moderately well for all vari-
ety trials [24]. Based on previous studies and the characteristics of ML algorithms, four
algorithms selected for the construction of the yield model were SVM, RR, PLS, and KNN.

For faba beans, the related studies have adopted single ML algorithms, single sensors,
or other individual source data, which signifies that the data structure was relatively simple
and that data fusion from multiple sources was not explored. This study attempted to
fuse dual-sensor data and data from different growth periods as data input for the four
models and performed a comparison of yield prediction accuracy. In summary, the aims of
the current study were to (1) compare the effects of single-growth periods and different
growth periods combinations for yield estimation, (2) explore the advantages of UAV-based
dual-sensor data fusion for yield estimation, and (3) evaluate the effectiveness of four ML
algorithms (SVM, RR, PLS, and KNN) for yield estimation.

2. Materials and Methods
2.1. Test Site

The study was conducted at the Guyuan Experimental Station, which is affiliated with
the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, in Zhangjiakou
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City, Hebei, China. The test site features a temperate arid and semi-arid climate, which is
the transition climate between temperate forest and temperate desert. The average annual
temperature was 1.6 °C, and the site was cold in the winter season and hot in the summer
season. The annual precipitation is 426 mm, and the average annual frost-free period
is 117 days. Detailed environmental conditions (temperature, precipitation, intensity of
sunlight, and duration of sunshine) related to the faba bean growth periods were obtained
from the weather bureau (Figure 1).
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Figure 1. The profile of meteorological variables during the faba bean growing season in 2019. Note:
(a) temperature, including maximum temperature (Tmax) and mean temperature (Tmean) after seed
planting; (b) precipitation, showing the increment, decrement, and accumulation of precipitation
after seed planting; (c) intensity of sunlight (including total sunlight intensity (Total), net sunlight
intensity (Net), and direct normal irradiance (DNI); (d) sunshine duration.

The trials began on 18 April 2019. The test site was divided into 2 experiment parts,
and each part had 15 plots. Five faba bean varieties (GF13, GF22, GF44, GF45, and Maya)
were tested, all of which were obtained from the Institute of Crop Sciences. The experiment
was a completely randomized design with three replicates, and the varieties in the left and
right experimental parts were arranged in the same manner. Each plot comprised six rows,
and each row comprised 40 planted seeds. The specific arrangement results are shown in
Figure 2. No fertilizer was applied, and weeding was conducted on demand during the
test. Moreover, to improve the accuracy of subsequent image stitching, ground control
points (GCPs) were evenly distributed across the whole field (Figure 2).

N GFis |

Maya = GF13
X =
GF22

Figure 2. Experimental design (the white ellipses are the ground control points (GCPs), and the red
circle is a calibrated carpet).
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2.2. Data Collection
2.2.1. Collection of Ground Data

The ground data collected were mainly yield data, which were collected on 22 August
2019. The dry weight of all beans harvested in each plot was used for yield measurement.

2.2.2. UAV Configuration

The UAV DJI Matrice 210 (SZ DJI Technology Co, Shenzhen, China; Figure 3) was
applied to this study. It was equipped with an RGB sensor and a RedEdge-MX sensor.
The RGB sensor was a 24 Megapixel DJI Zenmuse X7 camera (support output of up to
6 K/30 fps and 3.9 K/59.94 fps RAW), with dimensions of 151 mm x 108 mm x 132 mm.
The RedEdge-MX sensor weighed about 232 g and contained five bands: blue (B: 475 nm);
green (G: 560 nm); red (R: 668 nm); red-edge (RE: 717 nm); and near-infrared (N: 840 nm),
with a resolution of 1280 x 960.
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Figure 3. UAV systems and images of the corresponding sensor. Note: (a) UAV configuration;
(b) RGB image on 12 July 2019; (c¢) MS image on 12 July 2019.

2.2.3. Acquisition and Processing of UAV-Based Data

To ensure the accuracy of data, we selected data for weather conditions without wind
and cloud, and the UAV flew at a low speed, with an altitude of 25 m. For the RGB image
collection, the flight planning parameters for the UAV imaging system included forward
and side overlaps of 85% and 80%, respectively, while for the MS image collection, the
forward and side overlaps were 80% and 75%, respectively. UAV data were collected for
three dates: 17 June 2019 (S1), 12 July 2019 (S2), and 12 August 2019 (S3).

The UAV data were mainly processed in two steps: (1) mosaicking of UAV imagery;
(2) extracting of UAV data. The simplified UAV-based data processing procedure is illus-
trated in Figure 4, and the specific steps are as follows. Because a large number of RGB
images was obtained and a single image accounted for small coverage, mosaicking multiple
images into a complete image for subsequent image processing and data extraction was
vital. The UAV aerial RGB images were split using Pix4DMapper (Pix4D SA, Lausanne,
Switzerland) via the following steps: Add photos; Test Quality; Build Dense Cloud; Build
Mesh; Build Texture; Generate Digital Surface Model (DSM); Generate Digital Terrain
Model (DTM); Build Orthomosaic. Then, the images were output in the TIFF format [25].
The UAV data were extracted using ENVI 5.3 (Exelis Visual Information Solutions, Inc.,
Boulder, CO, USA) and ArcMap 10.5 (Environmental Systems Research Institute, Inc.,
Redlands, CA, USA). The RGB images were preprocessed in ArcMap 10.5, and the steps
included picture calibration, picture cropping, background removal, plant area selection,
field canopy coverage (CC) extraction, and the extraction of other spectral information.
Texture information was extracted using ENVI 5.3. The preprocessing workflow in ENVI
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5.3 was as follows: first, the “co-occurrence” tool was adopted to calculate the pictures
after background removal; then, the regions of interest were selected; and the texture

information was output.

10875
9%

(h) fre

BERDR | SRR

ROI Means: nirwenli

Figure 4. Processing of UAV-based data. Note: (a) raw RGB photos; (b) raw MS photos; (c) orthomo-
saic image; (d) DSM; (e) DTM; (f) CSM; (g h) spectral information extraction; (i,j) texture information

extraction.

The stitching procedure of MS images was different from that of the RGB images.
The reflectance was calibrated using a calibrated carpet (Figure 3). However, the imagery
mosaicking and data extraction methods were the same as those for the RGB images and,
thus, are not repeated here.
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In addition, we inserted the DSM and DTM generated in Pix4DMapper into the
software ArcMap 10.5, ran Equation (1) with a raster calculator to obtain the crop surface
model (CSM), and then used tools (such as “Spatial Analyst and Spatial Analysis”) in
ArcMap 10.5 to extract plant height data and select the maximum plant height of each plot
selected for subsequent data processing. Equation (1) is expressed as

CSM = DSM — DTM 1)

2.3. Vegetation Indices

The vegetation index can reflect the growth conditions of crops so that the crop
phenotype information can be obtained according to spectral reflectance. Twenty-three
vegetation indices obtained from RGB and MS cameras were used for faba bean yield
estimation, which contains 8 RGB-related indices and 15 MS-related indices. The detailed
equations are shown in Table 1.

Table 1. UAV image variables and vegetation index formula.

Sensor Spectral Indices Formula References

RGB R DN value of red band —
G DN value of green band —
B DN value of blue band —
Green-red vegetation index GRVI=(G — R)/(G +R) [26]
Normalized difference index NDI=(r — g)/(r+g+0.01) [27]
Green leaf index GLI=2xG—-R—-B)/2 xG+R+B) [28]
Visible atmospherically resistant index VARI= (G - R)/(G+R - B) [29]
Excess red index ExR=14 xR -G [30]
Excess green index ExG=2xG—-R-B [31]
Excess green minus excess red index ExGR=2xG—-R-B—-(14xR-G) [30]
Modified green-red vegetation index MGRVI = (G? — R?)/(G? + R?) [18]
Red edge chlorophyll index Clre = (Rn/Rr) — 1 [32]
Green chlorophyll index Clg=Rn/Rg) — 1 [33]
Green Leaf Index GLI=(2 x Rg — Rg — RR)/(2 x Rg + Rg + RR) [28]

MS Normalized difference red edge index NDRE = (Ry — Rrg)/(Rn + Rgg) [34]
Normalized difference vegetation index red edge NDVIRE = (Rgg — Rr)/(Rgg + RR) [35]
Modifed chlorophyll absorption in refectance index MCARI = [(Rgg — Rg) — 0.2 x (Rgg — Rg)] X (Rreg/RR) [36]
Modified chlorophyll absorption reflectance index 2 1[\;[C><A(§I§; 11)5) j ([gi >I<{151R§ ; 5 1;{]5132;—1 35 (- Ral/ [37]
Optimized SAVI OSAVI = (Ry — Rr)/(Ry — Ry + 0.16) [38]
MCARI1/OSAVI MCARI1/OSAVI [36]
Green ratio vegetation index GRVI =RyN/Rgr [39]
Normalized red-edge index NREI = Rge /(RN + Rre +Rg) [40]
Modified normalized difference index MNDI = (Ry — Rrg)/(Rn — Rg) [40]
Green Modified Simple Ratio MSR_G = (Rgg/Rg — 1)/(Rre/Rg + 1)%° [41]
Green re-normalized difference vegetation index GRDVI = (Ry — Rg)/(Ry + Rg)%® [42]
Meris terrestrial chlorophyll index MTCI = (Ry — Rrg)/(Rrg — RR) [43]

2.4. ML Algorithms

In this study, four widely used ML methods, including SVM [44], RR [45], PLS [46],
and KNN [47], were used to construct the yield estimation models.

SVM is a popular classification and statistical computing method developed by Vapnik
and based on the statistical learning theory [48]. SVM can map input vectors to a high-
dimensional space to create decision boundaries. Additionally, it can transform highly
nonlinear data into linearly differentiable data using kernel functions. Thus, the advantages
of SVM are reflected in its applicability under a small sample size, compatibility with high-
and low-dimensionality data problems, and nonlinearity [49,50].

RR is a validated linear regression method developed by Tikhonov in 1943 and pro-
moted by Hoerl and Kennard in 1970 [51,52]. RR is essentially a modified least squares
estimation method that obtains more realistic and reliable regression coefficients at the
expense of losing some information by giving up the unbiased nature of least squares [13].
RR is more suitable for the case of small training samples or feature correlation, which can
effectively solve the problem of multicollinearity to ensure estimation accuracy [53].
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PLS is a multivariate statistical method that was widely used in regression analysis [54].
It is characterized by the minimization of the autocorrelation effect between wavelengths,
allowing for the effective solving of the multi-colinearity problem and the building of linear
regression models [55].

KNN is a commonly used supervised learning algorithm capable of classification
and regression tasks [56]. In the training phase, the samples are saved with zero training
time overhead and then processed when the test samples are received. The training
observation Zi affects the estimation only when Zi (Z denotes a sample of i observations
drawn from the total) is one of the k-nearest neighbors of the target observation; therefore,
the KNN estimation is highly stable [47]. Overall, the model is characterized by short time
consumption, high accuracy, and high stability.

2.5. Model Construction and Evaluation
2.5.1. Model Construction

The data analysis and modeling were performed with the package “classification and
regression training (caret)” in software R 4.2.3 (Lucent Technologies, Murray Hill, NJ, USA).
The modeling process is summarized in Figure 5.

(a) Original Dataset
SVM RR PLS KNN
| | | |
] ¥ v v v
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Figure 5. Modeling construction and assessment. Note: (a) the model for yield estimation; (b) five-fold
cross-validation.

To avoid the overfitting of the ML models and to make full use of all training sets
for model training and testing, each of the ML methods was used to do five-fold cross-
validation (Figure 5b). The training data were randomly and evenly divided into five equal
sets, four of which were used for model training and the remaining one for testing. Five
folds were repeatedly iterated, with one-fifth of the data set selected each time as the test set
and the other data sets aggregated as the training sets, after which the model was trained
on the test set, tested according to the trained model, and the accuracy calculated. The
final accuracy was obtained by averaging the accuracies of the five times. This process was
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repeated 10 times during the model construction to increase the stability of the model using
the “repeats” function.

2.5.2. Model Evaluation

The accuracy of the model was evaluated using the coefficient of determination
(R?), root-mean-square error (RMSE), and normalized root-mean-square error (NRMSE).
R? was mainly used to measure the fitting degree of the model. An R? closer to 1 indicates
a higher fitting degree. The estimation error of the model was measured using RMSE and
NRMSE. The smaller the RMSE and NRMSE values, the smaller the estimation error of the
model. The final results in this study were the average of five “for” loops. The calculation
equations for these parameters are as follows:

n 2

2 o1 (Xi — vi)
R? =1 == 2o @

im1 (xi —7)

2
RMSE — 1 Zi= (% — Vi) 3)
n
Y (xi—w)’

NRMSE = 7]7” X 100% (4)

where x; is the measured yield of faba bean; y; is the yield estimated by the model; ¥ is the
mean of the measured yield, and 7 is the total number of testing samples.

3. Results
3.1. Faba Bean Yield Estimation for the Optimal Single-Growth Period

To explore the influence of different growth periods on the yield estimation results,
four algorithms were grouped into the same box, and the estimation accuracies for the
different growth periods were compared. The specific evaluation metrics of the models are
shown in Table 2. The average R? of the S2 model (R? = 0.563) based on MS sensor data was
0.089 and 0.045 higher than those of the S1 and S3 models, respectively (Figure 6a); the av-
erage R? of the S2 model based on RGB sensor data (R? = 0.616) was 0.111 and 0.104 higher
than those of the S1 and S3 models, respectively. For the dual-sensor data (RGB + MS),
the average R? of the S2 model (R? = 0.682) was 0.157 and 0.056 higher than those of the
S1 (R? = 0.525) and S3 (R? = 0.626) models, respectively. Figure 6b,c reflected the errors
of the model, and the model constructed according to the S2 period yielded considerably
fewer errors for all of the different sensors (RGB, MS, and RGB + MS) of inputting data. In
general, the S2 model yielded the best estimation results, followed by the S3 model.

Table 2. Model performance comparison between different growth periods.

RGB MS RGB + MS
Period  Algorithm

R? RMSE NRMSE R? RMSE NRMSE R? RMSE NRMSE

SVM 0.388 0.866 24.296% 0.368 0.957 26.850% 0.404 0.910 25.535%

RR 0.592 0.856 24.020% 0.521 0.711 19.97% 0.594 0.806 22.63%

s1 PLS 0.552 0.818 22.950% 0.588 0.812 22.803% 0.593 0.748 20.983%
KNN 0.491 0.896 25.145% 0.417 0.896 25.143% 0.507 0.866 24.306%

SVM 0.646 0.616 17.277% 0.561 0.756 21.219% 0.661 0.679 19.062%

RR 0.641 0.697 19.563% 0.610 0.714 20.039% 0.707 0.599 16.626%

52 PLS 0.552 0.736 20.649% 0.538 0.744 20.880% 0.697 0.628 17.615%
KNN 0.626 0.633 17.764% 0.541 0.703 19.721% 0.664 0.655 18.373%

SVM 0.503 1.005 28.219% 0.469 0.862 24.184% 0.553 0.774 21.731%

RR 0.626 0.743 20.037% 0.600 0.714 20.032% 0.697 0.687 19.272%

53 PLS 0.621 0.776 21.772% 0.628 0.877 24.610% 0.632 0.730 20.483%
KNN 0.299 0.645 18.090% 0.374 0.931 26.125% 0.622 0.690 19.362%
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Figure 6. Comparison of the accuracies of single-growth-period models. Note: the square means
average value, and the standard deviation (SD) = 1.5.

3.2. Faba Bean Yield Estimation for Optimal Sensor

Two kinds of sensor (RGB, MS) data and their fusion were used for yield estimation.
Given that the S2 model exhibited the best highest accuracy, relevant S2 data were selected
for model construction (Figure 7), and the evaluation metrics of the model were shown in
Table 2. The RGB + MS-based model exhibited the highest correlation; the R? values of the
four ML algorithms were between 0.661 and 0.707, which corresponded to satisfactory esti-
mation results. The total R? values of the model constructed with single RGB and MS sensor
data were 0.264 and 0.479 lower than those of the RGB + MS-based model, respectively.
Moreover, the model based on the RGB + MS fusion data yielded fewer errors than those
based on single-sensor data. The total RMSE values of the RGB + MS-based model were
0.121 and 0.356 t-ha—! lower than those of the RGB- and MS-based models, respectively,
and the total NRMSE values of the RGB + MS-based model were 3.577% and 10.183% lower
than those of the RGB- and MS-models, respectively. Overall, the RGB + MS model exhib-
ited the highest yield estimation accuracy in most cases, followed by the RGB-based model.
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Figure 7. Comparison of the estimation accuracies of models for different sensors and their combinations.
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3.3. Faba Bean Yield Estimation for Multiple Growth Periods

To the best of our knowledge, all of the previous studies adopted single-period data
and did not combine data from multiple growth periods to estimate faba bean yield. To
evaluate the yield estimation accuracies of models based on the data of multiple growth
periods, we constructed models based on data from multiple growth periods using the
same model structure, parameters, and fused dual-sensor data used in the single-growth-
period models (the RGB + MS data were used because the RGB + MS model exhibited the
highest accuracy for the single-growth period). We compared the correlations and errors
obtained by the models based on different growth period combinations. The results are
shown in Table 3 and Figure 8. The model based on S2 + S3 data exhibited the highest
estimation accuracy, with verification results (mean) of R2 = 0.687, RMSE = 0.667 t-ha~!,
and NRMSE = 18.705%, followed by the model based on S1 + S2 + S3 data (R? = 0.651,
RMSE = 0.689 t-ha—!1, and NRMSE = 19.325%). The model based on S1 + S2 yielded the
lowest estimation accuracy (R? = 0.633, RMSE = 0.733 t-ha~!, and NRMSE = 20.551%); the
low-accuracy results are attributable to the relatively inaccurate data for the S1 period,
which resulted in data redundancy, and consequently, the estimation accuracy of the model
constructed according to the fused data of the three growth periods data was lower than
that of the S2 + S3-based model [57].

Table 3. Model performance comparison between different methods of fusion growth period data.

Evaluation

Periods . SVM RR PLS KNN
Metrics

S1+8S2 R? 0.614 0.723 0.638 0.556
RMSE 0.665 0.717 0.728 0.820
NRMSE 18.663% 20.111% 20.423% 23.005%

S2+S3 R2 0.638 0.758 0.695 0.658
RMSE 0.649 0.622 0.594 0.801
NRMSE 18.201% 17.463% 16.678% 22.476%

S1+S2+83 R? 0.631 0.738 0.719 0.517
RMSE 0.647 0.714 0.580 0.813
NRMSE 18.165% 20.049% 16.278% 22.808%
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Figure 8. Comparison of the estimation accuracies of models based on different growth period
combinations.
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3.4. Optimal ML Algorithm for Faba Bean Yield Estimation

The data based on the S2 period and RGB + MS fusion were confirmed to be optimal.
The optimal data were used to construct the faba bean yield estimation model. To test
the accuracies of different ML algorithms, different yield estimation models were con-
structed using four algorithms, and the model estimation accuracies were compared and
analyzed. The performances of the various ML algorithms on faba bean yield estimation
were considerably different, and the specific results are shown in Figure 9, and the spe-
cific assessment metrics are shown in Figure 2. The R? values of SVM, PLS, and KNN
were 0.046, 0.010, and 0.043 lower than those of the RR model, respectively, which means
that the RR model exhibited a higher correlation degree. The RMSE values of SVM, PLS, and
KNN were 0.080, 0.029, and 0.056 t-ha~! higher than those of the RR model, respectively,
and the NRMSE values of SVM, PLS, and KNN were 2.436%, 0.989%, and 1.747% higher
than those of the RR model, respectively, which indicated that the RR model exhibited the
fewest errors. Overall, RR was the best algorithm for the yield estimation model, followed
by PLS.
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Figure 9. Comparison of the estimation accuracies of different ML algorithms.

3.5. Influence of Faba Bean Variety on Yield Estimation Model

To test the accuracy of the RR model, the correlations and linear fitting degrees between
estimated and measured yields for different faba bean varieties were compared (Figure 10).
The R? values of GF13, GF22, GF44, GF45, and Maya were 0.602, 0.685, 0.796, 0.562, and
0.480, respectively, which meant that the RR model exhibited an acceptable estimation
accuracy for the different varieties. However, the effect of Maya yield estimation was worse
than those of the other varieties (GF13, GF22, GF44, and GF45). The lower Maya yield
estimation accuracy may be attributable to the higher plant density of the plot and the
higher overlap of the faba bean plants, which agrees well with the results of the previous
research on annotated and detected plants [58].
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Figure 10. Comparison of estimated and measured yields.

4. Discussion

Early yield estimation could help guide breeding decisions and make the most efficient
use of limited land resources. In recent years, with the need for agricultural production and
the gradual emergence of UAV-based remote sensing [59], UAV-based remote sensing data
have been increasingly used for estimating the yields of staple crops (such as maize [60]
and wheat [61]); however, studies on the use of remote sensing data for estimating the
phenotypic parameters of faba beans are few, and only two relevant articles have been
published [49,62]. Different factors influence the accuracy of faba bean yield estimation
models, including the growth period, the growth period data type (single or combined),
the adopted ML algorithm, crop varieties, and sensor types (single or combined). These
factors were explored in this study.

4.1. The Effects of Growth Periods Data on Yield Estimation

The growth period serves as both a developmental landmark and a trigger for collect-
ing phenotype data [63,64]. Therefore, several studies of plant phenotypes have considered
the growth period. In the current study, three growth periods were considered: 17 June 2019
(S1), 12 July 2019 (S2), and 12 August 2019 (S3). The data for each growth period were used
as a group of variables to train the estimation model. The S1, S2, and S3 models differed in
their D-value, which suggested that the accuracy of the faba bean yield estimation based
on UAV data depends on the plant growth period, and the accuracy of the estimations of
the 52 model was the highest. For the dual-sensor-based model, the mean estimation accu-
racy of 52 is R? = 0.682, RMSE = 0.640 t-ha!, NRMSE = 17.919%; these metrics are better
than that of S1 (R? = 0.524, RMSE = 0.833 t-ha~!, NRMSE = 23.364%) and S3 (R? = 0.626,
RMSE = 0.720 t-ha~!, NRMSE = 20.212%). These results are partly consistent with those of
a recent study by Liu [16] and Oehme [64]. In addition, only a few phenotypic studies have
combined multiple growth periods, despite the advantages of combined data. In the current
study, the data for different growth periods were combined to estimate yield. The models
based on the three growth periods exhibited a lower accuracy than the S2 + S3-based model
(Figure 8), indicating that the adoption of a reasonable sample size and data combination
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resulted in the highest estimation accuracy, whereas the adoption of an excessive sample
size might reduce the accuracy of a model owing to data redundancy [57,65].

4.2. Contribution of Individual Sensor Data and Dual-Sensor Data Fusion to Yield Estimation

Previous studies which used single-sensor data were used to obtain crop phenotypic
parameters. In the current study, the use of RGB features resulted in a higher faba bean
yield estimation accuracy than the use of MS features, possibly because RGB images have a
higher spatial resolution than MS images, and the information on plant height extracted
from RGB images has positive effects on yield estimation [14]. Some studies have also
proved that the height information extracted by RGB images is highly related to the yield
information, and it can effectively improve the accuracy of the yield estimation model
when combined with the vegetation indices [49,66,67].

However, this study showed that dual-sensor data fusion resulted in a higher value of
R? than the use of single-sensor data for all of the four considered ML algorithms. Previous
studies have also confirmed that coupling spectra with the characteristic variables of other
sensors could improve the model estimation accuracy [68,69], which probably explains
why multiple information, such as unique spectral, structural, and height, contributes to
crop yield estimation complementarily [14,17]. Ji et al. [49,62] used single-sensor data to
construct a faba bean yield estimation model, but in the current study, dual-sensor data
was used in the yield estimation, which also had relatively better performance.

4.3. Effects of Different ML Algorithms on Yield Estimation Model

According to previous studies, many ML models (such as RR, RF, SVM, and Cubist)
have been successfully applied as tools for early crop phenotype estimation [13,14,70,71].
In the current study, four algorithms (SVM, RR, KNN, and PLS) were used to construct
the yield estimation models. The RR model was the best-performing model under all
conditions for the selected growth periods; the PLS model lagged behind the RR model
in terms of prediction accuracy under most conditions. These results are also partially
consistent with the results of Fei et al. [13], who found that RR worked better in fixing
the training dataset and showed a higher estimation accuracy. Other studies have also
demonstrated the high accuracy and robustness of the RR model under most modeling
conditions [71,72]. The reason for the higher accuracy of RR is probably because RR can
perform regularization for the coefficients of the model, that is, restrain the sum of squared
coefficients, which smoothens the coefficients of the model to reduce the variance and
improves the estimation accuracy [13,72]. However, in the current study, the SVM- and
KNN-based models exhibited low accuracies, which suggested that these ML algorithms
might not be suitable for the construction of faba bean yield estimation models in this study.
Furthermore, other studies have shown that ensemble learning-based estimation models
could further improve estimation accuracy [13,14]. Therefore, the impact of ensemble
learning on the accuracy of faba bean yield estimation should be explored.

4.4. The Effects of Faba Bean Variety and Growth on Yield Estimation

Figure 10 shows that the R? values of GF13, GF22, GF44, GF45, and Maya were
0.602, 0.685, 0.796, 0.562, and 0.480, respectively. Crop variety considerably influenced
the yield estimation model [17]. The estimation results of different varieties were similar
to the results of a previous study, which reported that the grain yield estimations were
different for different varieties, attributable to the differences in growth periods, growth
characteristics, and other phenotypic characteristics among different varieties [16,73].

Crop growth characteristics, including density, overlap, CC, and lodging condi-
tions, considerably influenced the accuracy of the phenotype estimation model with
canopy [58,74]. CC is a common structural characteristic applied in both remote sensing
and ecological studies [74,75]. A certain correlation existed between CC and yield estima-
tion accuracy. The models exhibited the highest estimation accuracy under a CC of 61-73%
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(Figure 11). Under a CC of ~73%, the model achieved the highest estimation accuracy,
which proved that a correlation existed between CC and the model estimation accuracy.
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Figure 11. Differences in the CC and R? of five faba bean varieties. The bar graph represents the value
of CC, which denotes canopy coverage, and the spot-line graph represents the value of R? which
denotes the degree of linear fitting between the estimated yield and the measured yield.

4.5. Limitations and Implications

UAV-based RGB and MS images on the faba bean canopy were collected to estimate
yield. The dual-sensor combined data were used to estimate the faba bean yield, which
resulted in a higher estimation accuracy than a single sensor. Additionally, the reasonable
combination of data for multiple growth periods improved the estimation accuracy. These
two methods (sensor data fusion and growth period data fusion) will become the main
research directions for crop modeling in the future [14]. Additionally, this study used small
sample data for model construction, which has some instability but can achieve the effect
of improving the stability of the model after dozens of cross-validations. The crop growth
model with small sample data has the advantages of low consumption, flexibility, efficiency,
compatibility, and other advantages that large experimental sample data models do not
have [57,76].

Hence, future research should consider adding types of sensors (such as laser radar
and thermal infrared sensors) and the number of growth periods to obtain more accurate
models. Moreover, in addition to combining data from different sensors and growth
periods, ensemble learning should be considered in future research. Additionally, future
research will be conducted to compare crop model studies with small and large sample data
to explore the impact on crop models, such as on the accuracy and stability of the models.

5. Conclusions

This study explored the potential of combining RGB and MS sensor data and the data
of different growth periods for the construction of faba bean yield estimation models, and
the effects of different ML algorithms and varieties on the model accuracy were examined.
The main conclusions are as follows:

(1) The effects of growth periods were explored in this study. The model based on
52 (12 July 2019) exhibited a higher estimation accuracy than the models based on
the other single-growth periods. The model based on the combination of S2 and S3
(12 August 2019) exhibited a higher estimation accuracy than the models based on the
other combined growth periods;
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(2) The models based on fused dual-sensor data yielded higher estimation accuracies
than the models based on single-sensor data;

(3) The comparison of four ML algorithms (SVM, RR, PLS, and KNN) showed that
RR resulted in the highest yield estimation accuracy, followed by PLS; the SVM- and
KNN-based models exhibited the worst performances.

The research contributes two innovative ideas to the yield estimation of faba beans
and, thus, can provide a reference for the follow-up research on faba beans and other crops.
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