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Abstract: Leaf area index (LAI) is a widely used plant biophysical parameter required for modelling
plant photosynthesis and crop yield estimation. UAV remote sensing plays an increasingly important
role in providing the data source needed for LAI extraction. This study proposed a UAV-derived 3-D
point cloud-based method to automatically calculate crop-effective LAI (LAIe). In this method, the
3-D winter wheat point cloud data filtered out of bare ground points was projected onto a hemisphere,
and then the gap fraction was calculated through the hemispherical image obtained by projecting
the sphere onto a plane. A single-angle inversion method and a multi-angle inversion method were
used, respectively, to calculate the LAIe through the gap fraction. The results show a good linear
correlation between the calculated LAIe and the field LAIe measured by the digital hemispherical
photography method. In particular, the multi-angle inversion method of stereographic projection
achieved the highest accuracy, with an R2 of 0.63. The method presented in this paper performs well
in LAIe estimation of the main leaf development stages of the winter wheat growth cycle. It offers
an effective means for mapping crop LAIe without the need for reference data, which saves time
and cost.

Keywords: gap fraction; leaf area index; point cloud; UAV remote sensing; digital hemispherical
photography; multi-angle inversion

1. Introduction

Leaf area index (LAI) is an important parameter in modelling vegetation photosynthe-
sis and evapotranspiration, and plays an essential role in material exchange and energy
flow between soil, vegetation, and atmosphere [1]. LAI is defined as the total of one-sided
leaf area per unit of ground surface area [2]. LAI is of great significance for crop growth
monitoring and accurate yield forecast.

LAI can be measured directly and indirectly. The direct measurement method in-
volves collecting plant leaves destructively and directly measuring their area. This method
has high accuracy, but it is labor-intensive and time-consuming. Therefore, it is not op-
erationally feasible to apply over large areas or multiple times throughout the growing
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season [3]. Indirect LAI measurements can be achieved by correlating total leaf area with the
probability of light penetration through a canopy, and the LAI can be estimated indirectly
using optical instruments. It has the advantage of being non-destructive and efficient, and it
has been widely used [3,4]. Indirect measurements mainly include inclined-point quadrats
and optical methods. Warren, Wilson, and Reeve developed the method of inclined-point
quadrats for LAI based on counting the number of leaves contacted by a sharp metal probe
passing through a canopy at various angles [5]. A slender probe was inserted into the
canopy at a fixed angle of inclination, and the leaf area index was calculated by recording
the average number of probes in contact with the leaf in the unit cm depth layer [5,6].
The inclined-point quadrats method requires a large number of probes, and it is not easy
to count accurately the number of contacts between the probes and leaves, which makes
it difficult to implement for large canopies. The diameter of the probe is a major factor
causing errors. Optical methods use mathematical equations and radiative transfer theory
to estimate the LAI from more easily and quickly measurable variables, such as gap fraction
or gap size distribution, which are based on measurements of light transmission through
canopies [7,8]. Among these methods, Beer’s law-based optical methods have become
the mainstream approach for LAI measurement [9]. They have been implemented with
multiple commercial optical instruments, including the LAI-2000 Plant Canopy Analyzer
(LI-COR, Lincoln, NE, USA), AccuPAR (Decagon Devices, Inc., Pullman, WA, USA) and
Tracing Radiation and Architecture of Canopies (TRAC, 3rd Wave, Nepean, ON, Canada).
In addition, the technology of Digital Hemispherical Photographs (DHPs) has been devel-
oped [7–11]. Thus, these methods are widely used for ground measurement and remote
sensing validation.

Ground LAI measurements can usually be collected over a small area, and it is not
feasible to provide the data volume required for national, regional, and global applica-
tions. Remote sensing provides an alternative data source for LAI retrieval and has been
increasingly used in agricultural applications [12,13]. Remotely sensed LAI can be used for
crop monitoring and yield estimation at different scales, providing support for producer
management decisions. Zhang et al. used MODIS LAI of the growing season to estimate
country-level crop production in European countries and regional-level crop production in
United States [14]. Huang et al. assimilated LAI obtained from Landsat TM and MODIS
data into the WOFOST crop growth model to predict regional-scale winter wheat yield [15].
Song et al. applied the modified SAFY-height model on crop height and LAIe maps derived
from a UAV-based SfM point cloud to predict winter wheat yield in sub-fields [16].

There are two modelling approaches to retrieve LAI from remote sensing data, statisti-
cal models and physical models. The statistical model approach calculates the vegetation
index (VI) from the remote sensing image data and establishes a single-factor or multi-factor
model of VI and LAI. The model is then used to map the LAI of the area of interests [17].
Statistical models for LAI retrieval can be built through either parametric or non-parametric
regression. Parametric regression models, including linear and exponential models, are
simple and easy to understand, but the existing spectral information is not fully utilized,
and the inversion accuracy largely depends on the spectral bands used. In contrast, non-
parametric regression models, such as the partial least squares regression (PLS), back
propagation (BP) network, support vector machine (SVM), and random forest (RF), make
full use of the spectral information and have high nonlinear adaptive ability. However, one
of their main disadvantages is their instability when applied to datasets that deviate from
the training dataset. Hybrid methods also exist which combine both. All in all, the method
based on statistical modelling is simple, easy to operate, and has strong operability. It is
one of the commonly used methods in the remote sensing inversion of parameters such as
LAI. However, the model mechanism is not clear and has inherent regional influence. The
VI value includes not only information about LAI, but also information about vegetation
structure, vegetation coverage by the target crop, and other parameters, such as biomass,
chlorophyll concentration, and photosynthetic effective absorption radiation (FAPAR).
Thus, these methods are suitable for a small range of specific types of vegetation [18–22].
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Methods based on physical models mainly consider the non-Lambertian characteristics
and bidirectional reflection characteristics of vegetation canopy reflection, and inverts veg-
etation canopy parameters by constructing models of surface reflectance and biophysical
parameters such as LAI, including radiative transfer (RT) models, geometric optical (GO)
models, RT/GO hybrid models, and Monte Carlo models. Although the physical models
fully consider many influencing factors such as vegetation leaf structure characteristics, soil
background, and topography, which can truly reflect the vegetation canopy and provide
good stability and adaptability, their inversion processes are complex and require a large
number of input parameters, making them difficult to utilize, which limits their operational
application [18–23].

In recent years, with continuous improvement of the stability, safety, and controllability
of Unmanned Aerial Vehicles (UAVs), UAV-based remote sensing for crop monitoring
has progressed rapidly [24]. UAVs provide a cost-effective platform for various remote
sensing acquisition of data including RGB imagery, multispectral, hyperspectral, LiDAR,
microwave, and thermal data at very high spatial resolutions and with flexible acquisition
windows [25]. Multi-source UAV data have been used to widely to retrieve crop biophysical
parameters. Li et al. used color index and texture features extracted from UAV digital
images to establish statistical models to estimate rice LAI [26]. Liu et al. used multi-source
remote-sensing data, including RGB images, multispectral images, and thermal infrared
images, collected from a UAV crop high-throughput phenotyping platform, to develop a
multimodal data-processing DL framework based on DNN architecture to estimate corn
LAI [27]. A study by Duan et al. used a physical-based approach to invert the PROSAIL
model to estimate the LAI of corn, potato, and sunflower from UAV hyperspectral data [28].
Contrary to optical remote sensing, light range and detection (LiDAR) is an active remote
sensing technology that has been used to invert forest gap fraction and LAI [29]. Point
cloud data (PCD) generated with LiDAR include the three-dimensional coordinates, color,
reflection intensity, echo times, and other information of the scanned target. PCD can also
be generated from RGB images by structure from motion (SfM) technology [30,31]. LAI can
be estimated through statistical models between plant geometric and structural parameters
obtained from PCD and field-measured LAI. Jaume Arno’ et al. used a tractor-mounted
LiDAR system to measure the height, the cross-sectional area, the canopy volume, and the
tree area index of vines and performed a linear regression analysis of these parameters
with the measured LAI to estimate LAI [32]. L. Comba et al. used a 3-D point cloud from
UAV imagery to estimate LAI using a multivariate linear regression model on a subset
of 15 crop canopy descriptors of vineyards, which included the canopy thickness, height,
and leaf density distribution along the wall [33]. The above method requires additional
field-measured LAI values to establish an empirical relationship, and the parameterization
of specific objects and locations may not be suitable for other scenarios [34]. LAI is mainly
estimated from PCD by means of correlation with gap fractions, mainly including two-
dimensional and three-dimensional methods. In the three-dimensional method, the point
cloud is voxelized and the distribution of empty and non-empty voxels is studied from a
spatial perspective [35]. Although this method can take advantage of the three-dimensional
advantages of PCD, it needs to directly operate the PCD with a huge amount of data, and
requires more calculation [36]. The two-dimensional method converts the point cloud
into black and white images (black or white pixels represent the canopy or background,
respectively) to study the proportion of black and white pixels, which is easier to apply to
practical work. There are many studies on gap assessment and LAI estimation of forest
and individual tree canopies using the two-dimensional method based on PCD. Hancock
et al. used the ray tracing method to convert the PCD of forest vegetation obtained by a
ground-based laser radar scanner into a hemispherical black-and-white image to assess
forest gap fraction [37]. Zheng et al. projected the TLS PCD onto a two-dimensional plane
using spherical projection and two geometric projection methods to retrieve the LAIe of
the forest stand [36]. However, there are differences between different platforms such
as TLS and ALS in data scanning mode, point density, coverage, etc. Therefore, many
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quantitative retrieval methods of forest vegetation LAI cannot be generalized. To the best
of our knowledge, there are few studies on the LAIe of winter wheat crop planting areas
using the above two-dimensional method.

The cost of acquiring PCD from LiDAR is very high, and the subsequent data process-
ing is complex and time consuming. As an alternative, the low-cost consumer-grade UAV
system composed of RGB digital cameras and light UAVs has widespread use. The RGB
images obtained by UAVs equipped with digital cameras can produce cost-effective 3-D
PCD through SfM technology, which represents a low-cost remote sensing alternative to
airborne and terrestrial LiDAR. In addition, this method has an unrivalled combination
of spatial and temporal resolution and can effectively assess the spatial and temporal
variability of LAI in large croplands. Consequently, this paper proposed an estimation
method of LAIe without on-site measurement based on a UAV point cloud. In the proposed
approach, based on the SfM 3D point cloud generated from the UAV RGB image, the PCD
is projected into a two-dimensional image, and the LAIe of winter wheat is predicted by
calculating the gap fraction.

2. Materials and Methods
2.1. Site Description

The study site was an agricultural production area located near London in the south-
west of Ontario, Canada. The crop mix in this region mainly includes winter wheat,
soybean, and corn. A part of the rectangular area of an “L-shaped” winter wheat planting
area was selected for this study (Figure 1). The winter wheat in this region is generally sown
in October of the previous year. During the winter months, winter wheat goes dormant,
and resumes active growth in the spring. In May, the wheat grows rapidly and reaches
maturity in mid and late July. Harvesting is usually done between late July and early
August. For this study, multi-temporal ground measurements of LAI and the UAV RGB
image acquisition were conducted from May to June 2019 of the wheat growing period.
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Figure 1. Location of the study area and sampling points. (a) Study area in Ontario, Canada.
(b) Study area located near London in southwestern Ontario. (c) Study area of “L-shaped” winter
wheat field. (d) Locations of sampling points and ground control points (GCPs) within the winter
wheat field.
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2.2. Field Measurements

In this study, multi-temporal field measurements were conducted six times during
May to June of the winter wheat growing period in 2019. A total of 32 sampling points
were deployed along the row direction of winter wheat in the experimental field, and the
distance between any 2 sampling points was no less than 30 m. The positions of each
sampling point are shown in Figure 1d. In addition, to ensure the accuracy of relative
positions between datasets, 12 sampling points were selected as ground control points,
and 12 black-and-white chess boards (2 by 2 cells) measuring 1 ft by 1 ft were set up for
subsequent data registration. The positions of each ground control point are shown in
Figure 1d. At the same time the UAV was flown, LAI field measurement was carried out
and a real-time kinematic (RTK) carrier phase division technology was used to record the
longitude and latitude information of each sampling point. A Nikon D300S camera with a
10.5 mm fisheye lens was used to take 7 hemispherical photos of the winter wheat canopy
at 1 m above the winter wheat canopy within a range of 2 m × 2 m at each sampling
point. The field LAIe was derived by using CAN-EYE software to process hemispherical
photos. The measured LAIe range was 0.31~0.67 on 11 May, 0.56~1.53 on 16 May, 0.75~2.52
on 21 May, 1.28~2.52 on 27 May, 1.11~1.8 on 3 June, and 1.52~2.3 on 11 June. On each
measurement date, 32 samples were collected, resulting in a dataset of 192 samples from
six measurement days.

2.3. UAV Data Acquisition and Processing

In the study, the DJI Phantom 4 RTK UAV system equipped with a 5 K high-resolution
digital camera was used to collect RGB images on 2 May, 11 May, 16 May, 21 May, 27 May,
3 June, and 11 June 2019. All the UAV flights were performed between 10 a.m. and
2 p.m. and at an altitude of 30 m above the winter wheat canopy, with heading overlap
and sideways overlap of 90%. The spatial resolution of the images obtained by UAV is
9 mm. The UAV image processing software Pix4Dmapper Pro V2.4 (Pix4D SA, Lausanne,
Switzerland) was used to generate 3-D PCD including geometric information (x, y, z
coordinate values) and optical information (RGB color components) of winter wheat using
SfM technology. The SfM PCD was generated using a Windows computer with a 12-core
Xeon CPU and Quadro M4000 graphics card, with a total processing time of 30 h. The PCD
density is greater than 4000 points/m2.

2.4. Point Cloud Data Filtering

The gap fraction is the probability that the light passing through the canopy is not
intercepted [38]. If only point cloud canopy data is not retained for point cloud data filtering,
it will lead to an estimation error of gap fraction. Therefore, the separation of the bare
ground point cloud and the winter wheat point cloud is very critical. PCD extracted from
UAV images has both color information (red, green, and blue band values) and geometric
information (x, y, and z coordinate values). The visible light vegetation index used for
crop recognition in the visible light image can be applied to the extraction of vegetation
points in the point cloud. Then, the Otsu method can be used to automatically determine
the threshold to separate the ground points [39]. The Otsu method, also known as the
maximum inter-class variance method, is a non-parametric and unsupervised method for
automatic threshold selection [40]. The more common visible light vegetation index is the
excess green index (EXG), which can be calculated by the following formula [39]:

EXG = 2G − B − R (1)

where R, G, and B are the red, green, and blue band values of the digital image pixel
acquired by the UAV, which are retained in the PCD generated by SfM.

The geometric information of PCD can be used to calculate the height difference and
slope between nearby points. Vosselman proposed a slope-based filter that discriminates
ground points by comparing slopes between a point and its neighbors [41]. A reasonable



Drones 2023, 7, 299 6 of 22

slope threshold can be obtained by using the data that contain the important terrain in the
study area [42]. When winter wheat is greening up in the following spring, the coverage
of winter wheat is very low. Most of the points in the PCD at this time represent the
background soil, and reflect the terrain shape characteristics of the study area. Therefore,
the PCD collected during this period can be used for obtaining the height difference
threshold and slope threshold. Based on the approach mentioned above, the fixed threshold
was improved to the height difference threshold set and slope threshold set based on the
terrain characteristics of the study area, and an improved slope-based filtering algorithm
was proposed. As shown in Figure 2, first divide the point cloud data area into grid data,
and take the lowest point in each cell of grid data as the reference point, then calculate the
height difference ∆h and slope value slope between the other points and the lowest point.
The calculation formula is as follows:

∆hi = zi − z0 (2)

where ∆hi is the height difference between the lowest point p0 and other points pi in the
cell of grid data except the lowest point, zi is the z-coordinate value of pi, and z0 is the
z-coordinate value of p0.

slopei =
∆hi√

(xi − x0)
2 + (yi − y0)

2
(3)

where slopei is the slope value of the other points pi in the cell of grid data except the
lowest point, xi and yi are the x and y coordinate values of pi, and x0 and y0 are the x and y
coordinate values of p0.
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(a) Divide the point cloud data area into grid data (top view). (b) Calculation of height difference ∆hi

and distance di in a cell of grid data, where ∆hi = zi − z0 and di =
√
(xi − x0)

2 + (yi − y0)
2.

Then, use the average value of height difference and the average slope value of all
points in a cell of grid data as the height difference threshold and slope threshold of the
cell of grid data. Next, the height difference threshold set and slope threshold set can be
obtained. In the subsequent point cloud filtering process, points with height differences
less than the height difference threshold and slope less than the slope threshold will be
filtered as ground points.

2.5. Projection of Spherical Point Cloud onto a Plane

The lens of the digital hemispherical photography system is a fisheye lens, which is
also called a hemisphere lens. The view angle of the fisheye lens is close to or equal to 180◦.
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According to the imaging characteristics of the fisheye lens, the photosensitive part of the
image is a circle, so a hemispherical photo is obtained [43]. In essence, a hemispherical
photo produces a projection of a hemisphere onto a plane [44]. This study was based on
the principle of measuring LAI using a digital hemispherical photography system. In order
to obtain a hemispherical photo of a winter wheat field, the PCD of winter wheat needs
be processed as follows. First, the PCD in the Cartesian coordinate system needs to be
transformed into the spherical coordinate system, which projects the point cloud onto a
hemispherical surface with a radius of one. Then, the point cloud on the hemispherical
surface is projected onto a plane to obtain the gray hemispherical image of the point cloud.
Next, the binary processing is performed by setting the gray value of the pixel with point
cloud to 255 and the gray value of the pixel without point cloud to 0. Finally, the binary
hemispherical image is obtained.

There are many ways to represent a sphere on a plane. In this study, two common
projection methods, a Lambert azimuthal equal-area map projection and stereographic
projection, were used [45]. The Lambert azimuthal equal-area map projection can keep the
correct orientation from the projection center to any point and can keep the area on the
map proportional to the corresponding area on the ground. The relationship between the
coordinates before and after the projection is [36]:x′ = x

√
2

1+z

y′ = y
√

2
1+z

(4)

where P(x, y, z) is any point on the sphere and P′(x′, y′) is the projection of the point P on
the plane.

The stereographic projection is conformal. Conformality means that the angle remains
unchanged. However, the projection does not maintain the same distance or area. The
relationship between the coordinates before and after the projection is [36]:{

x′ = x
1+z

y′ = y
1+z

(5)

where P(x, y, z) is any point on the sphere and P′(x′, y′) is the projection of the point P on
the plane.

2.6. LAIe Estimation Using Gap Fraction

LAI is defined as the total of the one-sided leaf area per unit of ground surface area [2].
The LAI obtained under the assumption that leaf elements are randomly distributed
in space is called the effective LAI (LAIe). LAIe is relatively easy to obtain from remote
sensing data and can be mutually converted with the true LAI (LAI) (LAI = ΩLAIe) [19,46].
Therefore, many experiments often estimate the LAIe as a substitute for the true LAI [47].
When calculating LAIe, it is assumed that the leaf elements are randomly distributed in
space (Ω = 1). Therefore, according to the Beer–Lambert law, the following equation can
be obtained:

LAIe =
−lnP(θ)· cos(θ)

G(θ, α)
(6)

where θ is the zenith angle of the incident light, which refers to the angle between the light
incident direction and the zenith direction. According to the mechanism of hemispherical
photography, θ is the shooting angle. G(θ, α) is the projection function, which is related to
the zenith angle and the leaf inclination angle, and represents the projected area of the unit
leaf under the view angle θ when the leaf inclination angle is α. P(θ) is the gap fraction,
which can be calculated by the following equation:

P(θ) =
Ns(θ)

Ns(θ) + Nl(θ)
(7)
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where Nl(θ) is the pixel content of leaves under the viewing angle θ, and Ns(θ) is the
background (sky or soil) pixel content under the viewing angle θ.

When the zenith angle θ is 58◦, the projection function is independent of the leaf
inclination angle and always equal to 0.5 [48]. Therefore, the 58◦ zenith angle is substituted
into Equation (6), and a single-angle inversion method can be obtained:

LAIe =
−lnP(58◦)· cos(58◦)

0.5
(8)

LAIe can also be estimated by gap fraction under different viewing angles, which is
called the multi-angle inversion method:

LAIe = −2
n

∑
i=1

ln(P(θi)) cos(θi) sin(θi)∆θ (9)

where n is the number of divided concentric rings, P(θi) is the gap fraction of the i-th
concentric ring, and ∆θ is the zenith angle difference between adjacent rings. The number
of common concentric rings is 18, as shown in Figure 3. Since the hemispherical image
contains information on the gap fraction from the 0◦ to 90◦ viewing angle, each concentric
ring corresponds to a 5◦ viewing angle interval. Under this condition, n is equal to 18, and
∆θ is equal to 5◦ in Equation (9). In Equation (8), P(58◦) can be approximated to the gap
fraction of the viewing angle interval of the 12th concentric ring, and the corresponding
viewing angle interval is 55◦~60◦.
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bination 1 is the combination of the Lambert azimuthal equal-area map projection method 

Figure 3. Division of hemispherical image view angles into 18 rings (18 views). In this hemispherical
image, green represents leaf pixels and white represents non-leaf pixels.

According to two projection methods of spherical point cloud projecting onto a plane
and two methods of calculating LAIe, four methods are combined to calculate LAIe.
Combination 1 is the combination of the Lambert azimuthal equal-area map projection
method and the single-angle inversion method, which is called the AEAP-SA method.
Combination 2 is the combination of the Lambert azimuthal equal-area map projection
method and the multi-angle inversion method, which is called the AEAP-MA method.
Combination 3 is the combination of stereographic projection method and single angle
inversion method, which is called the SP-SA method. Combination 4 is the combination of
stereographic projection method and multi-angle inversion method, which is called the
SP-MA method.
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2.7. Methods Assessment

In this study, the in-site LAIe measurements were used to evaluate the accuracy of the
LAIe derived from the UAV-based point cloud using different methods. Linear regression
analysis was performed for estimated LAIe and LAIe was measured by DHP. The standard
deviation (STD), determination coefficient (R2), root mean square error (RMSE), and average
absolute error (MAE) were calculated to evaluate the prediction error of LAIe.

3. Results
3.1. Point Cloud Filtering

The Otsu filtering method and the Otsu filtering method combined with the improved
slope-based filtering method were used, respectively, to separate the winter wheat point
cloud and bare ground point cloud. Figure 4 shows the comparison diagram of filter-
ing effects in local areas. It can be seen from the figure that on 11 May, 16 May, and
21 May, winter wheat was in the early growth stage, with less ground coverage and more
bare ground. Due to the different weather and light at the time of photo shooting, the
shadow effect of the picture was inconsistent, and the Otsu filtering method only used
color information for filtering results in a small number of bare ground points that have
not been removed. Combined with the improved slope-based filtering method, it im-
proved the separation to a certain extent. However, with the rapid growth of winter wheat,
winter wheat covered more and more ground, leaving less bare ground. Using an im-
proved slope-based filtering algorithm will filter out a small portion of the winter wheat
point cloud.
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11 May, 16 May, 21 May, 26 May, 3 June, and 11 June. (b,e,h,k,n,q) show the point cloud on 11 May,
16 May, 21 May, 26 May, 3 June, and 11 June filtered by the Otsu method. (c,f,i,l,o,r) show the point
cloud on 11 May, 16 May, 21 May, 26 May, 3 June, and 11 June after using the Otsu filtering method in
combination with the improved slope-based filtering method.

3.2. Hemispherical Image of Point Cloud Data

The filtered winter wheat point cloud data was projected onto a hemispherical surface,
and the hemispherical image was then obtained through the Lambert azimuthal equal-
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area map projection and the stereographic projection and binarization, respectively. In
the binary hemispherical image, the white pixels represent the winter wheat point cloud,
and the black pixels represent soil ground points. The winter wheat point cloud data
before and after projection and the binary hemispherical image are shown in Figure 5. The
Lambert azimuthal equal-area map projection does not guarantee the angle, and the area
of any area on the sphere projected onto the projection plane is equal in proportion. The
stereographic projection does not preserve the area but the angle. The closer to the equator,
the larger the area is. Therefore, when the spherical point cloud is projected to the plane
using stereographic projection, the smaller the latitude line is, the larger the proportion of
the projected area is. This can be seen from Figure 5e,f.
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Figure 5. Project the point cloud data in the 3-D Cartesian coordinate system to the upper hemisphere,
then project it to the plane and binarize it to obtain the hemispherical image (The yellow box is the
bounding box of the point cloud). (a) is the point cloud in the 3-D Cartesian coordinate system. (b) is
the top view of the point cloud in the 3-D Cartesian coordinate system. (c) is the point cloud in the
spherical coordinate system. (d) is the top view of the point cloud in the spherical coordinate system.
(e) is the binary hemispherical image obtained by the Lambert azimuthal equal-area map projection
method. (f) is the binary hemispherical image obtained by the stereographic projection method.

3.3. LAIe Inversion Results

Figures 6–9 show the regression analysis results between the LAIe estimated using the
four methods under three filtering conditions and the LAIe measured by DHP. Without
filtering, the LAIe estimated based on UAV PCD using the AEAP-SA method and SP-SA
method is negatively correlated with the LAIe measured by DHP (Figures 6a and 8a).
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Without filtering, the LAIe estimated based on the UAV point cloud data using the AEAP-
MA method and SP-MA method is weakly correlated with the LAIe measured by the DHP
(Figures 7a and 9a). Under the other two filtering conditions, the LAIe estimated by the four
methods based on UAV point cloud data is positively correlated with the LAIe measured
by ground DHP (Figures 7–10). The STD, RMSE, MAE, and R2 of LAIe estimated by four
methods under three filtering conditions are listed in Tables 1–4.
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Figure 6. Linear regression analysis of LAIe calculated by the AEAP-SA method and LAIe measured
by DHP under different filtering conditions. (a) is the case without filtering. (b) is the case only using
the Otsu filtering method. (c) is the case using the Otsu filtering method combined with improved
slope-based filtering method. Six sample points with different dates are represented in different colors
to distinguish them. Among them, black represents 32 sampling points on 11 May, red represents
32 sampling points on 16 May, blue represents 32 sampling points on 21 May, green represents
32 sampling points on 27 May, purple represents 32 sampling points on 3 June, and yellow represents
32 sampling points on 11 June. The solid line is a linear regression trend line, and the dotted line is
the 1:1 line.
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Figure 7. Linear regression analysis of LAIe calculated by the AEAP-MA method and LAIe measured
by DHP under different filtering conditions. (a) is the case without filtering. (b) is the case only
using the Otsu filtering method. (c) is the case using the Otsu filtering method combined with
improved slope-based filtering method. Six sampling points with different dates are represented in
different colors to distinguish them. Among them, black represents 32 sampling points on 11 May,
red represents 32 sampling points on 16 May, blue represents 32 sampling points on 21 May, green
represents 32 sampling points on 27 May, purple represents 32 sampling points on 3 June, and yellow
represents 32 sampling points on 11 June. The solid line is a linear regression trend line, and the
dotted line is the 1:1 line.
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Figure 8. Linear regression analysis of LAIe calculated by the SP-SA method and LAIe measured
by DHP under different filtering conditions. (a) is the case without filtering. (b) is the case only
using the Otsu filtering method. (c) is the case using the Otsu filtering method combined with
improved slope-based filtering method. Six sampling points with different dates are represented in
different colors to distinguish them. Among them, black represents 32 sampling points on 11 May,
red represents 32 sampling points on 16 May, blue represents 32 sampling points on 21 May, green
represents 32 sampling points on 27 May, purple represents 32 sampling points on 3 June, and yellow
represents 32 sampling points on 11 June. The solid line is a linear regression trend line, and the
dotted line is the 1:1 line.
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Figure 9. Linear regression analysis of LAIe calculated by the SP-MA method and LAIe measured
by DHP under different filtering conditions. (a) is the case without filtering. (b) is the case only
using the Otsu filtering method. (c) is the case using the Otsu filtering method combined with
improved slope-based filtering method. Six sampling points with different dates are represented in
different colors to distinguish them. Among them, black represents 32 sampling points on 11 May,
red represents 32 sampling points on 16 May, blue represents 32 sampling points on 21 May, green
represents 32 sampling points on 27 May, purple represents 32 sampling points on 3 June, and yellow
represents 32 sampling points on 11 June. The solid line is a linear regression trend line, and the
dotted line is the 1:1 line.
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Table 1. Difference statistics of measured LAIe and estimated LAIe using AEAP-SA method.

STD RMSE MAE R2

I II III I II III I II III I II III

11-May 0.13 0.20 0.17 6.20 0.30 0.18 6.20 0.25 0.14
16-May 0.29 0.35 0.31 5.66 0.40 0.33 5.65 0.33 0.28
21-May 1.26 0.35 0.31 4.40 0.43 0.39 4.16 0.34 0.31
27-May 1.09 0.71 0.65 2.79 0.88 0.62 2.57 0.69 0.46
3-June 1.38 0.94 0.85 3.48 1.83 1.43 3.22 1.60 1.21
11-June 1.23 0.72 0.67 2.99 1.30 0.96 2.73 1.07 0.74
Overall 1.37 1.09 0.99 4.45 1.02 0.78 4.09 0.71 0.52 0.35 0.51 0.52

Note. “I” refers to filtering condition of without filtering. “II” refers to filtering condition of only using the Otsu
filtering method. “III” refers to filtering condition of using the Otsu filtering method combined with improved
slope-based filtering method.

Table 2. Difference statistics of measured LAIe and estimated LAIe using AEAP-MA method.

STD RMSE MAE R2

I II III I II III I II III I II III

11-May 0.37 0.14 0.12 1.83 0.22 0.13 1.81 0.19 0.10
16-May 0.59 0.28 0.24 1.48 0.30 0.33 1.36 0.24 0.24
21-May 0.42 0.29 0.26 1.63 0.40 0.45 1.55 0.33 0.36
27-May 0.43 0.53 0.51 1.53 0.55 0.43 1.44 0.40 0.31
3-June 0.36 0.44 0.44 1.72 0.98 0.73 1.67 0.88 0.61
11-June 0.40 0.42 0.43 1.41 0.63 0.48 1.36 0.49 0.40
Overall 0.60 0.78 0.74 1.61 0.57 0.46 1.53 0.42 0.34 0.35 0.61 0.61

Note. “I” refers to filtering condition of without filtering. “II” refers to filtering condition of only using the Otsu
filtering method. “III” refers to filtering condition of using the Otsu filtering method combined with improved
slope-based filtering method.

Table 3. Difference statistics of measured LAIe and estimated LAIe using SP-SA method.

STD RMSE MAE R2

I II III I II III I II III I II III

11-May 0.43 0.18 0.15 6.62 0.34 0.15 6.60 0.30 0.11
16-May 0.24 0.30 0.27 6.22 0.33 0.28 6.21 0.28 0.23
21-May 1.25 0.47 0.40 4.72 0.69 0.52 4.49 0.53 0.39
27-May 0.86 0.52 0.51 2.84 0.90 0.62 2.68 0.78 0.50
3-June 1.09 0.58 0.54 3.41 1.77 1.33 3.24 1.67 1.21
11-June 1.12 0.83 0.68 3.14 1.54 1.08 2.92 1.27 0.85
Overall 1.42 1.08 0.97 4.73 1.08 0.78 4.36 0.80 0.55 0.46 0.55 0.58

Note. “I” refers to filtering condition of without filtering. “II” refers to filtering condition of only using the Otsu
filtering method. “III” refers to filtering condition of using the Otsu filtering method combined with improved
slope-based filtering method.

Table 4. Difference statistics of measured LAIe and estimated LAIe using SP-MA method.

STD RMSE MAE R2

I II III I II III I II III I II III

11-May 0.37 0.12 0.11 2.24 0.19 0.13 2.20 0.17 0.11
16-May 0.76 0.24 0.22 1.84 0.27 0.32 1.71 0.22 0.24
21-May 0.52 0.28 0.24 2.02 0.36 0.42 1.94 0.28 0.34
27-May 0.44 0.46 0.43 1.74 0.48 0.37 1.65 0.38 0.27
3-June 0.49 0.43 0.41 2.06 0.98 0.70 2.01 0.89 0.60
11-June 0.47 0.50 0.46 1.63 0.68 0.49 1.56 0.52 0.40
Overall 0.63 0.78 0.72 1.93 0.56 0.44 1.84 0.41 0.33 0.28 0.62 0.63

Note. “I” refers to filtering condition of without filtering. “II” refers to filtering condition of only using the Otsu
filtering method. “III” refers to filtering condition of using the Otsu filtering method combined with improved
slope-based filtering method.
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When the Otsu filtering method is used in combination with the improved slope-
based filtering method, the LAIe values of enough sampling points in the study area were
estimated by four methods and the LAIe maps are drawn in Figures 10–13.

Using the mean LAIe measured by DHP and estimated by four methods as data
points, and the STD as error bars, the bar charts with error bars were drawn to explore
the uncertainty of the four methods compared with the DHP method (Figure 14). These
three conditions and four methods mentioned above to estimate the LAIe are compared
and discussed below.
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4. Discussion
4.1. Accuracy Comparison of LAIe Estimation by Filtering Methods

Without filtering, the LAIe obtained by four methods of estimating LAIe based on
UAV point cloud data were weakly or negatively correlated with the LAIe measured by
ground DHP, and the RMSE and MAE were relatively large (Tables 1–4). It can be seen that
it was very necessary to filter the point cloud data and separate the winter wheat point
cloud from the bare ground point cloud. This is because there was no filter to separate
the winter wheat point cloud and the bare ground point cloud, and the white pixel value
of the binary hemispherical image contained a large amount of bare ground point cloud.
The bare ground point cloud was regarded as the winter wheat point cloud, which caused
the calculated gap fraction to be low. Therefore, the LAIe obtained would be seriously
overestimated, which is particularly obvious in the early growth stage of winter wheat
(Figures 6–9). As shown in Figures 6a, 7a, 8a and 9a, on 11, 16, and 21 May, winter wheat
covered less ground, and bare ground point cloud accounted for most of the point cloud
data, which made the estimated LAIe value much higher than the measured LAIe value. At
the late growth stage of winter wheat, such as 3 June and 11 June, the amount of point cloud
on the bare ground was relatively small, and the situation regarding the LAIe estimation
being on the high side was improved.

Compared with forest point cloud and individual tree point cloud, the height of winter
wheat is relatively low, and the influence of terrain should be considered, so it is much more
complex to filter winter wheat point cloud. When only Otsu filtering was used, this paper
calculated the color index EXG based on RGB pixel information about point cloud data,
and then automatically determined the threshold value of EXG using the Otsu method to
separate winter wheat point cloud from background soil point cloud. The Otsu method
divides the point cloud into foreground and background according to the EXG of the point
cloud data, and then selects the best EXG value to maximize the variance between the
foreground and background, so as to automatically determine the threshold. In the case of
different lighting conditions, i.e., uneven light and shadows, the EXG of some bare ground
point cloud was similar to the EXG of winter wheat point cloud, and some bare ground
point cloud may have been mistaken for winter wheat point cloud and retained. Therefore,
when only the Otsu filtering method was used, the estimated value of the LAIe is on the
high side. Song et al. also showed that shadow effect is one of the factors that affect the
estimation of LAIe [39].

In addition to color information, point cloud data also has geometric information. Ac-
cording to the structure information of point cloud data, this paper proposed an improved
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slope-based filtering method. Combining this method with the Otsu filtering method,
background soil points could be better separated. The correlation between estimated LAIe
and the LAIe measured by DHP was improved, and MAE and RMSE were decreased
when the Otsu filtering method was combined with the improved slope-based filtering
method (Tables 1–4). At the early growing stage, winter wheat covered less ground, and
there were fewer winter wheat point clouds after Otsu filtering. When using the improved
slope-based filtering method, if the lowest point in a grid is a winter wheat point cloud, part
of the winter wheat point cloud in the grid will be filtered out, which will cause the LAIe
estimation value to be lower than the LAIe measurement value. In the late growth stage of
winter wheat, with the increase of winter wheat point cloud, this situation is improved. In
a word, when using the Otsu filtering method in combination with the improved slope-
based filtering method, compared with using only the Otsu filtering method, the problem
that some bare ground points are not filtered out, resulting in higher LAIe estimates, has
improved to some extent, but also led to lower LAIe estimates at the early growing stage of
winter wheat. This is where further improvement is needed in the future. The improved
sloped-based algorithm needs to use point cloud data at the early growing stage of the crop
to calculate the height difference threshold set and slope threshold set. In future studies,
the height difference threshold set and slope threshold set can be calculated by using the
digital elevation model (DEM) generated by point cloud to make the classification of crop
point cloud and bare ground point cloud more accurate.

From the inversion results of LAIe, it can be seen that the inversion value of LAIe is
much higher than the measured value when the bare ground points are not filtered. In the
two cases where the bare ground points were filtered, the inversion value of LAIe is close
to but still slightly higher than the measured value as a whole. The above bare ground
point cloud is regarded as the winter wheat point cloud, which leads to an underestimated
gap fraction. In addition, the research of Danson et al. showed that the method based on
TLS often underestimates the gap fraction [38], and the results of the gap fraction estimated
by Hancock et al. from the PCD based on TLS through the two-dimensional method
were consistent with it [37]. Zheng et al. further confirmed this finding, indicating that
the LAIe obtained from the PCD based on TLS using the two-dimensional method was
overestimated [36]. The results of this study are consistent with the above results.

4.2. Assessment of Four Methods for LAIe Estimation

According to Tables 1–4, compared with the DHP method, the AEAP-MA method and
SP-MA method have higher R2 and lower RMSE and MAE than those of the AEAP-SA
method and SP-SA method. The RMSE and MAE of the AEAP-SA method and SP-SA
method in the late growth stage of winter wheat (27 May, 3 June, and 21 June) were much
higher than those in the early growth stage of winter wheat (11 May, 16 May, and 21 May),
which resulted in higher overall errors (Tables 1–4). Among the four methods, the R2 of the
SP-MA method was the highest, and the RMSE and MAE were the lowest. The uncertainty
of the AEAP-MA method and SP-MA method is relatively small, while the uncertainty of
the AEAP-SA method and SP-SA method are relatively large (Figure 14). In addition, the
Kruskal–Wallis analysis of variance for the nonparametric test of absolute error of the four
methods was conducted. Table 5 lists the p-values of the significance analysis of absolute
error distribution of the different methods. The absolute error distribution of the SP-MA
method is significantly different from that of the AEAP-SA method and SP-SA method
(p < 0.01). It can be considered that the absolute error of the SP-MA method is significantly
lower than that of the AEAP-SA method and SP-SA method. The absolute error distribution
of the SP-MA method and AEAP-MA method is not significantly different. The SP-MA
method has the highest R2 and the lowest MAE and RMSE, indicating that it has the highest
estimation accuracy among the four methods.
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Table 5. p-values of Kruskal–Wallis analysis of four methods.

AEAP-SA
Method AEAP-MA Method SP-SA

Method SP-MA Method

AEAP-SA method
AEAP-MA method 0.003

SP-SA method 0.816 0.001
SP-MA method 0.003 0.962 0.001

Note: p-value < 0.05 indicates that the absolute error distribution of one method is significantly different from the
absolute error distribution of another method (at the 0.05 level).

First, we discuss the influence of Lambert azimuthal equal-area map projection and
stereographic projection on the LAIe estimation. It can be seen from Figure 4 that when
the point cloud data was projected onto the upper hemisphere, the winter wheat point
cloud was mainly concentrated in the regions with lower spherical latitude, whereas the
bare ground point cloud was mainly distributed in the poles and regions with higher
latitude. As mentioned earlier, Lambert azimuthal equal-area map projection preserves
area but not angle, whereas stereographic projection preserves angle but not area. That
is to say, after the Lambert azimuthal equal-area map projection, the area of any latitude
area on the sphere is projected in equal proportion; after the stereographic projection, the
lower the latitude on the sphere, the larger the projected area. Because the winter wheat
point cloud data was mainly concentrated in the area with lower spherical latitude, the
area with lower latitude was enlarged after using the stereographic projection, and the
distribution details of the winter wheat point cloud were better displayed. Therefore, under
the stereographic projection, the calculation of gap fraction was more accurate. This agrees
with the research results of Zheng et al. Zheng et al. used the two-dimensional method
to convert the PCD into a two-dimensional raster image to estimate the LAIe of a forest
stand, and the stereographic projection method correlated better to the DHP-based LAIe
compared with the Lambert azimuthal equal-area map projection method [36]. However,
this study only selected these two more commonly used projection methods of spherical
point cloud onto a plane; other projection methods such as polar projection and orthogonal
projection can be tried.

Since the single-angle inversion method only uses the gap fraction of concentric rings
in the viewing angle area to estimate LAIe, the concentric rings in this viewing angle area
were just the concentrated area of winter wheat point cloud. The multi-angle inversion
method uses the gap fraction of 18 concentric rings to estimate the LAIe, and calculates
the gap fraction of all viewing areas to estimate the LAIe. This explains why the LAIe
value estimated by the single-angle inversion method is higher than that estimated by
the multi-angle inversion method. The extracted gap fraction information by the multi-
angle inversion method is more comprehensive, so the estimated LAIe value is more
relevant to the DHP-based LAIe. This is in agreement with the research results of Song
et al., who developed a method of simulated observation of point cloud (SOPC) from a
three-dimensional perspective based on UAV point cloud data to obtain the gap fraction
under the corresponding zenith angle, and then retrieved the LAIe from a single angle
and multiple angles, respectively [39]. Overall, the SP-MA method is the combination
of the stereographic projection and multi-angle inversion method, which allows a more
comprehensive consideration of the canopy information of winter wheat point cloud, so
the accuracy of LAIe value estimated by this method is the highest.

5. Conclusions

In this paper, we used four methods of simulated hemispherical photography to
estimate the LAIe from UAV-based PCD, and discussed the impact of different filtering
methods on the LAIe estimation results. The results show that the LAIe estimated by
the four methods of estimating LAIe are moderately and strongly correlated with the
LAIe measured by DHP. Among them, the combination of stereographic projection and
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multi-angle inversion method has the highest accuracy, with a R2 of 0.63. In addition, the
effect of filtering PCD to separate winter wheat point cloud and the background soil point
cloud has an important impact on LAIe estimation. The improved slope-based filtering
method proposed in this study combined with the Otsu filtering method can improve
the estimation accuracy of LAIe. Overall, the PCD processing routines applied in this
paper could be automated, and the method proposed in this study could conveniently and
effectively estimate the LAIe of crops in larger areas using UAV-based 3-D PCD without
ground measurement.
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