
Citation: Carpenter, A.; Lawrence,

J.A.; Ghail, R.; Mason, P.J. The

Development of Copper Clad

Laminate Horn Antennas for Drone

Interferometric Synthetic Aperture

Radar. Drones 2023, 7, 215. https://

doi.org/10.3390/drones7030215

Academic Editors: Syed Agha

Hassnain Mohsan, Pascal Lorenz,

Khaled Rabie, Muhammad Asghar

Khan and Muhammad Shafiq

Received: 3 March 2023

Revised: 17 March 2023

Accepted: 18 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

The Development of Copper Clad Laminate Horn Antennas for
Drone Interferometric Synthetic Aperture Radar
Anthony Carpenter 1,* , James A. Lawrence 1, Richard Ghail 2 and Philippa J. Mason 3

1 Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU, UK
2 Department of Earth Sciences, Royal Holloway University of London, London TW20 0EX, UK
3 Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK
* Correspondence: a.carpenter18@imperial.ac.uk

Abstract: Interferometric synthetic aperture radar (InSAR) is an active remote sensing technique that
typically utilises satellite data to quantify Earth surface and structural deformation. Drone InSAR
should provide improved spatial-temporal data resolutions and operational flexibility. This necessi-
tates the development of custom radar hardware for drone deployment, including antennas for the
transmission and reception of microwave electromagnetic signals. We present the design, simulation,
fabrication, and testing of two lightweight and inexpensive copper clad laminate (CCL)/printed
circuit board (PCB) horn antennas for C-band radar deployed on the DJI Matrice 600 Pro drone. This
is the first demonstration of horn antennas fabricated from CCL, and the first complete overview of
antenna development for drone radar applications. The dimensions are optimised for the desired gain
and centre frequency of 19 dBi and 5.4 GHz, respectively. The S11, directivity/gain, and half power
beam widths (HPBW) are simulated in MATLAB, with the antennas tested in a radio frequency (RF)
electromagnetic anechoic chamber using a calibrated vector network analyser (VNA) for comparison.
The antennas are highly directive with gains of 15.80 and 16.25 dBi, respectively. The reduction in
gain compared to the simulated value is attributed to a resonant frequency shift caused by the brass
input feed increasing the electrical dimensions. The measured S11 and azimuth HPBW either meet or
exceed the simulated results. A slight performance disparity between the two antennas is attributed
to minor artefacts of the manufacturing and testing processes. The incorporation of the antennas
into the drone payload is presented. Overall, both antennas satisfy our performance criteria and
highlight the potential for CCL/PCB/FR-4 as a lightweight and inexpensive material for custom
antenna production in drone radar and other antenna applications.

Keywords: antennas; copper clad laminate (CCL); drones; horn antennas; interferometric synthetic
aperture radar (InSAR); payload; radar antennas; remote sensing; synthetic aperture radar (SAR)

1. Introduction

Interferometric synthetic aperture radar (InSAR) is an active remote sensing technique
that developed from the 1990s with the proliferation of Radio Detection and Ranging
(radar) satellites and their synthetic aperture radar (SAR) data products. InSAR exploits the
phase change data between multiple SAR acquisitions of the target area to quantify Earth
surface and structural deformation to a millimetric scale [1]. InSAR has been utilised in
both geophysical and civil engineering investigations, including tectonics [2–7], volcanol-
ogy [8–10], slope geohazards [11–13], mining [14,15], tunnelling [16,17] and infrastructure
monitoring [18–23]. More recently, with innovations in unmanned aerial vehicle (UAV)
and software defined radar (SDR) technologies, several authors have attempted to develop
drone InSAR, where drones are classified as small and lightweight UAVs. This follows
the applications of drone monitoring in the past decade utilising photography [24], pho-
togrammetry [21,25,26], and light detection and ranging (LiDAR) [27–29]. Drone radar
deployment enables a lower observation altitude for an improved point density and spatial
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resolution; rapid and customisable deployment for an improved temporal resolution and
operational flexibility; and the potential to utilise higher frequency radar bands since the
atmospheric range and thus attenuation effect are both reduced [30]. Drone radar may
also obtain a line-of-sight (LOS) vector from multiple directions, thus overcoming layover
and shadowing effects found in satellite radar data [31,32]. These considerations are use-
ful for site-scale investigations detecting micro-scale deformations with a high temporal
dimension, and the validation of satellite InSAR data and ground-based methods.

The transition from satellite to drone InSAR necessitates the design, fabrication, and
testing of custom radar payloads, with the two core components being the SDR and the
antenna(s). The former is for the digital signal generation, modulation, and processing; the
latter is for the signal transmission to and reception from the target. Several authors have
demonstrated SAR imaging utilising custom drone radar payloads. Li and Ling [33,34]
developed an inexpensive pulsed SAR system for the DJI Phantom 2 drone. The total
payload, which includes an ultra-wideband (UWB) P410 radar, Raspberry Pi, two 5-turn
helix antennas and ancillaries weighs less than 0.3 kg, making it suitable for deployment
on almost any size of drone. The range profiles of generated SAR images show good
validation results against trihedral corner reflectors and other targets, despite the authors
highlighting potential issues of turbulence sensitivity, drone flight instability, and nearfield
antenna effects. Deguchi et al. [31,32,35] developed a Ku-band frequency modulated
continuous wave (FMCW) SAR system for the DJI Matrice 600 Pro drone for slope stability
and aging infrastructure management. Their low-weight and small form factor payload
design includes two 48 × 68 mm aperture horn antennas with 15 dBi gain. Verification of
the SAR processing using corner reflectors shows good azimuth compression, with ongoing
work to further improve this and develop drone differential InSAR (DInSAR). Moreira
et al. developed a multi-band (P-, L- and C- bands) [36] and a P-band [37] single-pass
drone InSAR system. Three antennas are deployed for each operating band; a C-band
square microstrip patch antenna; two L-band log-periodic dipole arrays in quadrature with
a parabolic reflector; and a P-band log-periodic dipole antenna array. Whilst multi-pass
InSAR provides surface deformation data over time, single-pass InSAR utilises the physical
separation of two antennas to compare two or more echoes of the target displaced in the
along-track direction. This is useful for determining any distortions due to topography,
and thus inform the creation of digital elevation models (DEM). Finally, Oré et al. [38]
and Luebeck et al. [39] utilise the same hardware as Moreira et al. [36,37] to demonstrate
short-term, multi-pass drone InSAR; the former for crop growth monitoring and the latter
for ground surface deformation monitoring. These investigations however have a limited
temporal range and separation of input data, which reduces potential spatial-temporal
decorrelation effects, such as the atmospheric contribution, that are commonly associated
with long-term InSAR processing.

Long-term, multi-temporal, multi-pass drone InSAR is still yet to be demonstrated
and is the motivation for ongoing research at Imperial College London. We have developed
a drone radar payload for the DJI Matrice 600 Pro, with the aim of providing long-term
drone InSAR monitoring for ageing infrastructure and geotechnical engineering. This
necessitates the design, fabrication, and testing of custom antennas for signal transmission
and reception, which is presented here for two lightweight and inexpensive copper clad
laminate (CCL) FR-4 horn antennas. Alternative fabrication techniques such as additive
manufacturing with metallization were explored following successful demonstrations in
the literature of lightweight and inexpensive 3D printed antennas [40–43]; however, several
prototypes suffered from delamination and warping due to the size of the components, the
small nozzle extrusion width for a higher print accuracy and smoothness, and the resultant
increase in print time which made it difficult to regulate the chamber and component
temperatures. CCL, which is typically used as a base material for Printed Circuit Boards
(PCB), was therefore explored as an alternative conductive, lightweight, and inexpensive
manufacturing material. This follows other successful demonstrations for a range of
antenna types where the antenna is either integrated into the substrate or lined with the
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material itself. The former includes Fermi, tapered slot [44] printed [45], monopole [46], and
integrated horn antennas [47]. The latter includes simulated and fabricated investigations
where PCB is utilised as a metamaterial to line or load the horn antennas [48–50].

Our antenna fabrication techniques utilising CCL/PCB are innovative, being the
first demonstration of horn antennas fabricated from the CCL/PCB itself. The CCL provides
a lightweight and rigid dielectric substrate, where the internal surfaces are coated with
a smooth 35 µm thick copper layer to provide a boundary for the electromagnetic field. CCL
is deemed preferable to copper sheets for achieving a lightweight component for drone
deployment, as the latter has a density approximately five times greater, and at a higher
economic cost. Our testing measurements show that the antennas perform well compared
to the simulated results, thus highlighting the potential of the lightweight and inexpensive
CCL/PCB for custom antenna production in drone applications. Furthermore, the cited
examples of drone-borne radar do not provide detail on the antenna design, fabrication,
and testing. Therefore, this is the first complete overview of custom antenna production for
drone radar deployment, thus demonstrating a hardware solution in this emerging field
of research.

2. Materials and Methods
2.1. Design

The antenna design is a traditional pyramidal horn, chosen for being highly efficient
and directive [51], which are deemed to be important qualities for drone-borne radar. The
antenna dimensions are optimized for the highest possible gain at the specified centre
frequency, with size and weight considerations for drone deployment.

2.1.1. Centre Frequency

5.40 GHz is chosen as the antenna centre frequency (f0) for several reasons. Firstly,
the SDR used in the drone radar payload is the Ettus Universal Software Radio Peripheral
(USRP) E312, which has an upper frequency limit of 6.00 GHz [52]. Utilising the upper
portions of this frequency range will enable a smaller horn antenna to be produced due to
the shorter wavelengths, which is advantageous considering the size and weight restrictions
associated with drone deployment. The wavelength (λ) at f0 is 55.52 mm:

λ =
c
f0

(1)

where c is the speed of light of 3.00× 108 m/s, and f0 is the centre frequency of 5.40 × 109 hertz.
Secondly, the DJI Matrice 600 Pro drone remote controller operates between 5.73 and
5.83 GHz [53], therefore the common frequency band around 5.80 GHz is avoided to pre-
vent signal interference. Lastly, this centre frequency should facilitate the comparison and
fusion of drone and satellite radar products. The Engineering Scale Geology Research
Group (ESGRG) at Imperial frequently utilise InSAR data from the Sentinel-1 satellite
constellation, which have a centre frequency of 5.405 GHz [54].

2.1.2. Pin-Fed Waveguide

The horn antenna utilises the dimensions of the WR187/WG12/R48 standard for
the rectangular waveguide, with lengths of 47.55 and 22.15 mm for the walls a and b
respectively (Figure 1). These waveguide dimensions are for a recommended frequency
band from 3.95 ( flow) to 5.85 ( fhigh) GHz, with low ( fc) and high cut-off frequencies of
3.15 GHz and 6.31 GHz respectively in transverse electric (TE10) transmission [55]:

fc =
c

2a
(2)

flow = 1.25 fc (3)

fhigh = 1.89 fc (4)
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Figure 1. Antenna waveguide schematic and dimensions (mm): (a) XY-plane view; (b) YZ-plane view.

The input feed penetrates the waveguide by 1
4 λ, at 13.88 mm. The input feed location

is determined by the guide wavelength (λg) of 67.50 mm; the distance travelled by the
wave to undergo a phase shift of 2π radians along the waveguide:

λg =
λ√

1 +
(

λ
λc

)2
=

0.055√
1 +

( 0.055
0.095

)2
= 0.0675 (5)

where λ is the free space wavelength of 55.52 mm at f0, and λc is the cut-off wavelength of
95.17 mm at fc. The input feed is located at 1

4 λg from the internal backwall at 16.86 mm
and is centred at 23.77 mm from either side of the internal waveguide walls (Figure 1).

2.1.3. Horn Aperture

The waveguide dimensions, a and b, and the desired gain at f0, G0, are used to
determine the remaining horn aperture dimensions of a1, b1, Pe, Ph, ρe, and ρh through
an iterative process outlined in [51] for Equations (7) through (17) (Figure 2). G0 is 19 dBi,
or 79.43 as a dimensionless quantity:

G0(dBi) = 19.00 = 10log10 G0 ⇒ G0 = 101.9 = 79.43 (6)
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The aim was to design a horn antenna with gain above the commercial standard of
15 dBi for high directivity, and, to provide leniency for any manufacturing artefacts that
may reduce the gain compared to the simulated values. A previous iteration of the antenna
dimensions was solved for 20 dBi. However, this yielded a prospective horn antenna that
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was 23% longer than the 19 dBi antennas presented here, and thus deemed too large for
deployment on the DJI Matrice 600 Pro. 19 dBi was therefore adopted.

The horn design equation is derived from the following steps. Firstly, the maximum
effective antenna aperture (Aem) is the area presented by the antenna to transmit or receive
the electromagnetic signal. Thus, the antenna directivity (D0) is positively correlated to
the Aem:

D0 = Aem

(
4π

λ2

)
(7)

where, in turn, Aem is related to the physical area of the antenna (Ap):

Aem = εap Ap (8)

where εap is the aperture efficiency, 0 ≤ εap ≤ 1. The overall efficiency for horn antennas is
assumed to be 50%, therefore the antenna gain can be related to the physical area since for
long horns ρ1 ' ρh and ρ2 ' ρe (Figure 2) [51]:

G0 =
1
2

4π

λ2 (a1b1) =
2π

λ2

√
3λρ2

√
2λρ1 '

2π

λ2

√
3λρhρe (9)

As Figure 2 shows, to physically construct a horn antenna, Pe should be equal to Ph,
since these parameters represent equivalent features in the YZ and XZ planes:

Pe = (b1 − b)

[(
ρe

b1

)2
− 1

4

] 1
2

(10)

Ph = (a1 − a)
[(

ρh
a1

)
− 1

4

] 1
2

(11)

Therefore, Equation (9) reduces to the horn design equation:

(√
2χ− b

λ

)2

(2χ− 1) =

(
G0

2π

√
3

2π

1√
χ
− a

λ

)2(
G2

0

6π3
1
χ
− 1

)
(12)

where ρe and ρh relate to the non-dimensional parameter χ through:

ρe

λ
= χ (13)

And:
ρh
λ

=
G2

0

8π3

(
1
χ

)
(14)

A MATLAB script was produced to iterate through and determine the value of χ
to satisfy the desired G0 of 19 dBi (79.43 dimensionless) in the horn design equation
(Equation (12)). The initial trial value for χ is taken as 5.04:

χ(trial) = χ1 =
G0

2π
√

2π
=

79.43
2π
√

2π
= 5.043479 (15)

χ = 5.04 does not satisfy Equation (12). Therefore, a more accurate value of 4.74426 is
reached after several iterations. Using Equations (13) and (14), ρe and ρh are determined as
0.26 and 0.29 m, respectively. Values for a1 and b1 are determined to optimize directivities
in the H- and E-planes as 0.22 and 0.17 m, respectively:

a1 =
√

3λρ2 '
√

3λρh =
G0

2π

√
3

2πχ
λ =

79.43
2π

√
3

2π × 4.74426
0.055 = 0.220582 (16)
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b1 =
√

2λρ1 '
√

2λρe =
√

2χλ =
√

2× 4.74426× 0.055 = 0.169419 (17)

Using Equations (10) and (11), Pe and Ph are equally determined as 0.21 m. The antenna
dimensions are summarized in Table 1.

Table 1. Antenna dimensions.

Parameter Length (mm)

a 47.55
b 22.15
a1 220.58
b1 169.42
Pe 214.53
Ph 214.53
ρe 260.93
ρh 294.89

Antenna radar measurements take place with targets in the farfield range, where D is
the maximum linear dimension of the antenna [56]. In this case, Pe, 214.53 mm:

Far f ield >
2D2

λ
∴ Far f ield >

2× 0.21452

0.055
= 1.67 (18)

2.2. Simulation

The MATLAB Antenna Toolbox electromagnetic solvers are used to simulate the an-
tenna performance. A script was produced to define the horn antenna object regarding
waveguide, feed, and flare dimensions (Table 1), and to set the simulation criteria. Simu-
lated parameters are categorized as impedance or pattern measurements. The former is
the S11, which is the input reflection coefficient and describes how much power is reflected
from the antenna. It is known that 0 dB represents total signal reflection and no radiation,
whereas −10 dB is typically referenced by RF and electrical engineers as a threshold value
indicative of good performance and is therefore the value by which the antenna bandwidth
is assessed. Figure 3 shows the simulated S11 results from 1 MHz to 6 GHz at 501 discrete
frequency points. This frequency range was chosen to visualise the antenna performance
in relation to the WR187 flow and fc values, and to assess the full bandwidth potential in
relation to the −10 dB threshold. S11 values decrease sharply from mismatched levels at fc
as expected and remain below the acceptable −10 dB threshold from 4.90 to 6.00 GHz, with
a value of −14.45 dB at f0. This simulation aligns with the WR187 flow and fhigh values of
3.95 and 5.85 GHz respectively.

The latter pattern measurements are the determination of the antenna directivity,
radiation patterns, and half-power beam widths (HPBW) in the azimuth and elevation
planes at f0. The antenna is simulated as a perfect electric conductor (PEC) with an effi-
ciency (η) value of 1 over the entire frequency range, therefore directivity and gain are
interchangeable here. Figure 4 shows the directivity pattern overlayed on the horn antenna,
with a maximum main lobe value of 18.69 dBi at f0. Figure 5 deconstructs this pattern
into the azimuth and elevation planes, with similar HPBW values of 18.65◦ and 18.30◦

respectively; these are below the desired 20◦ threshold and comparable with commercially
available horn antennas. Whilst the horn antenna was chosen for its directivity, HPBW
values below 15◦ are not desirable as drone flight instabilities will disproportionately affect
overly focused radar measurements. Non-linear human input may be mitigated through
flight planning, waypoints, autopilot, and other intelligent flight features of professional
and industrial drones. However, the aircraft is still subject to wind, turbulence, and atmo-
spheric thermal gradients. HPBW values between 15◦ and 20◦ therefore satisfy the trade-off
between antenna directivity and positioning sensitivity.
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2.3. Fabrication

The horn antennas were fabricated in the Geotechnics laboratory and workshop of
the Department of Civil and Environmental Engineering at Imperial. Two antennas were
produced for simultaneous signal transmission (Tx) and reception (Rx) and are numbered
as Antenna 1 and Antenna 2 throughout, according to the order of their production.

Copper was chosen as a suitable antenna fabrication material due to its high conduc-
tivity. The primary material utilised here is a 1.6 mm thick, single-sided, FR-4 material
grade CCL epoxy board. Previous demonstrations have shown antennas either integrated
into the substrate or lined with this material [44–50], with this being the first demonstration
of horn antennas fabricated from the CCL itself. The board base consists of eight layers of
woven glass-reinforced fabric laminate epoxy resin. This provides a lightweight and rigid
structure to the antenna at a suitable thickness for dimensional stability during drone de-
ployment. The particular substrate material does not affect the antenna performance, since
the 35-µm-thick copper at the internal surfaces provides a boundary for the electromagnetic
field. CCL is deemed preferable to copper sheets for achieving a lightweight component
for drone deployment, given their respective material densities of 1.8 and 8.96 g/cm3 [57].
To achieve an equivalent component weight, a copper sheet thickness of approximately
0.32 mm is required, which is anticipated to provide insufficient dimensional stability for
drone deployment. Furthermore, the manufacturing cost of CCL is highly competitive,
being comparable to the additive manufacturing mentioned in Section 1, and considerably
cheaper than copper sheet which is highly dependent on the component thickness.

Each antenna consists of nine pieces of the CCL board: five for the waveguide section
and four for the flared section. These were machined from the larger CCL boards using
an XYZ computer numerical control (CNC) machine and a manual guillotine. The pieces
were soldered together on the internal joints using 0.7 mm multicore wire lead solder, with
an approximate melting point of 183–188 ◦C. The first prototype showed some separation
at these joints. Therefore, 1-mm-thick silver anodized aluminium was attached to the
external edges of the flared section using water-resistant epoxy adhesive to support the
soldered joints, with 15 mm overlap to either side. This aluminium was chosen because it
is lightweight, strong, and scratch resistant. Similarly, flat aluminium pieces were secured
to the connections between the waveguide and flared sections, given their relative size
difference and the resulting stresses on these joints. A 1-mm diameter hole was drilled at
the pre-determined input feed position. The waveguide input feed was made by soldering
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a brass rod into the solder cup of a 50 Ω straight flange mount SMA connector. Heat
shrink tubing was applied around the solder cup to isolate the SMA core to the body of the
antenna (Figure 6). The input feed penetrates the waveguide by 13.88 mm and is secured
to the external waveguide face using the same epoxy adhesive.
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The CCL board was chosen for being lightweight, with Antennas 1 and 2 weighing
0.49 and 0.50 kg respectively. The slight disparity is acceptable and attributed to differences
in the quantity and positioning of the flat aluminium pieces (Figure 7). The combined
weight of 0.99 kg is the heaviest component of the radar payload, although well within the
potential payload capacity of 6 kg for the DJI Matrice 600 Pro drone.
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2.4. Testing

Antenna testing was performed to compare the simulated and fabricated antenna
performances. The S11, gain, radiation patterns, and beamwidths were measured in a ra-
dio frequency (RF) electromagnetic anechoic chamber using a calibrated vector network
analyser (VNA).

2.4.1. Vector Network Analyser

The VNA used for the antenna measurements is the LibreVNA™. NanoVNAs provide
a lower cost option for antenna measurements compared to standard laboratory VNAs;
however, most have a measurement range up to 1.50 or 3.00 GHz, which is insufficient for
these antennas and their operating frequencies. The LibreVNA™ was chosen because it
covers the full frequency range of operation up to 6.00 GHz, with full 2-port functionality
for determining all four S-parameters (S11, S12, S21, S22). The dynamic range is >95 dB to
3.00 GHz and >50 dB to 6.00 GHz [58]. The S11 is measured for both antennas. The S21 is
measured for the gain and radiation pattern determination. The LibreVNA™ does not have
a heatsink due to the compact design, with operating temperatures of approximately 60 ◦C
to be expected and heat dissipated through the metal case. The potential impact of thermal
drift on the antenna measurements is mitigated by restricting the operating time to 10-min
intervals and installing the VNA between two aluminium heatsinks. It was observed that
the surface temperature of the VNA when handled was significantly lower and the results
appeared more consistent when following these mitigation procedures.

2.4.2. Anechoic Chamber

The antenna measurements were conducted in the RF Electromagnetic Laboratory in
the Centre for Bio-Inspired Technology at Imperial. This 4 × 3 × 2 m anechoic shielded
chamber fitted by EMV Ltd. enables low noise measurements with significantly attenuated
electromagnetic levels and is calibrated for uninterrupted use between 10 MHz and 34 GHz.
The chamber walls and floor are lined with a carbon-impregnated polyurethane pyramidal
foam absorber material. The dielectric properties and geometry of this foam acts to resist
and dissipate the electromagnetic waves, to ensure that signals are received from the signal
source and not from internal reflections [59]. The central platform was rearranged to
enable farfield measurements, with a maximum distance between antennas of 2.70 m and
an antenna farfield distance of 1.84 m at the maximum test frequency of 6 GHz (λ = 0.05 m).
Discrete SMA wall sockets enable the operation of the VNA from outside the chamber, thus
shielding the antenna/device under test (A/DUT) inside from electromagnetic interference.
A Windows 10 laptop with an Intel® Core™ i7-4810MQ Processor at 2.80 GHz and 16 GB
RAM was used to power and operate the software for the LibreVNA™.

2.4.3. S11

The VNA was calibrated with the short-open-load-through (SOLT) technique to ensure
accuracy. This procedure is the one-port impedance measurements of both ports 1 and 2
using shorted, open, and 50 Ω load terminations, and the two-port transmission measure-
ment via a coaxial cable through standard [60]. S11 measurements were then collected from
1 MHz to 6 GHz across 501 discrete frequency points for both antennas (Figure 8). This
frequency range was chosen to match the simulated S11, for comparison to the WR187 flow
and fc values and assessment of the bandwidth potential.

2.4.4. Gain

The three-antenna gain-transfer method outlined in the IEEE Standard Test Procedures
for Antennas [61] and Balanis [62] is used to determine the realized antenna gain. The Linx
ANT-W63WS2 is used as the reference antenna since it satisfies the three requirements
for gain standards: (1) the antenna gain (GRef) is accurately known. GRef values are the
peak gain in the edge-bent configuration at 50 MHz increments; (2) the antenna has a high
degree of dimensional stability; and (3) the linear polarization of the antenna matches that
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of the AUT. Dipole and pyramidal horn antennas are universally accepted for use as gain
standards [61]. However, the latter prohibits a cost-effective testing methodology for this
scenario and thus negates the purpose of developing the low-cost horn antennas. The se-
lected WiFi antenna is inexpensive, consists of a one-half wavelength dipole configuration,
and operates with a maximum voltage standing wave ratio (VSWR) and efficiency of 1.5:1
and 89% respectively between 5.15 and 5.85 GHz. The reference antenna is connected to the
Rx port (2) of the VNA. An antenna with sufficient dynamic range to transmit to the refer-
ence antenna is connected to the Tx port (1) of the VNA and placed at a farfield separation
distance of 2.70 m. In this case, the horn antenna currently not being tested is used as the
transmitter. The antennas are aligned in polarization and direction of maximum radiation
intensity. A foam wedge and a flexible clamp are used to vertically align the transmit and
receive antennas respectively. Absorbing material is located immediately behind the gain
standard on the chamber door to reduce reflections impacting the illuminating field [61].
The normalized calibration is performed on the VNA to normalize the gain response to the
reference antenna and produce a flat S21 graph. The reference antenna is replaced with the
AUT, maintaining the exact position and alignment. The new S21 values (GRel) are recorded
at 501 discrete frequency points in 2 MHz increments between 5 and 6 GHz, as relative
to the reference antenna. These values are mean averaged across 24 MHz increments to
capture the gain response of the typical SDR bandwidth, and to smooth the fluctuations
between measurements. The antenna gain (GAUT) is determined as the sum of GRef and
GRel at each frequency point, where the former is interpolated from 50 to 24 MHz, and
assuming antenna reciprocity between reception and transmission:

GAUT = GRe f + GRel (19)
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2.4.5. Radiation Pattern

The experimental setup outlined in Section 2.4.4 is utilised for the determination of an-
tenna radiation patterns; the gain is normalized to the reference antenna, before connecting
the spare horn antenna and AUT to ports 1 (Tx) and 2 (Rx) of the VNA, respectively. The
radiation pattern determination procedures outlined in [61–63] are followed. The receiving
AUT is placed upon a turntable labelled with 10◦ increments. A foam wedge is used to
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elevate the antenna on the turntable to limit ground reflections from the plastic surface.
The transmitting antenna is vertically aligned using a larger foam wedge. Both antennas
maintain a constant elevation geometry throughout. The AUT is manually rotated through
the entire 360◦ of the azimuth plane in 10◦ increments, with S21 measurements taken at
each point to indicate the field strength; 10◦ is deemed feasible for accurate measurements
through manual rotation, and suitable for understanding and demonstrating the antenna
performances in this use case. The spherical coordinate system in which the antenna oper-
ates is mechanically defined with the AUT at the centre [61]. The frequency and polarisation
are consistent throughout. Performing this experiment in an anechoic chamber is essential
for limiting reflections from other surfaces that may distort the radiation pattern. Figure 9
shows the experimental setup with the AUT in the foreground oriented at 180◦ θ, in the
complete opposite direction from the Tx antenna in the background. Rotating the AUT
about the vertical axis allows the transmit antenna to illuminate it at different angles, thus
determining the azimuth pattern cut. It was considered unfeasible to accurately determine
the elevation pattern cut in the relatively small anechoic chamber, with the assumption that
the azimuth pattern cut and beamwidth derivative are sufficient to determine the antenna
directivity in combination with the gain.
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Figure 9. Radiation pattern experimental setup in the anechoic chamber. Receiving Antenna 1
(foreground) upon a foam wedge and modified turntable with polar plot. Transmitting Antenna 2
upon a larger foam wedge (background) at a farfield distance of 2.70 m. Antenna 1 is positioned at
180◦ θ from Antenna 2.

2.5. Incorporation into the Drone Radar Payload

The antennas are incorporated into an aluminium payload enclosure, which attaches
to the underside of the DJI Matrice 600 Pro in a modular fashion. Aluminium was chosen
as a suitable material since it is a lightweight metal, which provides good strength and
stability at small thicknesses. The main platform consists of a 175× 285× 1 mm aluminium
sheet. The expansion mounting kit on the underside of the drone is removed to reveal
four thread pillars which are used to mount the corners of the payload platform. Figure 10
shows the payload schematic, with annotated features described in Table 2. The antennas
are secured together and to the payload for safety and redundancy. Adequate space is
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provided for other radar payload components, including a Raspberry Pi 4 8 GB for remote
operation of the Ettus USRP E312 SDR. The payload and antennas are oriented towards
the front of the drone, due to the landing gear mechanisms and legs on the sides of the
drone. As the drone can move about the yaw axis of rotation, the antennas can achieve the
side-looking antenna viewing geometry required for SAR with forward-mounted antennas
and sideways flight, as shown in Figure 11b.
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Table 2. Descriptions of annotated drone radar payload features in Figure 10.

Annotation in
Figure 10 Feature Description

A Aluminium sheet Main platform of the payload enclosure. 175 × 285 × 1 mm aluminium sheet.

B Strap Heavy-duty elasticated strap with silicone grips, to secure the Raspberry Pi to the
underside of the aluminium sheet.

C E312 Mounting position for the Ettus USRP E312 and connection stabiliser.

D Aluminium
reinforcements Two 32 × 285 × 6 mm aluminium pieces for reinforcement, with 4 screws.

E Mounting holes Mounting holes for screws, which align with the thread pillars on the underside of
the DJI Matrice 600 Pro.

F Cable ties Holes with cable ties for securing the platform and antenna waveguides together.

G Aluminium angle

19 × 278 × 2 mm aluminium angle, connecting the platform and antenna
waveguides, with three screws. Red boxes at the screw locations denote the
position of three 19 × 19 × 24 mm aluminium blocks with 15◦ faces installed
between the aluminium sheet and perpendicular aluminium angle, to achieve the
desired viewing angle.

H Antennas CCL horn antennas.

I
Antenna braces

19 × 355 × 2 mm aluminium antenna brace.

J Two 19 × 450 × 2 mm aluminium antenna braces.

K Raspberry Pi Raspberry Pi mounting case position.

L E312 mount Screw holes that align with the E312 mounting holes.
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Figure 11. Antenna orientation with respect to the drone orientation and direction of flight, to
achieve a side-looking viewing geometry of a target (a) forwards flight, with side-mounted antennas;
(b) sideways flight, with forward-mounted antennas.

3. Results
3.1. Testing Results
3.1.1. S11

Antennas 1 and 2 have similar S11 trends from 0.00 to 3.20 GHz (≈ fc), before passing
the −10 dB (< 10% reflection loss) threshold at 3.85 and 3.57 GHz respectively (Figure 12).
Values remain below −10 dB to 6.00 GHz, except for Antenna 1 briefly at 4.65 GHz. The S11
trends between the antennas are similar but offset in magnitude, with Antenna 2 typically
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experiencing lower values across the frequency range of interest. S11 at f0 is −14.20 dB and
−20.70 dB for Antennas 1 and 2, denoting reflection losses of 3.80% and 0.85% respectively.
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Figure 12. S11 results for Antenna 1 (blue) and 2 (red) from 0.00 to 6.00 GHz, with lines at x = 5.40 GHz
( f0), y = −10 dB (acceptable threshold), and y = −20 dB (very good threshold). Dotted lines are
measured S11 values at 501 frequency points from 1 MHz to 6.00 GHz. Solid lines are moving mean
averages with a window length of 9 measurements (0.10 GHz). S11 at f0 is −14.20 dB and −20.70 dB
for Antennas 1 and 2 respectively.

3.1.2. Gain

The GAUT at f0 is 15.80 and 16.25 dBi for Antennas 1 and 2 respectively (Table 3).
GAUT values between 5.42 and 5.62 GHz fluctuate but are closely matched between the
two antennas. Elsewhere, Antenna 2 has a higher GAUT, with a maximum of 20.87 dBi at
5.00 GHz (Figure 13).

Table 3. Gain results at f0 (5.40 GHz) for Antennas 1 and 2, with GRef, GRel, and GAUT (dBi) values
used in Equation (19).

AUT GRef (dBi) GRel (dBi) GAUT (dBi)

Antenna 1
2.40 +

13.40 = 15.80
Antenna 2 13.85 = 16.25
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3.1.3. Azimuth Radiation Pattern and HPBW

The azimuth HPBW at f0 is 15.89◦ and 15.86◦ for Antennas 1 and 2 respectively
(Figure 14). The radiation patterns are highly directive with only the main lobe identified.
For Antenna 2, this is roughly symmetrical with ±3 dBi at 7.56◦ θ and 8.30◦ θ. Antenna
1 is less symmetrical, with ±3 dBi at 4.89◦ θ and 11.0◦ θ. For both antennas, the side and
back lobes are amalgamated into a roughly uniform and spherical radiation pattern; for
Antenna 1, between 30.20◦ θ and 328.00◦ θ with a mean average magnitude of 2.01 dBi; for
Antenna 2, between 30.50◦ θ and 330.00◦ θ with a mean average magnitude of 2.73 dBi.

3.2. Drone Radar Payload

Figure 15 shows the antennas secured together and incorporated into the drone radar
payload. Figure 16 shows the radar payload attached to the DJI Matrice 600 Pro. Numerous
flight characterisation tests have demonstrated that the drone can maintain good stability
and control with the additional payload.



Drones 2023, 7, 215 17 of 25

Drones 2023, 7, x FOR PEER REVIEW 17 of 25 
 

 
Figure 13. Gain results for Antenna 1 (blue) and 2 (red) between 5.00 and 6.00 GHz, with line at x = 
5.40 GHz (𝑓 ). Dotted lines are measured GRel values. Solid lines (GAUT) are the sum of GRef (black) 
and GRel at each frequency point. GAUT at 𝑓  is 15.80 and 16.25 dBi for Antennas 1 and 2, respectively. 

3.1.3. Azimuth Radiation Pattern and HPBW 
The azimuth HPBW at 𝑓  is 15.89° and 15.86° for Antennas 1 and 2 respectively (Fig-

ure 14). The radiation patterns are highly directive with only the main lobe identified. For 
Antenna 2, this is roughly symmetrical with ±3 dBi at 7.56° 𝜃 and 8.30° 𝜃. Antenna 1 is 
less symmetrical, with ±3 dBi at 4.89° 𝜃 and 11.0° 𝜃. For both antennas, the side and back 
lobes are amalgamated into a roughly uniform and spherical radiation pattern; for An-
tenna 1, between 30.20° 𝜃 and 328.00° 𝜃 with a mean average magnitude of 2.01 dBi; for 
Antenna 2, between 30.50° 𝜃 and 330.00° 𝜃 with a mean average magnitude of 2.73 dBi. 

 
Figure 14. Azimuth radiation pattern results (Azimuth 1°–360°, Elevation 0°), with maximum di-
rectivities of 15.80 and 16.25 dBi at 𝑓  (5.40 GHz) for (a) Antenna 1; (b) Antenna 2, respectively. 
Azimuth HPBW values (Δ𝜃) of 15.89° (a) and 15.86° (b) respectively, calculated as C2-C1. 
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Azimuth HPBW values (∆θ ) of 15.89◦ (a) and 15.86◦ (b) respectively, calculated as C2-C1.
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4. Discussion

The measured S11 in relation to the typically accepted −10 dB threshold suggests that
both antennas have a wide frequency bandwidth that roughly aligns with the WR187 flow
and fhigh values of 3.95 and 5.85 GHz respectively that the horn waveguide is designed on.
Reflection losses were expected to be greater in comparison to the simulated S11 due to the
SDR, cable, and hardware setup. Instead, compared to the simulation, Antenna 1 performs
similarly at f0, and Antenna 2 performs very well throughout the frequency range. It is not
possible to quantitatively determine the precise contributing factors for the discrepancies
between the simulated and measured S11; nevertheless, several potential justifications
are provided in accordance with similar antenna studies with S11 discrepancies. This
includes the simulated PEC not accounting for the CCL material properties [64], and the
unique fabrication qualities and tolerances [65–67]. Furthermore, whilst the simulation is
excited by a waveguide port, the fabricated antenna is excited by the SMA connector, which
affects the contribution of connector losses [68]. The testing procedures are not considered
to be an influencing factor, since the SOLT calibration ensures VNA accuracy. The S11
performance disparity between the two antennas is attributed to slight differences in their
manufacturing tolerances, as bespoke, handmade components [65]. The only differing
factor in their fabrication is the internal soldering patterns in the waveguide and horn
aperture. Antenna 1 has an increased number of joint solders which are generally untidy,
that may have increased signal reflections compared to the relatively clean spot soldering
on Antenna 2 (Figure 17). Nevertheless, this disparity is deemed acceptable given that
both antennas surpass the −10 dB threshold, and Antenna 2 shows very good performance
surpassing −20 dB. The S11 results indicate that both antennas perform and are impedance
matched well at f0 and across the broader WR187 bandwidth, which is sufficient for the
maximum instantaneous bandwidth of 56 MHz provided by the Ettus USRP E312 [52].

The GAUT at f0 is 15.80 and 16.25 dBi for Antennas 1 and 2 respectively; this slight dis-
crepancy is attributed to the aforementioned S11 results, where Antenna 2 has a preferable
ratio of radiated to reflected power. Nevertheless, the GAUT for both antennas is below the
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intended and simulated values of 19 and 18.69 dBi respectively. As stated, the dimensions
were optimized for 19 dBi gain, to provide leniency for manufacturing artefacts that may
reduce the gain.
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with tidy soldering.

Whilst soldering occurs in localised spots along the internal edges, the exterior alu-
minium ensures that the PCB parts are fully galvanically contacted, thus preventing energy
leakage contributing to the gain discrepancies.

The simulation of a PEC assumed a η of 1 and thus an interchangeable directivity and
gain. The CCL has inefficiencies, due to surface roughness effects and the finite copper
conductivity compared to the PEC. Regarding the former, the skin depth describes the
current density distribution throughout the copper conductor; this parameter decreases
with increasing frequency to 0.8872 µm at f0. Surface roughness of the copper layer at
a scale equivalent to the skin depth therefore introduces losses at these frequencies [69].
Regarding the latter, some minor conduction losses are anticipated, such as resistive and
ohmic losses in the copper layer [70]. However, both are considered negligible to justify the
measured gain discrepancies of 2–3 dBi.

Instead, the simulated to measured gain discrepancies at f0 are attributed to a resonant
frequency shift. Figure 13 shows that both antennas follow a similar gain trend, therefore
any gain discrepancy is not due to their individual manufacturing artefacts. Both antennas
perform as intended at slightly lower frequencies; for Antenna 1, gain is above 18 dBi from
5.05 to 5.22 GHz, and similarly for Antenna 2, gain is 20.87 dBi at 5 GHz and 18.69 dBi at
5.25 GHz. These results indicate a similar frequency offset impacting the gain results for
both antennas, where the ideal centre frequency is around 5.1 GHz. The resonant frequency
of a horn antenna is determined by the physical dimensions and the dielectric properties
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of the materials. Whilst the antenna and input feed are dimensionally accurate to the
simulation, the brass composition of the latter has material properties that are different
to the simulated PEC and the copper interior. The resonant frequency shift is therefore
attributed to the 260 brass rod input feed, which has a composition of 70% copper, 30% zinc,
and negligible iron and lead constituents. A lower conductivity, 28% of the International
Annealed Copper Standard (IACS) [71], introduces resistance, thus increasing losses and
reducing efficiency at the input feed. Furthermore, the increased skin depth of brass
compared to copper increases the electrical length of the input feed, thus shifting the
resonance to a lower frequency with a longer wavelength. Future iterations of the antennas
will implement a copper input feed to address this.

The azimuth HPBW values of 15.89◦ and 15.86◦ are preferable to the simulated value of
18.65◦, show consistent performance between the two antennas, and satisfy the requirement
of values between 15◦ and 20◦ for drone radar. The asymmetry in the main lobe radiation
pattern of Antenna 1 may be attributed to slight misalignments of the Tx and Rx AUT, as
the resultant HPBW value is similar to Antenna 2. The sharp lines of the main lobes for both
antennas are a result of manually conducting measurements at 10◦ increments and linearly
interpolating the magnitude between points, whereas the azimuth radiation pattern was
simulated at 1◦ increments. This effect could be mitigated by using a mechanical rotator that
can automatically and precisely rotate the AUT to smaller increments. For this investigation,
the data has a sufficient resolution for identifying the main lobes and HPBW from them.
Since the main lobe extent for both antennas are approximately between ±30◦ from 0◦ θ,
this angular range is compared with the simulated azimuth radiation pattern (Figure 18).
The extent of the simulated main lobe with a magnitude greater than 0 dBi is also between
±30◦ from 0◦ θ. The differences between the simulated and measured azimuth patterns are
the magnitude of the main lobe (GAUT), the angular width of the main lobe (HPBW) and the
magnitude of the side and back lobes. Regarding the latter, for the simulated azimuth, there
are five lobes on either side of the antenna with peak magnitudes less than −20 dBi, and
one larger back lobe with a peak magnitude of −6.74 dBi. The dynamic range of the VNA
was optimized to detect signals at this level [58], and the measurements were conducted in
a low to zero noise environment [59]. It is therefore assumed that this difference between
simulated and measured side and back lobe magnitudes is not due to any limitations of
the VNA or a noise floor higher than the signal of interest. Instead, average magnitudes of
2.01 and 2.73 dBi may reflect the true signal reception at these angular ranges, either due
to signal reception at the SMA connector of the waveguide section, or minor reflections
caused by the plastic turntable. Despite this, the key performance indicator of antenna
directivity here is the main lobe magnitude, which is 4.89 and 4.74 times greater than the
mean average side and back lobe magnitudes for Antennas 1 and 2 respectively. These main
lobes align well with the simulated azimuth pattern± 30◦ from 0◦ θ, which, in combination
with the gain results, indicates a good directivity.

These findings represent the early stages of research for the niche technological ap-
plication of drone radar. To ensure reproducibility going forward, proper and consis-
tent soldering techniques will be applied to future antenna iterations, as this was the
only differing factor in their fabrication and highlighted as the source of discrepancies in
the measurements.

Despite this, both antennas perform well and are deemed suitable for this use case
as the performance criteria are satisfied. This includes gain exceeding 15 dBi, azimuth
beamwidth between 15◦ and 20◦, and S11 below −10 dB. These criteria were determined
based upon common RF principles and equivalent metrics in other drone radar applications.
Therefore, the measured antenna performances inherently verify their suitability for drone
radar and InSAR applications.
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5. Conclusions

We have demonstrated the design, simulation, fabrication, and testing of two horn
antennas for deployment in a drone radar payload. The design process considered the size
and weight requirements of drone deployment and optimized the antenna dimensions
for C-band radar through an iterative process. The simulation results indicated a suitable
design with good performance that was realized through CCL/PCB/FR-4 fabrication
techniques. The antennas were tested in a RF electromagnetic anechoic chamber using
a calibrated VNA for comparison with the simulated parameters. Despite a performance
disparity which is attributed to artefacts of the manufacturing and testing processes, both
antennas perform well, have a wide bandwidth of potential operation, and are suitable
for deployment in the drone radar payload. Antenna measurement techniques could be
improved, e.g., using a mechanical rotator or including the elevation pattern cut. However,
the testing methodology outlined here is suitable for understanding and demonstrating the
antenna performances in this use case.

Following their fabrication, the antennas were utilised in an in-situ laboratory investi-
gation of the impact of soil moisture content on the phase of backscattered radar waves.
Subsequently, the antennas were successfully incorporated into the modular radar payload.

The main contributions of this work include:

• The first demonstration of horn antennas fabricated from CCL, highlighting the poten-
tial for this inexpensive material to be utilised for antenna fabrication. The combination
of a lightweight dielectric substrate with a smooth and conductive copper coating
at a thickness of multiple skin depths produces antennas that are suitable for drone
deployment, with sufficient performance metrics for our applications.

• The identification of manufacturing processes for CCL antennas that impact the
performance metrics, including the internal soldering patterns and input feed material.

• The first complete overview of custom antenna production for drone radar deploy-
ment, including incorporation into the drone payload, thus demonstrating a hardware
solution in the emerging field of drone SAR and InSAR research.
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