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Abstract: Many techniques are available for estimating landslide surface displacements, whether
from the ground, air- or spaceborne. In recent years, Unmanned Areal Vehicles have also been
applied in the domain of landslide hazards, and have been able to provide high resolution and
precise datasets for better understanding and predicting landslide movements and mitigating their
impacts. In this study, we propose an approach for monitoring and detecting landslide surface
movements using a low-cost lightweight consumer-grade UAV setup and a Red Relief Image Map
(a topographic visualization technique) to normalize the input datasets and mitigate unfavourable
illumination conditions that may affect the further implementation of Lucas–Kanade optical flow
for the final displacement estimation. The effectiveness of the proposed approach in this study was
demonstrated by applying it to the Ruinon landslide, Northern Italy, using the products of surveys
carried out in the period 2019–2021. Our results show that the combination of different techniques
can accurately and effectively estimate landslide movements over time and at different magnitudes,
from a few centimetres to more than several tens of meters. The method applied is shown to be very
computationally efficient while yielding precise outputs. At the same time, the use of only free and
open-source software allows its straightforward adaptation and modification for other case studies.
The approach can potentially be used for monitoring and studying landslide behaviour in areas
where no permanent monitoring solutions are present.

Keywords: landslide; displacement; monitoring; UAV; RRIM; optical flow; survey; FOSS

1. Introduction

Landslides are considered one of the most devastating geohazards, causing significant
damage and loss of life. Accurate and timely monitoring of landslide motion is critical
for studying and predicting their possible behavior, as well as to further define suitable
mitigating measures to lessen their impact. The growing interest in using remote sensing
technologies in recent years is evident in many fields, as technologies such as air- and
spaceborne sensors provide invaluable and insightful datasets with constantly increasing
capabilities from the spatial, temporal and spectral perspectives [1]. In the context of
satellite-based sensing and the domain of landslide hazards, many new approaches and
methodologies have been developed and implemented around high-to-medium resolution
optical multispectral missions [2–4] and weather-invariant radar sensors [5,6], where the
main applications are related to mapping historical events, monitoring active and potential
slopes [7–9], as well as susceptibility mapping and hazard assessment.

Similarly, there is increasing interest in the use of Unmanned Aerial Vehicles (UAV)
for landslide studies [10], as UAVs offer several advantages over traditional monitoring
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methods, including the ability to collect high-resolution imagery, to access difficult-to-
reach areas, and to collect data frequently and at a lower cost [11,12]. Therefore, it is
natural for scholars to adopt and further exploit this technology also for landslide time-
series monitoring [13,14], mapping and characterization [15–17] as well as combining their
outputs with machine learning [18] and computer vision algorithms [19,20].

For the estimation of landslide surface changes through UAV flyovers, scholars have
traditionally used straightforward techniques, such as measuring the difference between
Digital Surface Model (DSM) elevation products from consecutive surveys (see [12,16,21,22])
or the direct difference between point clouds (e.g., [11]), which usually results in the
quantification of volumetric changes. Such approaches are usually powerful when the
landslide under investigation exhibits significant and abrupt changes, however, for some
smaller changes and displacements, they can be less efficient, as most of the time alignment
error between two products is introduced [23,24], which makes their estimation more
difficult. At the same time, scholars have mostly been utilizing high-precision positioning
tools for the computation of apparent velocities (e.g., [21,24], which is not always feasible
due to the specifics of a terrain. A notable issue in the literature is often related to uneven
weather conditions, illumination conditions in particular [20,21,24], which mostly affects
the final products from the surveys and then the analyses. Therefore, in the current work,
we propose an approach that aims to tackle most of the issues affecting precise surface
displacement estimation.

One of the challenges in using UAV-derived imagery for landslide monitoring lies in
accurately measuring the apparent surface displacement of the landslide body over time.
One solution is using computer vision techniques such as optical flow algorithms [20].
Optical flow algorithms can estimate the motion of objects or features in a sequence
of images or videos by tracking the movement of pixels between images/frames and
computing the apparent motion of those pixels [25]. The Lucas–Kanade [26] optical flow
algorithm is a widely used method that is based on the assumption of small or constant
pixel intensity changes between frames. In fact, the latter can cause reconstruction issues
and further erroneous displacement estimations when applied in a time-series manner
for landslide monitoring, mainly due to unfavorable illumination conditions [19,20] that
may occur in one or more epochs. Such conditions are related to different sun directions,
shadows and cloud cover, all factors that directly influence image brightness and contrast,
i.e., that can further alter the algorithm if directly applied to orthorectified imagery.

An approach for resolving similar issues and ensuring a consistent image intensity is to
input normalized products from the UAV surveys. An alternative to the use of orthomaps
could be the implementation of a Red Relief Image Maps (RRIM) [27] on three-dimensional
data, with photogrammetric products such as DSM derived from UAV surveys. RRIM
is a topographic visualization technique, and an alternative to hillshading, which can
more successfully highlight morphologic features. The visualization relies on topographic
openness [28] and a red-colored slope gradient, and has already been adopted in various
studies (e.g., [29,30]).

In this study, we propose a method for monitoring and estimating landslide surface
displacements using the products of time-series surveys with a low-cost, consumer-grade
UAV and the derived photogrammetric products, such as Digital Surface Models, to which
the Red Relief Image Map visualization technique combined with the Lucas–Kanade optical
flow algorithm was applied in order to estimate the displacement of pixels between images.
The proposed approach allows the measurement of landslide surface motion in 2D space.
The effectiveness of this method is demonstrated by applying it to the Ruinon landslide in
Northern Italy using datasets from surveys carried out in the period 2019–2021. Processing
is done using entirely free and open-source software, which broadens the possibility of
adoption and reproducibility. Our method can potentially improve our understanding of
landslide behavior and contribute to the development of effective risk mitigation actions in
locations where they are lacking.
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2. Materials and Methods
2.1. Case Study—Ruinon Landslide

The Ruinon landslide (Figure 1) is located in the Upper Valtellina, Northern Italy,
and is one of the most active rockslides in the Italian Alps. Throughout the years it has
been under continuous investigation and monitoring from scholars, experts and local
authorities [31–33]. The active Ruinon landslide actually lies on top of a deep-seated
gravitational slope deformation (DSGSD), recognized in 1998 [34], while local failures were
documented from 1954, with several airborne surveys of the area having been organized as
early as 1954 and 1981 by the Lombardy regional authorities [31].

Figure 1. (a) Ruinon landslide with highlighted upper and lower scarps. The state of the landslide in
2017 (b) and in 2020 (c), after the reactivation periods. (source: Planet, 2017; basemap—Google Satellite
through QuickMapServices QGIS plugin, Map data Google©).

While the DSGSD reaches up to 3000 m a.s.l almost on the whole hillslope, the Ruinon
landslide is divided into two scarps, the lower ranging from around 1400 to 1900 m a.s.l,
and the upper at around 2100 m a.s.l. In the last few years, the more active scarp has been
the lower one, with planar and toppling failures which has resulted in displaced debris of
various sizes (from gravel size to about 10 m). The main body of the lower scarp is bounded
on the left-flank side by the Confinale river and on the right by an almost vertical rockface,
and currently, the toe reaches a newly constructed rock barrier for protecting Provincial
Road SP29 (Figure 2).

In fact, SP29 is the main connection to Santa Caterina di Valfurva, a small village home
to famous ski resorts. Throughout the years, reactivations at Ruinon were a direct threat to
people’s lives, but also to the socioeconomic state of the region. The occurrence of failures
has a recurrent character, with activations predominantly occurring during the summer–
autumn months, with relatively calmer periods over the winter period. Such recurrent
activities have already been monitored and reported almost every year since 2006, when
a permanent Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) system
was installed [32,34–36]. Aside from the GBInSAR, the landslide has been monitored since
1997 through a manual and automatic geotechnical network [33]. In addition to the data
from permanent ground stations during the last two decades, the Ruinon landslide was
also monitored through spaceborne optical and radar missions [36,37], which recorded the
most disastrous reactivations during the summers of 2016, 2018 and 2019. During the year
2021, no significant critical activities on the landslide body were reported [38].
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Figure 2. Lower scarp of the Ruinon landslide bounded by the Confinale river on the left flank side
and the rockface on the right. The central part is the zone with the most active debris displacements.
The upper scarp is visible in the upper part of the image.

2.2. Workflow

Excluding the actual UAV surveys, the implemented workflow in this work is generally
divided into four main steps (Figure 3): processing the acquired datasets; post-processing
their products; producing Red Relief Image Maps and applying a finer co-registration,
and final displacement computation. To carry out a time-series analysis using the UAV-
derived products, we used two separate datasets: six surveys carried out during the period
2019–2020 by the Regional Agency for the Protection of the Environment (ARPA) of the
Lombardy Region (Section 2.3.1), and surveys carried out by us in the period 2021–2022
(Section 2.3.2). Both datasets will be further presented in the relevant sections. As there
were generic differences between the datasets, the 2019–2020 set being composed only of
point clouds and orthophotos, a post-processing step was needed to put them in a common
framework, for example, with spatial subsampling of the point clouds, co-registration,
etc. This step was followed by producing the RRIM for each epoch and a step-wise finer
co-registration of the maps carried out into two sub-steps—a local co-registration of the
stable regions and a global one for the unstable parts. The last step was the computation
of the dense optical flow and vector magnitude. To ensure higher reproducibility, all
the steps were carried out using only Free and Open Software Solutions (FOSS) and
Python packages. Namely, for producing the point clouds, DSM and orthoimages were
processed with OpenDroneMap [39], CloudCompare [40] was used for their co-registration,
Relief Visualization Toolbox for Python [41] for producing RRIMs, and the Lucas–Kanade
implementation in the scikit-image Python package [42] for displacement computation.

Figure 3. General workflow.
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2.3. UAV Surveys and Their Outcomes
2.3.1. Period 2019–2020

In addition to the permanent monitoring station, during the period of 2019–2020, and
due to continuous Ruinon activations, the local agency ARPA carried out UAV surveys
over the area. Upon request, the resulting point clouds and orthophotos were shared with
us. In Table 1, the dates of acquisition, as well as the reconstructed points are reported,
while the point clouds are shown in Figure 4. As we were provided only with the output
products, there is no information related to the survey or flight parameters, nor captured
images per survey. Moreover, during the data acquisition or surface reconstruction steps
for those specific surveys, Ground Control Points (GCPs) were not used, and therefore they
could not be evaluated in terms of accuracy. In addition, by visual inspection, significant
local and global misalignments among the different epochs were noted. A different amount
of reconstructed points was also noticeable, where the first products were sparser compared
to the latest. However, the aforementioned issues were overcome with post-processing
(Section 2.4), and the point clouds were sufficient as initial input to be incorporated into
the analysis.

Table 1. UAV surveys carried out from ARPA Lombardy in the period 2019–2020.

26 July 2019 4 September 2019 27 September 2019 25 October 2019 10 September 2020 19 October 2020

Total points 12,807,656 21,408,313 21,835,284 81,466,454 53,722,814 116,372,943
GCPs X X X X X X

Area covered [km2] 0.63 0.75 0.67 0.62 0.71 0.69
Point density [pts/m2] 20 28 33 130 75 168

(a) (b) (c)

(d) (e) (f)
Figure 4. Point clouds for each survey in the period 2019–2020. (a) 26 July 2019; (b) 4 September 2019;
(c) 27 September 2019; (d) 25 October 2019; (e) 10 September 2020; (f) 19 October 2020.

2.3.2. Period 2021–2022

As part of our surveys, four flyovers were carried out during the period 2021–2022,
over the same Ruinon landslide area. The main idea was the continuation of the surveys
in terms of time and adopting novel approaches for monitoring landslide phenomena.
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Moreover, carrying out the surveys first-hand provides full control over all activities from
the planning stage to the final outputs. As the recent reactivations were during summer
periods, the surveys were planned to be before and after potentially unstable periods,
i.e., spring and autumn periods were most suitable. The current work follows and extends
the scope of a previous one [43] in which the main principles of UAV survey planning and
processing were explained in detail, to be easily adoptable and reusable in other research
domains (e.g., archaeology and glaciology [44,45]). A brief summary of the setup and steps
will be presented below.

All of the surveys were made using a consumer-grade quadrotor DJI Mini 2 (249 gr.)
equipped with a built-in position system able to connect to GPS, GLONNAS and GALILEO
constellations. The UAV has a 12 MP CMOS sensor with an f/2.8 lens onboard. Some
of the advantages of using this aircraft can be related to its size and weight. The low
body weight puts the model into a low-risk category for which, according to the European
regulations [46], the operator needs to do a short online course and exam. The small aircraft
has wind resistance at level 5, an advantage considering the weather conditions which may
occur during a landslide survey in mountainous areas. On the other hand, there are some
drawbacks of the UAV, again related to body size and weight. For instance, the quadrotor
lacks an obstacle avoidance system, from through which other optional features such as
designing and following a survey plan are also missing. To overcome the lack of mission
planning, Flight Planner [47] was used, which is a QGIS [48] plugin useful for planning
airborne photogrammetric surveys. The plugin needs three main inputs—vector shape of
the area of interest, digital elevation model (DEM), and target ground sampling distance
(GSD), with the outputs being projection centers, flight paths and waypoints.

After data acquisition, the collected images were used to produce point clouds, digital
surface models and orthophotos, using the OpenDroneMap tool [39], which is a FOSS for
processing aerial data based on state-of-the-art Structure from Motion (SfM) and Multi-
View Stereo (MVS) approaches. A summary of the point cloud characteristics is reported in
Table 2 and visualized in Figure 5.

During the surveys, at least five GCPs were placed and measured using Leica AX1200
in real-time kinematic positioning (RTK) mode connected to Bormio permanent reference
station (https://www.spingnss.it/, accessed on 28 October 2022). Three independent mea-
surements were made for each marker. The GCPs were distributed in an area considered
stable and far from landslide movements (see Figure 4 in [43]). It should be noted that
the GCPs used are not distributed in optimal positions around the landslide body, but,
considering its size, terrain and the fact that it is still an active area, field activities at higher
altitudes towards the crown were not allowed.

Table 2. UAV surveys carried out in the period 2021–2022.

6 July 2021 29 October 2021 2 May 2022 5 July 2022

Total points 297,421,177 407,189,985 438,663,249 136,304,323
GCPs X X X X

GCP RMS error [m] 0.15 X 0.16 0.13
Area covered [km2] 0.45 0.52 0.45 0.45

Point density [pts/m2] 653 783 975 303

The final products achieved the targeted GSD and all of the outputs have a spatial
resolution of at least 10 cm/pix or better. All orthophotos are available and free for
download from the platform for sharing aerial images OpenAerialMap (accessed on 30
October 2022) https://map.openaerialmap.org/#/10.358734130859375,46.45630839492814
,10/square/120221312?_k=hzzlob. It should be noted that all surveys followed the same
case-specific flight plan and processing scheme. Namely, maximum flight altitude was
always 110 m above ground; when flying in a longitudinal direction 11 tracks with vertical
speed maintained at 3 m/s were followed, horizontal speed at 4.5 m/s; camera inclination
was at −57◦, while in transversal directions; 14 paths were flown with the vertical speed at
zero and horizontal at 6 m/s; the camera was set at −90◦. However, as mentioned before,

https://www.spingnss.it/
https://map.openaerialmap.org/#/10.358734130859375,46.45630839492814,10/square/120221312?_k=hzzlob
https://map.openaerialmap.org/#/10.358734130859375,46.45630839492814,10/square/120221312?_k=hzzlob
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the UAV lacks autonomous flight, therefore all were carried out manually by an operator,
maintaining the above-mentioned parameters, which can explain the small differences in
the reconstructed points. Among all of them, the one with the sparsest point cloud is that
of the 5 July 2022 survey. Even after a deep investigation, the reason for this lower point
density could not be determined, as the detected and reconstructed features were very
similar in location and count compared to the rest of the products. Nevertheless, the output
was still suitable for the following processing steps.

(a) (b)

(c) (d)

Figure 5. Point clouds for each survey in the period 2021–2022. (a) 6 July 2021; (b) 29 October 2021;
(c) 2 May 2022; (d) 5 July 2022.

At a first glance, it can be noted that all of the point clouds cover the whole landslide
body (including 2019–2020) and the main changes on its surface are visible. However,
it can also be noted that point clouds are produced under different light conditions and
vegetation states. This problem will create challenges and errors when applying surface
displacement analysis, an issue which we are trying to solve with the current work.

2.4. Postprocessing

The survey outputs are from different sources and used different processing techniques
which, naturally, leads them to exhibit diverse characteristics and the need to be placed in a
common framework, mainly to produce coherent DSMs for the 2019–2021 period. These
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steps were performed mostly using CloudCompare [40] with only final filtering applied in
QGIS, including:

• Spatial sampling of the point clouds to achieve relatively similar density (set to a
minimum distance of 10 cm).

• Co-registration of the point clouds: In most cases, Iterative Closest Point (ICP) co-
registration was sufficient; when it was not, it was also performed manually using
common points between the clouds. The 2019–2020 dataset had unknown accuracy,
and it was decided that those epochs should be co-registered according to 2021–2022,
specifically, the 6 July 2021 survey was set as a reference point. However, the changes
during the 2019–2020 period were severe ,and therefore the moving primary scheme
was applied in reverse order, i.e., 19 October 2020 was co-registered to 6 July 2021, 25
October 2019 to 19 October 2020, etc. On the other hand, the epochs in the 2021–2022
period were co-registered using a fixed primary scheme and all three products were
transformed according to 6 July 2021. The achieved co-registration error varied among
the epochs in the range of 0.20 m < RMS < 0.30 m, and most of the highest values were
in the 2019–2021 dataset.

• The co-registered point clouds were rasterized into DSM with a spatial resolution of
10 cm/pix.

• Filtering the resulting DSMs: As the point density was reduced to a certain level,
the interpolation of the point cloud into raster led, in some cases, to noisy and irregular
terrain, which may further alter the analysis. A Gaussian filter (kernel type—square
and radius of 3 pixels) was applied to obtain a more regular and smooth surface
product without losing details (e.g., Figure 6).

(a) (b)
Figure 6. Details before and after applying a Gaussian filter on the rasterized DSMs. (a) Before;
(b) After.

2.5. Red Relief Image Map

Red Relief Image Map (RRIM) is a visualization technique introduced by Chiba et al. [27]
as a method for highlighting topographic features in greater detail. The implementation of
RRIM is an extension of the parameter openness [28], introduced as an image-processing
technique which emphasizes the concavities and convexities of the surface, combined
with the slope gradient. The RRIM technique is proposed as an alternative visualization
approach to topographic information, based on the better perception of the color red by the
human eye. In particular, the method relies on differential openness:

Op −On

2
, (1)

where Op is the positive openness, i.e., the convexity of a surface, and On is the negative
openness, i.e., the concave features of a surface. Once computed, the differential openness is
blended with a slope gradient layer which is pseudo-colored in red. An example is shown
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in Figure 7, depicting the area of Upper Valtellina as separate products needed to produce
RRIM using SRTM30 data, including also a satellite view and a hillshade visualization.

(a) Satellite view (b) Positive openness (c) Negative openness

(d) Differential openness (e) Hillshade (f) Red Relief Image Map

Figure 7. The area of Upper Valtellina with different views and visualizations. Including (a) satellite
view of the area (data Google©), (b) positive, (c) negative and (d) differential openness. A hillshade
visualization (e) can be compared with the final RRIM visualization (f).

Black color RRIM depicts concave features, and white convex and grey colours are flat
surfaces. In the red gamut, steep slopes are highlighted with a saturated red colour, with
convexity and concavity in the lower range. An important parameter for the computation
of both positive and negative openness is the radial limit (i.e., the search radius of the
moving window), which is directly linked to the level of detail to be highlighted.

Looking at the figure, the advantages of using the RRIM visualization are evident.
On the one hand, it enhances the perception of detail and depth, compared to the optical
image or the hillshade visualization, on the other hand, it is not altered by the sunlight
direction, shadows, and vegetation state. Those particular features are of great benefit
when applying algorithms for computer vision, especially for a landslide monitoring task.
The RRIM clearly depicts topographic features of various sizes and shapes, even on flat
surfaces, and even if the level of the details is obviously highly dependent on the resolution
and quality of the input dataset.

The tool used for producing RRIM was the Relief Visualization Toolbox for Python [41,49].
It is a set of instruments aiming to generate various visualizations of elevation models with
a focus on small-scale features. Some of the implemented methods include but are not
limited to, multiple-direction hillshading, a simple local relief model, sky-view factor, etc.
RRIM is not directly available off the shelf but the Relief Visualization Toolbox can be easily
adjusted for that purpose.

2.6. Dense Optical Flow

In this work, a traditional dense optical flow technique for determining the apparent
motion of features in the image space [50] between two consecutive instances was used.
In the last couple of decades these techniques have been widely used in computer vision
problems [51,52], as well in the domain of Earth Observation [20,53,54]. For the current
implementation, we took advantage of the Le Besnreais and Champagnat [55] implementation
of the Lucas–Kanade [26] dense optical flow using iterative registration, which works with
a ’local’ search window approach for brightness pattern shifts. It is very cost-efficient
due to the coarse-to-fine inverse pyramid strategy for the window search. Since it is a
method based on image intensity, a few drawbacks can occur during its implementation:
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an abrupt change in illumination between two images can create shadows which influence
pixel brightness; vegetation state can also change between two surveys. In addition to
intensity-related issues, it is important to have the products properly co-registered because
local or global shifts would be also considered as motion. Such problems will lead to
de-correlated and wrongly oriented vector fields in the final product.

In this work, the Iterative Lucas–Kanade approach was used through its implementa-
tion in the scikit-image Python package [42]. As it was also used for image registration, we im-
plemented the dense optical flow computation in two steps: (1) finer image co-registration
(Section 2.6.1) and (2) the actual landslide displacement computation (Section 2.6.2).

2.6.1. Finer Co-Registration

Since the phenomenon we are trying to model is dynamic, a direct image-to-image
registration cannot be applied, as some of the areas can be wrongly wrapped to their initial
position, even though it is an actual displacement. To overcome the issue and to obtain
a finer co-registration of two consecutive products, a dense optical flow approach was
applied at two instances for the secondary image (Figure 8). Firstly, a local co-registration
was performed on stable parts outside the active deformation, followed by more rigid shift
correction which does not interfere with the actual debris displacements, and finally, both
co-registered segments are combined in one. Note that high and consistent shift values
may be an indication of decorrelation due to insufficient overlap between two images.

Figure 8. General scheme of fine co-registration applied on a secondary image (a) and at
two instances—stable (b) and unstable (d), and the related corrected shifts (c,e).

2.6.2. Displacement Computation

The final step of processing is the actual displacement computation. The merged
co-registered secondary image from the previous step was used directly to compute the
displacements compared to a previous epoch. The output of the processing gives the
displacement vectors in the u,v directions, from which the magnitude of the displacement
can be easily computed:

||u, v|| =
√

u2 + v2, (2)

and the orientation of the vector
θ = tan−1(

v
u
). (3)

Since the UAV was manually operated during the surveys, some ambiguities in the
reconstruction part can be seen. This is evident in the reconstruction of vegetation (bushes
and trees). Due to this drawback, after the displacement magnitude and orientation
computation, many decorrelations can be depicted. They are most notable when inspecting
the vector orientations, depicting movements parallel to the general slope or even upslope.
To mitigate this issue and keep only the relevant displacement, a filter according to the
displacement orientation was applied. The general slope orientation of the landslide was
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estimated to be at 225◦ (North is at 0◦). The applied filter took into account this dip direction
±45◦, and therefore the kept displacements were only the ones orientated between 180◦

and 270◦. The ±45◦ range deviation from the actual dip direction was chosen due to the
current work scale and the fact that the movement trajectory of some small debris does not
need to exactly follow direct downslope shifts, since they can easily deviate from it.

3. Results
3.1. RRIM Implementation

Following the previously discussed processing workflow scheme, ten red relief image
maps for the period 2019–2022 were obtained as outputs from the UAV surveys of the
Ruinon landslide with a non-regular time-series. The advantages of using RRIMs compared
to orthophotos for applying computer vision approaches are better highlighted at lower
scale representation. To show this fact, details of the RRIM implementation in comparison
to orthophotos and hillshade visualization are depicted in Figure 9, while the full-scale
RRIMs for the period 2021–2022 are added as an Appendix A.1–A.4 (available [56]).

Figure 9. Detail comparison of orthoimage (a,b), hillshade visualization (c,d) and RRIM (e,f) for the
6 July 2021 (a,c,d) and 5 May 2022 (b,d,f) surveys. The yellow circles highlight two boulders before
(A,B) and after displacement (A’,B’). The positions of the boulders as of 6 July 2021 are depicted
in orange.

For a full comparison with the orthophotos, the latter can be accessed as mentioned
in Section 2.3.2 from the https://openaerialmap.org/ (OpenAerialMap.org, accessed on
30 October 2022) platform. The two rows of image subsets (Figure 9) depict the same

https://openaerialmap.org/
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subregions of the landslide body during two different periods—summer (6 July 2021) and
spring (5 May 2022). Clear differences are notable in the orthophotos (Figure 9a,b), mainly
associated with the lighting conditions and vegetation state. In the first example strong
shadows are present which are increase the visual depth perception of the image, but
so are defining areas with high contrast and a lack of detail in the underexposed areas.
On the other hand, the second instance was a result of a survey carried out during an
overcast day lacking direct sunlight, which created a consistent illumination of the terrain
without harsh shadows but also lacks clear contrast among the objects. Examples of the
different conditions are the two highlighted boulders A and B with their related displaced
locations (A’,B’). Moreover, there is a strong difference in the vegetation state growing
on the landslide body with seasonal variation—in July the leafage is at its maximum,
while in May there are still signs of wilted grass and shrubs. From the perspective of
determining displacements through intensity-based computer vision approaches, these
factors are critical as they may greatly worsen the final results. As a solution, implementing
RRIM can significantly aid in visualizing a normalized representation of the terrain and
provide a better map on which to apply intensity-based algorithms.

3.2. Displacement Computation

In the following section, the results of the application of dense optical flow for dis-
placement computation between two consecutive survey epochs, i.e., using the so-called
moving primary strategy, are presented. The approach was applied to the RRIMs which
were also finely co-registered by two independent iterations—one reducing local shifts
over the stable areas outside the unstable slope, followed by another more rigid (global)
co-registration of the actual landslide body. As highlighted by the results (Figure 10), the
landslide was mostly active in the period 26 July 2019 to 6 July 2021, while the exact initial
and final dates cannot be determined due to a lack of observations.

It is important to mention the fact that the reported displacements are already filtered
according to the moving direction and refer only to two-dimensional XY displacements.
Moreover, the visualized arrows depict only the movement direction, and their length is
not associated with the magnitude of the displacement. Upon inspection of the maps in
Figure 10, the most distinguishable movement can be seen to be amid the central landslide
body and, especially during the initial four periods, the most active and severe parts are at
the upper and central areas.

Interestingly, there is the appearance of a zero-displacement patch of the magnitude
field starting from the first period (Figure 10a) and “moving” downhill at each following
epoch (Figure 10b–d). Upon visual interpretation of the RGB orthomaps, it was determined
that those areas, at the initial stages, were forested and then shattered by displaced debris
at different stages of the mass movement. In contrast, the actual reason for them to appear
“stable” with zero displacements was actually the decorrelation between two consecutive
RRIMs in those specific regions, i.e., the abrupt landcover change from forest to debris
made it impossible for the algorithm to find corresponding pixels and works only in
2D space without accounting for changes along the elevation axis. Similar decorrelation
zones can be also noted in the sequential periods. After 14 September 2019, there is a
significant, yet gradual, intensity decrease of the estimated surface displacements, whereas
after 6 July 2021, some sporadic movements were mapped which upon visual validation
are either from single displaced boulders or inconsistent reconstructions of shrubs and
trees. Such false positive displacements, due to the presence of vegetation, are not rare,
however, in these cases, the “detected” displacements are isolated and do not exhibit a
spatio-temporal coherence among the epochs.



Drones 2023, 7, 85 13 of 24

Figure 10. Step-wise displacement computation results for all of the epochs.
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On the other hand, an example of a localized movement with a spatial consistency
over time can be easily recognized on the left landslide flank (Figure 10e–g), exhibiting a
triangular shape active during the main body reactivations. However, during the period
between 6 July 2021 and 29 October 2021, this was the only main debris displacement
mapped, and it was not further detected during the following observations.

The overall displacement magnitude can be inspected by epoch using box plots
(Figure 11), highlighting the general decrease in the trend of surface displacements and re-
occurring major reactivation during the fourth period (25 October 2019–10 September 2020),
best seen in the median value (vertical line in the boxes). From the available observations,
only a couple of epochs exhibit magnitudes higher than 10 m, namely the first and fourth,
which does not mean that the rest are of negligible intensity. The summary box plots of
magnitude (Figure 11) is further evidence of the false-positive displacements marked as
outliers (denoted as dots) from the overall magnitude field of the epoch.

Figure 11. Step-wise displacement magnitude summary for all epochs.

4. Discussion

The current work proposed an approach for obtaining landslide displacements using
time-series-derived UAV datasets. The primary research problem that needed to be solved
was related to inherited discrepancies in the datasets themselves. Some common ground
characteristics were present among them, such as that the surveys were carried out over
the same area of interest and the same type of sensor was used, namely, an optical RGB
sensor. This is the extent of the commonalities and different features such as camera
sensor model, airborne platform, the experience of the UAV operator, post-processing
techniques, illumination conditions and vegetation state prevailed. Thus, present datasets
over time can provoke difficulties in their usage, especially when the approach to be
adopted, such as dense optical flow, is sensitive to image intensity [20,25]. To overcome
such issues, the adoption of RRIM [27], a visualization technique directly applied to DSM
products of the UAV surveys, was proposed. With the use of normalized images, the use
of the resulting maps was instrumental in overcoming an issue related to different and
unfavorable illumination conditions that could alter the application of dense optical flow
directly on orthoimages.

The combination of different approaches resulted in a successful method for detecting
movements at various scales, from highly intensive periods where the central part of the
landslide collapsed, as a whole (e.g., Figures 10a–f and 11), to some smaller localized
instabilities such as the aforementioned zone on the right landslide flank (best visible at
Figure 10g).
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In fact, the latter would have been difficult to distinguish through more conventional
approaches, such as point cloud comparison using a Multiscale Model to Model Cloud
Comparison (M3C2) [57] approach or cross-sections [58]. As depicted in Figure 12, our
approach accurately estimates the spatial extent and magnitude field for the localized
movement which is not really clearly highlighted within the same intensity range in the
M3C2 comparison of the point clouds (Figure 12b) for the same period. On the other
hand, using DSMs it is also possible to manually inspect the elevation profiles from both
surveys at a smaller scale (Figure 12c) and to compare the measurements for a particular
location. The represented elevation profile actually is a fraction of the central landslide
body (>500 m), and using cross-sectional elevation profiles could make the detection of
such localized movement almost impossible.

Figure 12. Detail of the localized surface displacement for the epoch 6 July–29 October 2021. (a) Com-
puted magnitude with overlaid cross-section and measuring location. (b) Results from M3C2 cloud
comparison. (c) The cross-section of the portion of the failed area.

By changing the spatial and intensity scale, the approach succeeded in precisely
estimating velocity vectors through the epochs of the most severe reactivations of the
central part of the landslide body, which obviously cannot be considered for estimating
volumetric changes and more abrupt land cover changes (e.g., loss of forested areas). Some
of our results derived from the 2019 surveys (Figure 10a–c) are consistent with the results
obtained from another approach we implemented for estimating Ruinon reactivations
through Sentinel-2 imagery [37]. Furthermore, comparable outputs for the Ruinon landslide
are reported by Carla et al. [36], with the difference that their work utilized a GBInSAR
monitoring technique. In the aforementioned work, some of the observations for 2019 are
reported per month, in the current work, in contrast, we do not have surveys that cover
exactly a full month and could be used for comparison. However, the intensity of our initial
3 epochs from 2019 is similar to their monthly cumulative displacements from August to
October 2019. Moreover, the estimated extreme displacements from the GBInSAR coincide
with our patches with lost coherence (already discussed in Section 3.2). Similarly, if we
produce a cumulative map for the period 4 September 2019 to 25 October 2019 (Figure 13),
our patch of no coherence is at a location that coincides with a zone with displacements
higher than 50 m for the same period (in [36]). Moreover, the areas directly around the
patch of no coherence exhibit comparable magnitude fields.

It needs to be highlighted that the optical flow computation, i.e., in this case the
displacement computation, is sensitive to the search radius parameter. By applying a
low value, the algorithm cannot find the corresponding location outside a certain range.
Therefore, such cases as the ones mentioned before can occur, and the relevant result can
exhibit zero displacement, even if this is not true. The issue can be overcome by simply
increasing the radius, but this has to be done without overestimating since this approach
can lead to the opposite effect—falsely “detecting” certain features or exaggerating their
magnitudes. Therefore, this parameter’s value is highly dependent on the case study
under investigation.
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Figure 13. Cumulative displacement map for the period 4 September 2019 to 25 October 2019.

A possible limitation of the proposed approach is related to the already mentioned
fact that it can only estimate displacements in the 2D-space plane, disregarding movements
along the vertical axis, and further implementation of similar approaches for 3D motion
estimation either on point clouds or voxels is the natural continuation of the current work.
Similarly, the approach estimates displacements in the 2D-space, but an essential part of it is
a DSM to derive an RRIM. Without elevation data, the topographic visualization could not
be applied to obtain a normalized image map. Still, the displacement estimation could be
applied directly on an orthomap, yet the results should be considered with great attention
as many errors could occur if orthomaps have inherently different image intensities (i.e.,
great variations in brightness and contrast). Further improvements could also be related
to an application of spatial consistency filters which can disregard inherited errors from
the reconstruction process, similar to the previously discussed issues with vegetation. It
is worth pointing out that this is not a very straightforward task as there is always the
possibility that such a filter can ignore movements that are not spatially or temporally
coherent for the particular time series.

The presented methodology successfully delivered more than satisfactory results, as
it was set to solve challenging problems related to, on the one hand, the utilization of
input field surveys from different sources, and on the other, the analysis of a significant
landslide which exhibits reactivations that are non-coherent in terms of space, time and
intensity. Due to the higher spatial resolution outputs from this approach, it can be further
utilized for validation purposes regarding other methodologies that use lower-resolution
datasets, such as satellite-derived ones. Overall, the setup can be considered low-cost
and computationally inexpensive, allowing deployment for regions and mass movements
where no permanent monitoring stations and tools are available, with further tuning of the
time intervals according to specific needs.

5. Conclusions

The Ruinon landslide is a landslide that has been documented for more than two
decades and which has occasionally reactivated, as in the last years. As such, it has served
as an interesting case study for scholars to perform various investigations, whether they
are field-based or remote (close-range or air-/space-borne), which further provides invalu-
able input and output for further developing and testing new approaches. The current
work presents a method combining a low-cost UAV surveying setup with a topographic
visualization technique, RRIM, and a computer-vision-based algorithm for movement esti-
mation. The utilized consumer-grade quadrotor proved to be convenient from a regulation
point of view and in delivering high-resolution images, which were further used for scene
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reconstruction in the form of point clouds, DSMs and orthorectified maps. Along with our
own surveys, the time series dataset was further extended with other datasets provided
to us. Combining data products from different sources entailed a normalization step to
be included in processing. For this reason, the Red Relief Image Mapping technique was
applied to the elevation models, which had a two-fold effect. On the one hand, the datasets
from different sources were put into a common framework, and on the other hand, it solved
the issue of different unfavorable illumination conditions during the surveys. The latter
is in fact a significant issue when an intensity-sensitive algorithm for motion estimation,
in this case—the Lucas–Kanade optical flow, is applied. With the results from the method
we have presented in this paper, we successfully derived surface mass movements within
different spatial and intensity scales, from a few centimeters to more than several tens
of meters. Moreover, the resulting accurate outputs are produced in a computationally
efficient manner through the use of free and open-source software which further allows for
the method’s straightforward adaptation and modification in other case studies. Several
follow-up research directions could potentially further contribute to the approach, namely,
a transition from 2D space to 3D and an application of a filter for spatial coherency, helping
to disregard false estimations. Nevertheless, even in this simplified version, our approach
can at least contribute to the validation of remotely sensed lower-resolution products and
to the monitoring of landslides that are not permanently monitored in situ.
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Appendix A

Appendix A.1

Figure A1. Ruinon Red Relief Image Map 6 July 2021.
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Appendix A.2

Figure A2. Ruinon Red Relief Image Map 29 October 2021.
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Appendix A.3

Figure A3. Ruinon Red Relief Image Map 2 May 2022.
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Appendix A.4

Figure A4. Ruinon Red Relief Image Map 5 July 2022.
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