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Abstract: Transport, rescue, search, surveillance, and disaster relief tasks are some applications
that can be developed with unmanned aerial vehicles (UAVs), where accurate trajectory tracking
is a crucial property to operate in a cluttered environment or under uncertainties. However, this
is challenging due to high nonlinear dynamics, system constraints, and uncertainties presented in
cluttered environments. Hence, uncertainties in the form of unmodeled dynamics, aerodynamic
effects, and external disturbances such as wind can produce unstable feedback control schemes,
introducing significant positional tracking errors. This work presents a detailed comparative study
between controllers such as nonlinear model predictive control (NMPC) and non-predictive baseline
feedback controllers, with particular attention to tracking accuracy and computational efficiency. The
development of the non-predictive feedback controller schemes was divided into inverse differential
kinematics and inverse dynamic compensation of the aerial vehicle. The design of the two controllers
uses the mathematical model of UAV and nonlinear control theory, guaranteeing a low computational
cost and an asymptotically stable algorithm. The NMPC formulation was developed considering
system constraints, where the simplified dynamic model was included; additionally, the boundaries
in control actions and a candidate Lyapunov function guarantees the stability of the control structure.
Finally, this work uses the commercial simulator DJI brand and DJI Matrice 100 UAV in real-world
experiments, where the NMPC shows a reduction in tracking error, indicating the advantages of
this formulation.

Keywords: optimal control; nonlinear control; quadrotor UAV; trajectory tracking

1. Introduction
1.1. Motivation

Nowadays, unmanned aerial vehicles (UAVs) are applied in many fields due to recent
technological advances and the ability to perform tasks that humans cannot do. Their fields
of application can be industry, transportation, and agriculture [1]. Quadrotor platforms are
a type of UAV widely adopted in aerial robotic applications and extensively used by the
scientific community due to high maneuverability, vertical take-off, and landing (VTOL).
Significant results have been published [2–6], where such systems were employed success-
fully in applications as remote sensing and environment interaction [7–10], autonomous
delivery [11,12], and exploration in unknown environments [13–16].
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The extreme agility of quadrotors can be used for critical missions such as rescue,
search, and transportation; this kind of application requires a minimal execution time
that is only possible at high-speed trajectories, where accurate trajectory tracking and
robustness are critical features. These features are still challenging problems for the research
community; furthermore, the ability to precisely control quadrotors during agile maneuvers
would allow faster trajectories and a wider range of motion that enables the system to
be safely closer to obstacles, where slight deviations from the reference trajectories can
produce serious accidents. In response to this fact, various controller structures have been
proposed. However, only some approaches can handle the issues presented during flights
in cluttered environments, such as non-linear dynamics, uncertainties, and limitations in
control actions.

This work considers that the problem of quadrotor control in cluttered environments
can be divided into two groups: (i) Non-predictive Feedback Controllers, which use
formulations of linear and nonlinear control exploiting system model structure to design
control laws to guarantee the system stability and execution of the desired tasks. However,
these techniques do not handle system constraints such as limitations presented in control
actions, ignore future decisions, and formulations are not trivial for complex systems;
(ii) Predictive Optimization Methods which uses the model of the system to generate the
optimal control policy that guarantees the execution of the desired task minimizing an
objective function considering the system and input constraints in a predictive manner.
Furthermore, this formulation is capable of fully exploiting the capabilities of the quadrotor
and taking advantage of the available computational power. Optimal control approaches
have presented notorious developments; specifically, nonlinear model predictive control
(NMPC) has experimented with outstanding attention for quadrotor applications due to
the last advances in hardware and algorithms, allowing the execution of these formulations
with high computational efficiency [17–20].

However, NMPC is computationally expensive compared to two of the baseline
feedback controllers, such as inverse differential kinematics and inverse dynamic compen-
sation, where these formulations have presented successful developments in the field of
robotics [21–23]. Although these formulations have not achieved quadrotor control under
agile trajectories as NMPC proposed in [19,24]; moreover, the high computational cost
associated with NMPC could make its application questionable. Therefore, a compara-
tive study of NMPC and Baseline Feedback Controllers is needed to provide insights for
future developments, reporting benefits and drawbacks in terms of performance improve-
ment, disturbance rejection, and computation effort applied in quadrotor control under
cluttered environments.

1.2. Related Work

This work divides the trajectory tracking controllers into two big groups: (i) Non-
Predictive Formulation, where this scheme only depends on a single reference set-point at the
current time, (ii) Predictive Formulation which considers multiple future references into the
control scheme at the moment the algorithm is being executed. In the following section, this
work presents a short review of the scientific community’s latest contributions in trajectory
tracking accuracy under these two formulations. For more detailed information about
quadrotor controllers, refer to the following works [25,26].

1.2.1. Non-Predictive Controllers

Trajectory tracking controllers have been developed during the last decade by research
institutes. The literature developed generally considers slight angle deviations, which
guarantee hover or near hover along the execution of the trajectory. For formulations based
on linear control methods, refer to the following works [27,28].

However, the usual hover assumptions are not enough for cluttered environments,
where nonlinearities appear as one of the first problems to handle. Nonlinear control
formulations are valuable tools that allow the design of algorithms capable of mitigating
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problems associated with cluttered environments, such as nonlinearities and robustness.
For this reason, some works use nonlinear feedback control, such as backstepping formula-
tions [29], feedback linearization [30,31], and robust nonlinear control [32–34]. In addition,
quaternions are used to avoid singularities presented in the mathematical model using
Euler angles formulation of aerial vehicles [35].

Moreover, intelligent control theory has been applied in a wide range of works,
where the main formulations use concepts of artificial neural networks [36,37], fuzzy
logic systems [38,39], and reinforcement learning techniques [40,41]. Generally, these
formulations cannot handle states or control input constraints; furthermore, the reference
trajectory needs to be selected carefully, which is not viable in cluttered environments.

1.2.2. Predictive Controllers

MPC has presented outstanding precision and robustness properties among the mul-
tiple approaches applied in quadrotor trajectory tracking, so this formulation has been
considered in numerous articles to demonstrate some important properties in advanced
UAV control. Due to the predictive nature of its formulation is possible to generate the
control policy optimizing the reference states and the constraints at the same time, which is
beneficial because the majority of systems present limitations in their states and control
actions. In the same way, control commands could be generated by minimizing the tracking
error in the predicted time horizon by solving constrained optimization problems, with
successful results in applications, as shown in [17,18,42,43].

Nevertheless, MPC formulations can be computationally expensive, specifically non-
linear model predictive control NMPC [42,44]. For this reason, linear model predictive
control is usually adopted in many works, where the nonlinearities are simplified using lin-
ear approximations under small angle variations assumptions [30,45]. Thanks to the recent
advances in technology and the new optimization solvers [46], many works started using
nonlinear dynamics, exploiting the capabilities of the quadrotors [17,18]. Although NMPC
formulations are realizable on modern computers, the authors still require significantly
more computational resources than non-predictive schemes such as inverse differential
kinematics and inverse dynamic compensation. Hence, NMPC may experiment with
numerical convergence problems associated with computational capabilities. Finally, it is
necessary to compare these two formulations and realize which conditions present better
performance or complications related to tracking accuracy and computational time.

1.3. Contribution of This Work

This work presents a comparative study between (i) Non-predictive Feedback Controllers,
conformed by inverse differential kinematics and inverse dynamic compensation con-
trollers and (ii) Predictive Optimization Methods with the Nonlinear Model Predictive Control
formulation. To show the advantages and capabilities of each controller, this work reports
comparative experiments considering a wide range of agile trajectories with a particu-
lar emphasis on tracking accuracy, computational efficiency, and robustness. The main
contributions of this work are:

• Differential Kinematics and Dynamic Formulation: this work develops the differential
kinematics and dynamics formulation considering maneuverability velocities as the
control input of the system because many commercial aerial vehicles are produced
under this structure where the user does not have access to attitude control schemes.
Thus, this formulation can be straightforwardly applied to another commercial plat-
form with desired velocities as inputs of the system. To obtain the dynamic model
of the system, this work used the formulation of Euler–Lagrange; additionally, to
modify this model into the velocities space, it is necessary to introduce the concept of
low-level PID in the mathematical formulation.

• Nonlinear Feedback Formulations: are generated by inversion of differential kinematics
and dynamic compensation techniques. The design of these control structures was



Drones 2023, 7, 144 4 of 23

developed using the theory of nonlinear control and linear algebra, guaranteeing
minimal computational time with asymptotically and robust behavior.

• NMPC Formulation: This work formulates the NMPC considering system and input
constraints such as system dynamics, limits in control action, rate of change of control
inputs, and a candidate Lyapunov function that guarantees the stability of the control
structure. This work uses CasADI to solve the nonlinear optimization problem .

• Comparative Study: The experiments are carried out in simulations and real-world
environments. The simulation experiments were performed under the commercial
simulator of the DJI brand. On the other hand, real-world experiments were con-
ducted using the DJI Matrice 100 platform, which was equipped with all the necessary
hardware to run the controllers on the onboard computer. The agile trajectory se-
lected to compare the performances of the controllers is the Lissajous; additionally, to
guarantee a good comparison, this work considers low and high velocities through
the reference signal where the aerodynamics effects, latency, and uncertainties are
inevitable. Finally, with the comparative results is possible to show the benefits of each
controller considering their predictive and non-predictive structures; the comparative
consider the following metrics: tracking accuracy and average computational time.

This work is organized as follows: Section 2 presents the preliminary materials, such as
differential kinematics and dynamic models. The formulation of the quadrotor controllers is
presented in Section 3 with a subsection describing the non-predictive (inverse differential
kinetics and inverse dynamic compensation and predictive (NMPC) schemes. Section 4 shows
the comparative results through simulations and real-world experiments. The discussions
and conclusions of this work are presented in Section 5 and Section 6, respectively.

2. Preliminary Materials

This section presents the formal notations used throughout the paper and the model
employed to describe the motions of the Quadrotor platform. First, an instantaneous
kinematic model was derived, and then the simplified dynamic model was formulated
using the Euler–Lagrange. Finally, identification and validation processes are necessary to
employ the models in the controller formulations.

2.1. Kinematics Formulation

This work formulates the mathematical representation of the quadrotor, defining the
world-fixed inertial frame as < I > and the frame attached to the body of the system as
< B >, which is aligned with the center of mass (CoM), these notations are shown in
Figure 1.

This work expresses the pose of the quadrotor using the following definition
η =

[
p(η) φ(η)

]ᵀ, where p(η) =
[
ηx ηy ηz

]
and φ(η) =

[
ηϕ ηυ ηψ

]
are the po-

sition and the orientation respect < I >; further, due to the low-level controllers based on
PID formulations which guarantee the hover position, this work assumes rotations only
through the vertical axis Bz and slight angular deviation along the angles (ϕ, υ) roll and
pitch respectively.

Thus, the minimum representation is defined as η =
[
ηx ηy ηz ηψ

]ᵀ expressed
with more detail by the following equation:

ηx = ηx0 + dx cos(ψ)− dy sin(ψ)
ηy = ηy0 + dx sin(ψ) + dy cos(ψ)
ηz = ηz0 + dz
ηψ = ψ

(1)

where η =
[
ηx0 ηy0 ηz0

]ᵀ is CoM position; additionally this work defines the point of
interest of the system displacement from the CoM, which can be generally defined as
(dx, dy, dz).
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Figure 1. DJI Matrice 100 UAV platform representation.

To formulate the controller schemes is necessary to know the evolution of the system
over time; in fact of this, the instantaneous kinematics model of the quadrotor is defined by
the vector η̇ =

[
η̇x η̇y η̇z η̇ψ

]ᵀ with the following matrix form representation:
η̇x
η̇y
η̇z
η̇ψ

 =


cos(ψ) − sin(ψ) 0 −ρ1
sin(ψ) cos(ψ) 0 ρ2

0 0 1 0
0 0 0 1




µl
µm
µn
ω

 (2)

where linear and angular velocities are defined by µ =
[
µl µm µn ω

]ᵀ, additionally
ρ1 = dx sin(ψ)+ dy cos(ψ) and ρ2 = dx cos(ψ)− dy sin(ψ) represent the behavior generated
by displacement of the point of interest. A compact formulation can be defined by the
following equation:

η̇ = Jk(ψ)µ (3)

where the linear mapping between the evolution of the point of interest η̇ and the control
maneuverability velocities µ can be defined by the analytical Jacobian matrix Jk(ψ).

For the simplified dynamic section based on maneuverability velocities [24], it is
necessary to define the time derivative of (3) expressed in its compact form as:

η̈ = Jk(ψ)µ̇ + J̇k(ψ, ω)µ (4)

where µ̇ =
[
µ̇l ˙µm µ̇n ω̇

]ᵀ is the acceleration vector of the quadrotor and J̇(ψ, ω) is the
time derivative of the analytic Jacobian defined as

J̇(ψ, ω) =


−ω sin(ψ) −ω cos(ψ) 0 −ω(dx cos(ψ)− dy sin(ψ))
ω cos(ψ) −ω sin(ψ) 0 ω(dx sin(ψ) + dy cos(ψ))

0 0 0 0
0 0 0 0


2.2. Quadrotor Dynamics

The formulation of a mathematical model that defines the precise behavior of the
quadrotor flight is obtained through the Euler–Lagrange equations, which describe the
evolution of a mechanical system subject to holonomic constraints. With these consid-
erations, the Euler–Lagrange can be systematically defined using the total kinetic and
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potential energy present in the system. The Euler–Lagrange equations [47,48] are expressed
as follows:

d
dt

(
∂L
∂η̇

)
− ∂L

∂η
= τ (5)

where L = K − U represents the Lagrangian as a difference between the kinetic energy
and the potential energy and τ =

[
fxI fyI fzI τψI

]ᵀ represents the forces and torques
applied in each degree of freedom. The total kinetic energy of the system K = Kv +Kω is
defined as the sum of energies associated with translational and rotational velocities.

The translational term contributes to the translational kinetic energy of the system,
defined as

Kv =
1
2

mη̇ᵀη̇ (6)

where m represents the mass of the quadrotor; additionally, the rotational kinetic energy
is expressed:

Kω =
1
2

ω̇ᵀIωω̇ (7)

where ω =
[
ωx ωy ωz

]ᵀ is the angular velocity and Iω is the inertia matrix expressed in
a fixed coordinate system < I >. Then the angular velocity can be expressed as a function
of the rotational velocity in φ as

ω = Rᵀ(φ)Jω(φ)φ̇ (8)

where R is a rotation matrix that transforms the vectors of the coordinate system in the
body frame < B > to the absolute inertial coordinate system < I >; Jω represents the
geometric Jacobian which is related to the analytical Jacobian Jω by the following equation:

Jω(φ) = TA(φ)Jk(ψ) (9)

where

TA(φ) =

[
I 0
0 Tω(φ)

]
Tω(φ) =

0 − sin(ϕ) cos(ϕ) sin(υ)
0 cos(ϕ) sin(ϕ) sin(υ)
1 0 cos(ϕ)

 (10)

Similarly, we can formulate ω = Tω(φ)φ̇ to formulate the total kinetic energy of the
system as a function of generalized coordinates and the relationship between analytical
and geometric Jacobian [47], fulfilling that:

K =
1
2

η̇ᵀ
[
mJᵀk (ψ)Jk(ψ) + Jᵀω(φ)R(φ)IRᵀ(φ)Jω(φ)

]
η̇ (11)

Finally, with the assumptions presented above, the total kinetic energy of the system
can be written compactly as

K =
1
2

η̇ᵀM(η)η̇ (12)

where M(η) is the inertia matrix, which is symmetric and positive definite. The potential
energy of the quadrotor arises only due to gravity defined by

U = mgᵀη (13)

where g =
[
0 0 g 0

]ᵀ is the vector of gravitational accelerations in the absolute coordi-
nate system < I >. Thus, the Lagrangian for the quadrotor can be written as

L(η, η̇) =
1
2

η̇ᵀM(η)η̇−mgᵀη (14)

Then applying the partial derivatives and Euler–Lagrange’s constraint (5), the dynamic
model of the quadrotor can be written in matrix form as
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fxI

fyI

fzI

τψI

 =


m 0 0 −m(dy cos(ψ) + dx sin(ψ))
0 m 0 m(dx cos(ψ)− dy sin(ψ))
0 0 m 0

−m(dy cos(ψ) + dx sin(ψ)) m(dx cos(ψ)− dy sin(ψ)) 0 mdx
2 + mdy

2 + I




η̈x
η̈y
η̈z
η̈ψ

 . . .

· · ·+


0 0 0 −mη̇ψ(dx cos(ψ)− dy sin(ψ))
0 0 0 −mη̇ψ(dy cos(ψ) + dx sin(ψ))
0 0 0 0
0 0 0 0




η̇x
η̇y
η̇z
η̇ψ

+


0
0

gm
0


(15)

Therefore, the dynamic model of the quadrotor can be written in compact form:

M(η)η̈+ C(η, η̇)η̇+ g(η) = τ (16)

where, the Coriolis effects C(η, η̇) and gravitational forces g(η) can be represented by the
following matrices: C(η, η̇) = Ṁ− 1

2 η̇ᵀ ∂M
∂η and g(η) = ∂U

∂η .

2.3. Simplified Dynamic Model Based on Maneuvering Velocities

This section presents the following premise; the quadrotor remains in a hover po-
sition performed by PD dynamic controller with gravity compensation. The forces
ftB =

[
fxB fyB τψB

]
govern the attitude PD controller of the quadrotor; furthermore

these forces can be also defined as

ftB = Kpt(µtre f − µt) + Kdt(µ̇tre f − µ̇t) (17)

where µt =
[
µl µm ω

]ᵀ is the velocity vector that defines the attitude of the quadrotor
in the horizontal plane; µtre f =

[
µlre f µmre f ωre f

]ᵀ is the reference horizontal attitude
vector; (µ̇t, µ̇tre f ) are the time derivatives of µt and µtre f , respectively; and Kpt, Kdt are
diagonal positive definite gain matrices.

Furthermore, this work uses the following assumption µ̇tre f = 0 if limt→∞ ‖ftB‖ = 0
and limt→∞ ‖µ̃t‖ = 0, where µ̃t = µtre f − µt. Now, considering the vertical thrust force
flB = fzB + mg that opposes the force of gravity, the altitude PD controller is defined in (18)
under the assumption that limt→∞ ‖ fzI‖ = 0 and limt→∞ ‖µ̃n‖ = 0 if µ̇nre f = 0, considering
that µ̃n = µnre f − µn.

flB = kpl(µnre f − µn) + kdl(µ̇nre f − µ̇n) + mg (18)

where µnre f is the reference vertical velocity; µ̇n and µ̇nre f are the time derivatives of µn and
µnre f , respectively; and kpl , kdl are positive gain scalars that define the proportional and
derivative gains of the PD controller.

Due to the above, the general structure of the hover controller based on altitude and
attitude control is expressed as

fB = Kpµref −Kpµ−Kdµ̇ + g (19)

where g =
[
0 0 g 0

]
; Kp ∈ R4×4 is a diagonal matrix of proportional gains and

Kd ∈ R4×4 is a diagonal matrix of derivative gains.
Finally, substitute Equations (3) and (4) into the expression resulting from equating

the dynamic models (16) and (19), then the new simplified dynamic model of the quadrotor
is obtained, which considers the manipulability velocities as input of the system:

µlre f
µmre f
µnre f
ωre f

 =


π1 0 0 dxωπ2
0 π3 0 dyωπ4
0 0 π5 0

dxωπ6 dyωπ7 0 π8




µ̇l
µ̇m
µ̇n
ω̇

+


π9 0 0 dxωπ10
0 π11 0 dyωπ12
0 0 π13 0

dyω2π14 dxω2π15 0 d2
xω2π16 + d2

yω2π17 + π18




µl
µm
µn
ω

 (20)
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This new simplified dynamic model can be applied to any commercial quadrotor UAV
with maneuverability velocities defined as inputs of the system. The following equation
expresses the simplified dynamic model expressed in a compact form:

µref = M̄(µ, π)µ̇ + C̄(µ, π)µ (21)

where M̄(µ, π) = (RKp)−1((M J + RKd) is the new matrix of mass and inertia;
C̄(µ, π) = (RKp)−1(M J̇ + RKp + CJ) is the new matrix of centripetal and Coriolis forces;
finally, π =

[
π1 π2 .. π18

]
is the vector of dynamic parameters that includes all the

physical phenomena that change the quadrotor’s dynamics.

2.4. Identification and Validation

This section shows the identification and validation of the dynamic model presented
in (21), which due to the important property of dynamic systems equation, can be formu-
lated in a linear parameter representation [48] as µref(t) = Y(µ̇, µ)π, where Y(µ̇, µ) is a
regressor matrix, and π is the vector of linear parameters.

The identification process establishes the relation between the mathematical formula-
tion and the real-world system, allowing the use of the model in control structures. This
process uses the measurements obtained from the aerial vehicle DJI Matrice 100, and due
to the presence of noise during the flight measurements, this work applies a filter in the
identification experiment defined by µ̄ref =

λ
(s+λ)

µref and µ̄ = λ
(s+λ)

µ. The identification
process takes the filters signals and generates the following matrices:

Φ =

Y1( ˙̄µ1, µ̄1)
...

Ys( ˙̄µs, µ̄s)

 Ω =

µ̄ref1
...

µ̄refs

 (22)

where s is the number of measurements used during the identification process, thus, the
system can be written as follows:

Φπ = Ω (23)

Finally, this work uses the method of least squares to identify the system parameters
defining the following equation:

π = Φ†Ω (24)

where Φ† is defined as (ΦᵀΦ)−1Φᵀ.
Table 1 show the values of the parameters obtained using the least squares method,

Table 1. Parameters of the aerial vehicle DJI Matrice 100.

Parameters

π1 = 2.11 π2 = −0.005 π3 = 1.8 π4 = 3.17
π5 = 1.78 π6 = 0.39 π7 = −0.003 π8 = −0.03

π9 = 0.006 π10 = 0.02 π11 = 0.002 π12 = 0.06
π13 = 0.70 π14 = 0.02 π15 = −0.05 π16 = −0.01

π17 = −0.005 π18 = −0.01

Figure 2a shows the evolution of the velocities estimated by the dynamic model
(µlm, µmm, µnm, ωm) presented in (21) and developed by the fourth order Runge-Kutta
method. Finally, Figure 2b compares the real velocities and the velocities generated by
the dynamic model with a new set of reference velocities to verify the accuracy of the
expected behavior.
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Figure 2. Identification and validation, (a) shows the identification process under step signals, and
(b) presents the validation of the proposed dynamic model considering smooth signals.

3. Controllers Design

This work presents the formulation of the (i) Non-predictive Feedback Controllers, conformed
by inverse differential kinematics and inverse dynamic compensation controllers [49] and
(ii) Predictive Optimization Methods with the non-linear model predictive control formulation.

3.1. Kinematic Controller

The kinematic controller tries to calculate the instantaneous velocities of the quadrotor
to track the desired trajectory at the same time that the error in the steady state converges
asymptotically to zero. The general scheme of the kinematic controller implemented is
shown in Figure 3.

Figure 3. General scheme of the kinematic controller.

The control law generates the desired velocities for trajectory tracking:

µc = J†
k(ψ)

[
η̇d + K2tanh(K−1

2 K1η̃)
]

(25)

where η̇d are the velocities associated with the desired trajectory; η̃ = ηd− η are the position
errors; additionally, tanh(·) is a saturation function where K1 > 0 is a diagonal matrix
defines the slopes of the saturation function and K2 > 0 is a diagonal matrix that represents
the maximum and minimum velocities generated by the controller. The use of tanh(·) in
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the control formulation enables the consideration of limits in control actions, which is a
remarkable feature in developing a comparative study.

Kinematic Controller Stability Analysis

This work demonstrates the stability of the proposed controller considering that
µ ≡ µc; thus, the closed-loop equation of the system is defined as

˙̃η = −K2 tanh (K−1
2 K1η̃) (26)

A Lyapunov candidate function based on the control errors is defined as follows:

Vk =
1
2

η̃ᵀΛη̃ (27)

where Λ ∈ R4×4 is a positive definite diagonal matrix. The time derivative of the candidate
Lyapunov function along the trajectory of the system is defined by

V̇k(η̃) = −η̃ᵀΛK2 tanh (K−1
2 K1η̃) (28)

According to the Lyapunov criterion, if K1 > 0 and K2 > 0 then the stability of the
system is guaranteed because V̇k(η̃) < 0, which means that the error converges to zero
asymptotically η̃→ 0 since t→ ∞.

3.2. Dynamic Controller

The quadrotor presents dynamic effects related to inertia movements; this generates
velocities errors µ̃ = µc − µ with respect to the instantaneous velocities generated by the
kinematic controller. To reduce this effect, Figure 4 shows the general control scheme
where the dynamic compensation generates reference velocities µre f that compensate for
the effects generated by the inertia movements.

Figure 4. General scheme of the dynamic controller.

The implemented dynamic compensation control law is indicated in (29).

µref = M̄(χ, a, b)σ + C̄(χ, µ)µ (29)

where σ defines the dynamic compensation auxiliary variable, which is defined as follows:

σ = µ̇c + K4 tanh (K−1
4 K3µ̃) (30)

µ̇c defines the acceleration of the kinematic control reference µc; K3 is a matrix that weight
the convergence of the velocity control errors and K4 is a diagonal matrix that delimits
instantaneous velocities.

Dynamic Controller Stability Analysis

This work uses the Lyapunov criterion to guarantee the stability of the proposed dy-
namic compensation, combining Equations (29) and (21) is possible to obtain the following
closed-loop expression:

˙̃µ = −K4 tanh (K−1
4 K3µ̃) (31)
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Therefore, the Lyapunov candidate function is proposed as follows:

Vd =
1
2

µ̃ᵀΓµ̃ (32)

where Γ ∈ R4x4 is a positive definite diagonal matrix. The time derivative of the Lyapunov
candidate function along the system’s trajectories can be defined as

V̇d(µ̃) = −µ̃ᵀΓK4 tanh (K−1
4 K3µ̃) (33)

According to the Lyapunov stability criterion, the stability of the system is guaranteed
because V̇d(µ̃) < 0, that is, µ̃→ 0 since t→ ∞ as long as K3 > 0 and K4 > 0.

3.3. NMPC Controller

This work formulates the NMPC modifying the cost function into nonlinear program-
ming formulation (NLP) to generate the optimal velocities that keep the quadrotor on the
desired trajectory considering the kinematics and dynamics constraints along the entire
finite horizon of prediction; in addition, the kinematics, dynamics, and control actions
that include the rate of change of the control velocities are defined as constraints. Finally,
this work considers a Lyapunov candidate function as a hard constraint to guarantee the
stability of the system. The general scheme of the proposed controller is shown in Figure 5.

Figure 5. General scheme of the NMPC.

The prediction of the generalized nonlinear kinematic-dynamical system is defined as

ẋ(l|t) = f(x(t), µref(t)) (34)

f(x(t), µref(t)) := Ax(l|t) + Bµre f (l|t)

A =

[
04×4 J(ψ)
04×4 M̄−1C̄

]
, B =

[
04x4
M̄−1

]
where x(l|t) =

[
ηᵀ µᵀ

]ᵀ ∈ X and µref(l|t) ∈ U are the state and input of the system, and
l ∈ [t, t + T] is the evolution of the instantaneous value throughout the finite prediction
interval T considering the instant measure t. Thus, this work uses an intermediate cost
function `t defined as

`t(η̃(l|t), µ(l|t)) = 1
2
(η̃(l|t)ᵀQη̃(l|t) + µ(l|t)ᵀRµ(l|t)) (35)

In the last instant of time, the final prediction cost function ` f is defined as

` f (η̃(t + T)) =
1
2

η̃(t + T)ᵀQη̃(t + T) (36)

where Q and R are an arbitrary positive definite gain matrix for error and input sys-
tem, respectively. The MPC is defined as the solution to the nonlinear optimal control
problem (NOCP):



Drones 2023, 7, 144 12 of 23

min
η(.),µ(.)

∫ t+T

t
`t(η̃(l|t), µ(l|t))dt + ` f (η̃(t + T)) (37)

subject to: ẋ(l|t) = f(x(l|t), µref(l|t)) (38)

x(0) = x0 (39)

|µref(i + 1|t)− µref(i|t)| ≤ ∆µref (40)

µref(l|t) ∈ [µrefmin , µrefmax ] (41)

µref(l|t) ∈ U ∀t ∈ [0, N − 1] (42)

x(l|t) ∈ X ∀t ∈ [0, N] (43)

h f (µ̃) ≤ 0 (44)

where the NOCP (37) is solved using the direct multiple shooting method and considering
the initial conditions (39). Equation (38) defines the system dynamics considered as a
constraint. Equations (40)–(42) define the inputs constraints, where ∆µref, µrefmin and µrefmax

represents the rate of change, the maximum and minimum values of the control actions,
respectively. Equation (43) defines the state constraints.

Finally, Equation (44) considers the time derivative of the Lyapunov candidate func-
tion (33) defined as the constraint h f (µ̃) = −µ̃ᵀΓK4 tanh (K−1

4 K3µ̃) that guarantees the
system’s stability.

4. Results

This section illustrates the simulation and real-world experimental results to compare
each controller’s performance. The experiments were performed considering the following
conditions: (i) Simulations Experiments, this section uses the simulation software provided
by DJI with the nominal model without disturbances; (ii) Real World Experiments the
considerations for this section include a the Lissajous trajectory with low and high velocities
where aerodynamics effects, latency, and uncertainties are inevitable guaranteeing a fair
comparative study; additionally, the aerial vehicle used during the experiments was DJI
Matrice 100 by DJI. The comparative study considers the following metrics: tracking
accuracy, computational time, and robustness. Throughout the experiments, this work uses
η and ηd to represent the movement of the DJI Matrice 100 aerial robot and the desired
trajectory, respectively.

4.1. Simulation Experiments Results

This section illustrates the results of the controllers developed in Section 3; simulation
experiments allow the user to tune the parameters presented in each controller and avoid
problems in real-world experiments. The reference trajectory ηd =

[
ηxd ηyd ηzd ηψd

]ᵀ,
initial conditions ηo =

[
ηxo ηyo ηzo ηψo

]ᵀ
µo =

[
µlo µmo µno ωo

]ᵀ conducted in
these experiments are presented in Table 2. Finally, to measure the trajectory tracking
performance, this work defined the control error as η̃ = ηd − η considering only positional
error; orientation errors were not considered.

Table 2. Reference trajectory and initial conditions used in simulation experiments.

Initial Positions [m]-[rad] Initial Velocities [m/s]-[rad/s] Reference Trajectory
[m]-[rad]

ηxo = 0 µlo = 0 ηxd = 3 sin(0.4t) + 3
ηyo = 0 µmo = 0 ηyd = 3 sin(0.8t)
ηzo = 1 µno = 0 ηzd = 1.5 sin(0.2t) + 8
ηψo = 0 ωo = 0 ηψd = 0
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4.1.1. Inverse Differential Kinematics

In this section, the inverse differential kinematics (25) is implemented, where the
desired trajectory and initial conditions are shown in Table 2. Additionally, this control
structure uses the controller parameters presented in Table 3. The control parameters were
selected considering the limits in the control maneuverability velocities K2 and the fair
pondering of the control error K1.

Table 3. Proposed values for the inverse differential kinematics controller.

Parameters Values Parameters Values

K1 diag(1) ∈ R4×4 K2 diag(2 2 2 10) ∈ R4×4

The results of this experiment are illustrated in Figure 6a,b; the quadrotor follows the
desired trajectory; furthermore, the evolution of the system has been associated with the
Euclidean norm ‖η̃‖ of the control error, which is helpful to illustrate the deviation of the
system during the execution of the desired trajectory.

Figure 6. Simulation tracking results considering a Lissajous trajectory using the inverse differ-
ential kinematic controller; where (a) shows the evolution of the system in the plane

{
Ix, Iy

}
and

(b) considering the plane {Ix, Iz}; finally (c,d) illustrate the control error and actions, respectively.

However, this formulation shows a steady state error associated with the lack of
dynamics in the control structure Figure 6c. A close-up of the control errors shows that these
values are bounded, achieving a final characteristic error with a max value of η̃x < 0.6 [m],
η̃y < 1 [m] and η̃z < 0.1 [m] respectively for each axis.

Finally, the control actions (µlc , µmc , µnc) are shown in Figure 6d, which were generated
by the presented controller and guaranteed smooth values; however, these signals cannot
ensure the convergence of the system to the reference trajectory.

4.1.2. Inverse Dynamic Compensation

The implementation of the inverse dynamic compensation (29) is presented in this
section; moreover, to obtain fair comparative results, this work uses the same desired trajec-
tory and initial condition defined in Table 2. Additionally, the parameters of this control
structure are defined in Table 4. The control parameters of the dynamic compensation
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controller were selected as identity matrices; because of this, the control error values do not
change, and we can ensure a fair comparison.

Table 4. Proposed values for the inverse dynamic compensation controller.

Parameters Values Parameters Values

K3 diag(1) ∈ R4×4 K4 diag(1) ∈ R4×4

The results using the inverse dynamic compensation are presented in Figure 7a,b;
this controller shows a better performance with more accuracy than the results presented
in Figure 6 due to the controller can include the dynamics of the system in the control
formulation. Additionally, the movement of the quadrotor platform based on measures
of the system introduces the Euclidean norm showing the control error values along
the trajectory.

Figure 7. Simulation tracking results considering a Lissajous trajectory using the inverse dynamic
compensation controller; where (a) shows the evolution of the system in the plane

{
Ix, Iy

}
and

(b) over the plane {Ix, Iz}; finally (c,d) represent the control error and actions, respectively.

A close-up of the control errors (see Figure 7c) shows boundaries with maximum
values of η̃x < 0.3 [m], η̃y < 0.5[m] and η̃z < 0.1 [m] for each axis, respectively. The control
signals generated by the controller (µlre f

, µmre f , µnre f ) are presented in Figure 7d; where
these signals show a non-smooth behavior compared to the formulation presented before.

4.1.3. Nonlinear Model Predictive Control

This section presents the implementation of the NMPC controller proposed in (37); ad-
ditionally, this work uses direct multiple shooting and nonlinear programming formulation
to include the internal states η and the control actions µref as optimization variables guar-
antying computational efficiency. This work uses CasADI [46] to solve the optimization
problem guaranteeing real-time solutions.

This work defines the values of the positive define matrices presented in Table 5;
these values were obtained through experiments to improve the performance of the con-
troller scheme. Additionally, the boundaries in the control actions (µrefmin , µrefmax ) are similar
to those considered in the inverse kinematic controllers; moreover, the matrices Q and R
guarantee a fair comparison and smooth control variables under this control formulation.
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Table 5. Proposed values for the NMPC scheme.

Parameters Values Parameters Values

Q diag(0.9) ∈ R4×4 R diag(0.1) ∈ R4×4

µrefmin −[2.4, 2.4, 2.4, 11.5] µrefmax [2.4, 2.4, 2.4, 11.5]
T[s] 1

The movements of the quadrotor using this formulation are shown in Figure 8a
and Figure 8b; a close-up of the control errors (see Figure 8c) indicates boundaries with
maximum values of η̃x < 0.3 [m], η̃y < 0.2[m] and η̃z < 0.1 [m], guaranteeing that the aerial
vehicle tracks the desired reference trajectory more accurately than the control schemes
proposed in (25) and (29), demonstrating the advantages of the formulation compared with
non-predictive formulations.

Figure 8. Simulation tracking results considering a Lissajous trajectory using the NMPC controller;
where (a) shows the evolution of the system in the plane

{
Ix, Iy

}
and (b) over the plane {Ix, Iz};

finally (c,d) represent the control error and actions, respectively.

Finally, the control signals generated by the NMPC formulation (µlre f
, µmre f , µnre f ) are

shown in Figure 8d; the control values are bounded considering the specifications in Table 5,
this is one of an essential feature of this controller due to the systems incorporate limitation
in control actions and internal system states.

4.2. Comparative of Simulations Experiments

This section presents comparative results where each controller was evaluated using
the information presented in the previous section. In the simulation experiments, this work
does not consider unmodeled dynamics and uncertainties to ensure that each controller
has the accurate formulation to control the system.

In the following comparison, this work uses the root mean square error (RMSE) of the
positional error as a metric to compare each controller; additionally, we use each controller’s
average computational time to compare the required time of each formulation to generate
the solution.

Figure 9a compares the Euclidean norm of each controller during the execution of the
desired task, where ‖η̃‖Kinematic, ‖η̃‖Dynamic and ‖η̃‖NMPC illustrated the evolution of the
control error, demonstrating the better performance of the NMPC formulation. Figure 9b
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shows the RMSE of each controller, the NMPC has a better performance, especially in the Y
axis, where the trajectory presents the more aggressive behavior.

Figure 9. Comparative results of the proposed controllers during the simulation experiments; where
(a) illustrates the norm of the control error during the simulation of each controller (b) shows the
RMSE of each controller along the simulation.

Simulation experiments were carried out in the simulator provided by DJI; moreover,
the desktop computer presents the following hardware features: Intel processor i7-7700HQ
and CPU 2.80 GHzx8. The control structures were developed in the onboard computer of
the aerial vehicle (Jetson nano 4 GB core), where the programming selected programming
language is Python due to the famous general-purpose structure. Table 6 compares the
average computational time for each controller. As expected, the NMPC formulation
requires more time to compute the control signal; however, the excessive computational
time compared with the other formulation does not mean that this controller cannot be
implemented with a sufficiently high frequency.

Table 6. Average computational time for each controller in simulations.

Kinematic Dynamic NMPC

Avg. dt [ms] 0.054 0.141 17.54

4.3. Real-World Experiments Results

This work develops many experiments using the commercial aerial platform DJI
Matrice 100 to compare the performance of each controller proposed in Section 3.

Each controller was implemented on the onboard computer; a more detailed explana-
tion of the hardware in the aerial vehicle is presented in Figure 10 considering the onboard
computer Jetson nano 4 GB core module.

Figure 10. DJI Matrice 100 Experimental Platform.
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The desired trajectory and initial conditions used during the experimental results are
presented in Table 7; due to the extra hardware presented in the aerial vehicle, such as the
on-board computer, the selected trajectory presents lower velocities than the trajectory in
Table 2 to maintain the system’s integrity.

Table 7. Reference trajectory and initial conditions used in real-world conditions.

Initial Positions [m]-[rad] Initial Velocities [m/s]-[rad/s] Reference Trajectory
[m]-[rad]

ηxo = 2 µlo = 0 ηxd = 3 sin(0.16t) + 3
ηyo = 0 µmo = 0 ηyd = 3 sin(0.32t)
ηzo = 1 µno = 0 ηzd = 1.5 sin(0.2t) + 8
ηψo = 0 ωo = 0 ηψd = 0

4.3.1. Inverse Differential Kinematics

This section presents the results using the controller proposed in Equation (25); we
consider the same control parameters presented in Table 3 to present a fair comparison.
Figure 11a,b show the evolution of the quadrotor during the experiment; furthermore, the
control error is presented in Figure 11c with boundaries where the maximum values are
η̃x < 0.2 [m], η̃y < 0.5 [m] and η̃z < 0.5 [m]. Finally, the control actions (µlc , µmc , µnc) are
shown in Figure 11d, which present a smooth behavior.

Figure 11. Real-world tracking results considering the inverse differential kinematic controller; where
(a,b) show the evolution of the system; finally (c,d) represent the control error and actions, respectively.

4.3.2. Inverse Dynamic Compensation

The section presents the implementation of inverse dynamic compensation (29) in
real-world experiments; additionally, to get fair comparative results, this work uses the
same control parameters defined in Table 4.

The results using the inverse dynamic compensation are presented in Figure 12a,b;
where the results show a better performance with more accuracy than those presented in
Figure 11. Finally, Figure 12c shows the control error results, where these values present
boundaries with maximum values of η̃x < 0.3 [m], η̃y < 0.3 [m] and η̃z < 0.35 [m], finally
the control signals (µlre f

, µmre f , µnre f ) are presented in Figure 12d.
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Figure 12. Real-world tracking results considering the inverse dynamic compensation; where
(a,b) show the evolution of the system; finally (c,d) represent the control error and actions.

4.3.3. Nonlinear Model Predictive Control

This section presents the implementation of the proposed NMPC controller (37) in real-
world experiments; due to uncertainties and model mismatch, this section demonstrates
the robustness and precision of the NMPC.

The evolution of the quadrotor using NMPC is shown in Figure 13a,b; although
of the better performance of this control scheme a close-up of the control errors (see
Figure 13c) shows boundaries with maximum values of η̃x < 0.1 [m], η̃y < 0.15[m] and
η̃z < 0.2 [m]. The predictive control formulation guarantees that the quadrotor tracks the
desired reference trajectory more accurately than the control schemes proposed in (25) and
(29). The NMPC formulation uses the same control parameters shown in Table 5.

Figure 13. Real-world tracking results considering the NMPC controller; where (a,b) show the
evolution of the system; finally (c,d) represent the control error and actions, respectively.
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Finally, the control signals generated by the optimal policy of the optimization problem
(µlre f

, µmre f , µnre f ) are shown in Figure 13d; although of the disturbances and uncertainties
the control values are still bounded from the disturbances and uncertainties, it is an essential
characteristic of this controller that generates robustness properties in the system.

4.4. Comparative of Real-World Experiments

The metrics presented in Section 4.2 were analyzed in this Section considering the
RMSE of the control error vector. To demonstrate the efficacy of each controller during
the experiments, the system experimented with disturbances produced by external forces
such as wind, a better representation of this external disturbance is shown in Figure 14.
Finally, we use each controller’s average computational time to compare the required time
of each formulation.

Wind Velocity  

Night  
Day  Night  

Figure 14. Wind velocity during the real-world experiments.

Figure 15a compares the Euclidean norm of each controller during the real-world
experimental results; the NMPC presents a better performance associated with more
accuracy than the non-predictive formulations.

Figure 15. Comparative results of the proposed controllers during the real-world experiments; where
(a) illustrates the Euclidean norm of the control error during the execution of each controller (b) shows
the RMSE of each controller.

Figure 15b shows the RMSE of each controller; due to the disturbances and model
mismatch presented during the experiment, the performance of each controller was affected;
however, NMPC remains a better performance specifically in the Y and X axis where the
trajectory presents an aggressive behavior.

Real-world experiments were carried out using the aerial vehicle Matrice 100 by DJI,
which incorporates the onboard computer Jetson nano 4GB with the following hardware
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features Quad-core ARM Cortex-A57 MPCore processor. Additionally, the optimization
problem was solved through multiple shooting schemes and using IPOPT, short for "Interior
Point Optimizer executed in CasADi [46].

As expected, the NMPC formulation requires more time to compute the control signal
(see Table 8); however, this control formulation can be implemented with a sufficiently high
frequency to achieve the agile trajectories used in this work.

Table 8. Average computational time for each controller.

Kinematic Dynamic NMPC

Avg. dt [ms] 0.075 0.26 25.36

5. Discussion

NMPC controllers have recently demonstrated their validity in multirotor air vehicles,
but only some authors have presented their performance in simulation, and real experi-
mentation [17]. In this work, an NMPC control has been selected as the best option based
on trajectory tracking, where the NMPC is robust in positioning errors and works better at
high velocities, and the small radius of curvature of the reference trajectories [50]. On the
other hand, baseline controllers have always shown adequate performance for multirotor
trajectory tracking control [26]. However, the contrast between these two controllers is
still limited in the literature; in [51], the authors compare a predictive contour control
for time-optimal with respect to state-of-the-art and with respect to a professional pilot,
evidencing better performance for the predictive control.

Non-predictive baseline feedback controllers such as inverse differential kinemat-
ics and inverse dynamic compensation have demonstrated accuracy and computational
efficiency [52]. This justifies the comparison of our NMPC proposal with this class of
controllers that are widely used for UAVs. In this case, higher trajectory-following accuracy
is achieved with the NMPC control, which is more evident in real-world experimentation
than in simulation, possibly due to the effect of extrinsic components of the system. Re-
garding the UAV used in this study, the DJI Matrice 100 UAV has proven to be a viable
option for evaluating advanced control algorithms [53]. This is because it allows testing
both in simulation and experimentation.

Perturbations are an essential component in the modeling and control of a UAV
system, and simulation results have demonstrated the efficiency and robustness of non-
linear controllers [29,32]. However, only some works with experimental results analyze
disturbances in NMPC controllers. In [45], the authors explore the performance of an
MPC controller against aerodynamic disturbances in trajectory tracking. In [42], an NMPC
control is used for trajectory tracking applied to micro aerial vehicles, demonstrating good
disturbance rejection capacity, stepped response, tracking performance, and slightly less
computational effort than the linear MPC control.

Although the mean computation times of our NMPC control are higher than the
baseline controllers, with 17.54 ms in the simulation and 25.36 ms in experimentation, these
times are lower than the results of [54], which present an NMPC which enables real-time
solutions with a sampling time of 50 ms to avoid collisions with dynamic obstacles with
UAVs. Some works have achieved similar times in manipulator control with NMPC but
have only been evaluated in simulation environments, leaving the controller performance
in real environments in doubt [55]. Other works have achieved shorter computation
times in NMPC control of electric vehicles, but these results are based on hardware loop
tests [56]. In any case, our findings contribute to applying NMPC controllers in UAVs with
precision registration in trajectory tracking and computation times that examine the control
system’s efficiency.
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6. Conclusions

This work developed the instantaneous kinematics and simplified dynamic model of
the aerial vehicle Matrice 100, based on linear and angular velocities as inputs of the aerial
vehicle. Because of this, the non-predictive control formulations considered in this work
are the inverse differential kinematics and the inverse dynamic compensation; on the other
hand, the predictive formulation selected is the NMPC. This work compares the control
structures presented before considering the tracking of agile trajectories; simulations and
real-world experiments were performed to evaluate the performance in terms of accuracy
and computational efficiency, which are helpful features that could benefit future works.

The trajectory used for the comparison is known as the Lissajous trajectory, which
presented an aggressive behavior with velocity variations where the controllers needed
to demonstrate accuracy and efficiency. The real-world experiments showed the accuracy
properties of the NMPC against disturbances; specifically, at the time of the experimen-
tation, the system presented an average wind the velocity of approximately 21.5 km/h;
additionally, the comparative results showed the superiority of the NMPC formulation
clearly expressed in the RMSE calculation. Therefore, this work reports the advantages
and disadvantages of each formulation analyzing accuracy; because of this, this work
suggests the NMPC as the best option based on the comparison under trajectory tracking,
which mainly works better at high reference velocities. However, although the accuracy
property demonstrated by the NMPC compared with the feedback control approaches, the
computational time is highly demanding using the onboard computers. Because of this, it
could be unfeasible for miniature air vehicles.

Future works will develop considering soft constraints and Sequential quadratic
programming (SQP) to improve the computational time of the NMPC formulation.
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