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Abstract: The use of unmanned aerial vehicles (UAVS) has been suggested as a potential commu-
nications alternative due to their fast implantation, which makes this resource an ideal solution to
provide support in scenarios such as natural disasters or intentional attacks that may cause partial
or complete disruption of telecommunications services. However, one limitation of this solution is
energy autonomy, which affects mission life. With this in mind, our group has developed a new
method based on reinforcement learning that aims to reduce the power consumption of UAV missions
in disaster scenarios to circumvent the negative effects of wind variations, thus optimizing the timing
of the aerial mesh in locations affected by the disruption of fiber-optic-based telecommunications.
The method considers the K-means to stagger the position of the resource stations—from which
the UAVS launched—within the topology of Stockholm, Sweden. For the UAVS’ locomotion, the
Q-learning approach was used to investigate possible actions that the UAVS could take due to urban
obstacles randomly distributed in the scenario and due to wind speed. The latter is related to the way
the UAVS are arranged during the mission. The numerical results of the simulations have shown that
the solution based on reinforcement learning was able to reduce the power consumption by 15.93%
compared to the naive solution, which can lead to an increase in the life of UAV missions.

Keywords: UAVs; optimization; machine learning; Q-learning; wind speed; energy consumption

1. Introduction

The development of intelligent cities is a response to current fast-urbanization is-
sues [1–3]. Intelligent cities use information and communication technology (CIT) to
connect people, improve services and enhance urban systems, which improve the stability
of the city. To better prepare the cities so that they are capable of adapting to changes
and resisting the pressure arising from adverse situations, proper planning is necessary.
This could be accomplished through the integration of city systems, thus, connecting all
components of a city, including people, businesses, technologies, processes, data, infrastruc-
tures, consumption, spaces, power, strategies, and management to support themselves and
use the resources of one another with minimum waste to enhance the city’s preparedness
against challenges that may appear such as natural disasters, malicious attacks and climatic
changes [4–6].

In the context of intelligent cities, unmanned aerial vehicles (UAVs) have been used
extensively as defense assets such as remotely controlled aircraft, and automated drones,
among others [7]. It is estimated that the production of UAVs should reach US$ 45.8 billion
by 2025 [8]. Over the years, the utilization of UAVs has expanded to the military field.
another way, UAVs have been proposed for disaster relief, the protection of plantations,
the monitoring of traffic, and environmental detection [9]. UAVs have existed for decades
and have been significantly influencing our lives, though only recently their civil and
commercial use has become viable with the development of new technologies. Ultimately,
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UAVs have been used for a wide array of applications such as surveillance, shipping, and
aerial photographing [9–11].

In the telecom field, UAVs may be used as relays to provide support to applications
since they can provide seamless communication to devices that are out of the coverage
area of conventional cellphone networks, thus allowing intense dataflow in fields such
as urban monitoring, which focus on control algorithms, as well as movement detection,
which focus on multimedia collection solutions in real-time [12]. In the healthcare field,
UAVs have been used as a bridge between various body area networks (BANs) where they
work as data collectors with lower power consumption [13,14].

To resolve network overload issues, UAVs have been used as intermediary links
between base stations to improve signal reception as well as increase the system’s capacity.
UAVs create several intermediary links to connect users in macro-cells and microcells.
The proposed system has been evaluated according to several performance parameters
such as network delay, throughput coverage, and spectral efficiency. According to [15],
when compared with unassisted UAV systems, they can improve efficiency by up to 38%
and reduce delays by up to 37.5%. Therefore, this model is adequate for areas with high
connection demand.

It is expected that UAVs become enablers of future wireless technologies such as 6G
since they support high data rate transmissions to remote communities and they may also
assist with disaster relief actions in the aftermath of earthquakes or terrorist attacks by
providing network infrastructure to locations where typical cellphone networks simply do
not exist. For [16,17], the main resources associated with UAVs in comparison with fixed
infrastructures are their facility to be implemented and their connectivity (LoS).

Despite the benefits associated with UAVs, quite a few challenges have been encoun-
tered such as flight autonomy due to battery capacity, emphasized in [18,19]. Due to limited
battery capacity, it is necessary to optimize the UAVs’ power consumption to establish
an association between the propulsion power and the flight trajectory based on the wind
velocity [20,21]. Therefore, climatic factors such as wind velocity are obstacles that may
become impediments to the future of UAVs.

Climate factors such as wind speed not only affect energy consumption but are also
related to some accidents involving UAVs. The most comprehensive cases are listed
below: [22] The National Transportation Safety Board (NTSB) reports that an accident
occurred in June 2016. During the maiden flight of Aquila, Facebook’s solar-powered
unmanned aircraft, it suffered a ‘structural failure’ due to a strong gust of wind [23].
According to the NTSB, in May 2015, Google’s parent company Alphabet’s Solara 50
crashed when it was exposed to a strong updraft during a flight in the New Mexico area.
These factors must be considered when planning the flight of UAVs in urban scenarios, as
civilian safety must be considered in addition to the financial aspect (loss of the UAV).

Recently, several researchers have been utilizing machine learning to optimize UAVs
so that they can efficiently overcome adversities [24]. Among the literature regarding the
subject matter, the utilization of such artificial intelligence techniques has been proven
to accomplish similar or even better results than those of deterministic nature due to
their capacity to automatically extract and learn the most relevant characteristics that may
influence the decision-making process without human intervention.

Taking into consideration a scenario where there is a partial interruption of services
due to issues faced by a metropolitan network infrastructure based on optic fiber, we
shall approach an intelligent flying network solution based on Q-learning to optimize
the trajectory of UAVs. The algorithm takes considers the wind velocity variation effects
associated with each UAV and the physical obstacles present within major urban areas.

UAVS, belonging to the Vertical Take-Off and Landing (VTOL) class of aircraft, have
greater possibilities in unfamiliar terrain, are therefore more adaptable to scenarios that do
not have a homogeneous surface, are easy to deploy, and can be controlled by a pilot or
can be controlled by artificial intelligence. In this way, it is not necessary to spend large
amounts of money to maintain a mission. This work has considered the trajectory of a
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group of UAVs toward a mission point, considering natural adversities such as wind and
buildings along the way. In this case, it would be beneficial to trace a trajectory in which
the UAVs can move efficiently while saving power and extending their flights. All of these
advantages are managed automatically, therefore, they do not rely on a control center and
could also be adapted to several issues that require extended life and battery.

Q-learning was utilized as a reinforcement learning technique to control the movement
of a UAV toward its target. The solution is based on the search for a better trajectory
by reading the urban environment, which is represented by a bi-dimensional grid that
segments areas of interest into equal parts to represent the UAV movement. Each UAV
should run independently from one another; therefore, it is a scalable, agile, and stable
solution to respond in real time to urgent matters. Our contribution to this work is:

• To promote a deep discussion regarding the challenges related to the UAVs’ flight
autonomy during missions;

• To promote intelligent solutions based on machine learning by reinforcement to
optimize the trajectory of UAVs under windy and urban scenarios;

• To promote numerous tests with the aim of investigating which reinforcement learning
parameters are appropriate for the UAV route optimization problem considering
physical obstacles and weather variation;

• To promote several tests exploring different positions of urban obstacles;
• To promote several tests that explore the insertion of high-incidence wind speed points

in the scenario;
• To promote comparisons with other methodologies described in the literature based

on reinforcement learning;
• To promote—through the simulation of numerical results—the efficiency of the strat-

egy proposed herein; thus, attesting to its potential as a solution.

The remainder of the article is organized as follows: works related to this theme
have been presented in Section 2. The breakdown of the proposed methodology has been
presented in Section 3. The main results have been discussed in Section 4. Study limitations
have been presented in Section 5. Finally, the article’s main conclusion has been presented
in Section 6.

2. Related Work

The demand for UAVs is ever-increasing, thus it is important to be attentive to the
different aspects that may influence the proper implantation of UAVS within an ecosystem.
These aspects describe the essential characteristics of a successful mission. An example is the
size of a fleet, power capacity, specifications of UAVs, power consumption (highly affected
by climatic conditions and carried weight), and control and communication conditions.
Flights may be automated or controlled by a human operator. All of these aspects should
be taken into consideration before UAVs and their services are rendered.

For unmanned flight, UAVS must be able to deflect from obstacles within the locomo-
tion scenario to be successful. The work of [11] promotes a decentralized and autonomous
control strategy such that UAVS are deployed in various types of missions that involve
capturing and detecting obstacles through image capture. In [25], in addition to considering
potential obstacles in the UAV’s field of motion, the Explicit Reference Governor (ERG)
framework is used to guide the UAV within the boundaries of the geographic region. For
this purpose, software called Motive is used to capture images of the reconnaissance envi-
ronment and then send the information to the client software responsible for controlling
the UAVS. The communication between Motive and the client software is done through a
middleware (NatNet Service) in UDP communication format. In the vision of the authors
of [26], a control system capable of monitoring densely populated areas or habitable places
is developed by safely placing a UAV to perform vertical takeoff or landing (VTOL) maneu-
vers to ensure maximum stability and maneuverability. The system consists of a real-time
mechanical rotary LiDAR (Light Detection and Ranging) sensor connected to a Raspberry
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Pi 3 as an SBC (Session Board Controller), with a GCS (Ground Control Station) interface
via a wireless connection to manage data and transmit 3D information.

UAV route planning may be associated with various types of real-world applications
such as order delivery, surveillance, and telecommunication services. In such applications,
a number of factors need to be considered, such as flight distance, carried weight, battery
life, and weather conditions. These are important components to ensure the autonomy of
the UAVS, and the dynamics of performing their tasks.

In [27], a technique for UAV trajectory planning is presented. It is based on the artificial
potential field (APF) to ensure near-ground targets in scenarios under the influence of wind.
For this purpose, it provides stable and continuous coverage over the GMT and proposes a
new attraction force modified to increase the sensitivity of the UAV following the speed
and direction of the wind. The proposed trajectory planning technique is hardware-
independent. It does not require an anemometer to measure wind speed and direction and
can be used by all types of multirotor UAVs equipped with simple sensors and a flight
controller with an autopilot function. The proposed trajectory planning technique was
evaluated by a Gazebo-controlled PX4-SITL and a Robot Operating System (ROS) in several
simulation scenarios.

The authors of [28] have developed an inspection routine for UAVS based on mobile
edge computing (MEC), in which the UAVs not only detect multiple wind turbines (WTs)
deployed in a wind farm, but also provide computing and data offloading services. As
part of the proposed design, the influence of wind is taken into account when planning the
flight path. Thus, an iterative optimization solution was created that aims to minimize the
power consumption of the UAVS by improving the trajectory, taking into account efficient
offloading and the computing power required by the automatic power generators

In [29], several contributions were presented for systems that manage battery-powered
UAVs. The authors conducted an empirical study to model drone battery performance,
considering various flight scenarios. The study addresses a number of issues related to
flight planning and optimizing drone recharging to perform a trip to a number of locations
of interest. A certain number of recharging stations and points of interest were considered,
randomly distributed in the scenarios, with different applications for deliveries and remote
operations being considered. The solution to this problem is useful for an intelligent
drone management system, as the algorithm can manage the UAVs in real-time, allowing
the recalculation of trajectories when changes occur in the scenario, making it ideal for
dynamic scenarios.

In [21], a wireless telecommunication network composed of UAVs is considered, where
a UAV is used as a hybrid access point (AP) to meet multiple ground users. Specifically,
the users are to receive a radio signal transmitted by the UAV over which they perform
a data uplink. In practice, mission completion time and battery life are two important
variables for evaluating the performance of UAV-assisted communications. To complete
the mission as quickly as possible, the UAV should fly over the users at maximum speed,
but this would increase the power consumption of the propulsion system. The authors’
goal is to optimize the relationship between power and travel time, which is characterized
by the “power-time” breakpoint.

The authors of [30,31] have elaborated an approach—to support flight mission plan-
ners in aerospace companies—to select and evaluate different mission scenarios for which
flight plans are created for a given UAV fleet while ensuring delivery according to the
customer’s requirements for a given time window. Mission plans are analyzed from several
perspectives, including different weather conditions (wind speed and direction), UAV
payload capacity, fleet size, number of customers a UAV will fly to during a mission, and
delivery performance. The model considers multiple scenarios, making it adaptable to
differences such as weather variations.

As it has been seen in [29–31], authors try to gather the climate effects during the
composition of their strategies for missions. However, during the formulation of equations,
they do not consider gravitational potential energy effects, sidelining the gravity accelera-
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tion variable and minimizing aircraft weight effects while modeling solutions. In [28], the
gravitational potential energy is mentioned in the equations, although the authors ignore
effects caused by the UAVs’ height variation concerning the ground.

In [32], an approach for planning missions performed by UAVS considering climate
variation was studied. The approach was tested on several examples and analyzed customer
satisfaction influenced by different values of the mission parameters, such as fleet size,
travel distance, wind direction, and wind speed. The study scenario considers a company
that provides air transport services using a fleet of UAVS. The transport network covers
200 Km2 and contains 13 nodes and the weather forecast is known in advance with sufficient
accuracy to delineate the weather windows, which are subdivided into flight periods. Each
route traveled starts and ends within a given flight time window. All UAVs are charged to
their full power capacity before the start of a mission and a UAV can only fly once during a
flight time window. The weight of a UAV decreases as the payload is successively unloaded
at customers located along the route.

In the work of [33] a cost function that considers the energy consumption and reuse
model of UAVS is addressed and applies it heuristically, characterized by Simulated An-
nealing (SA) to find suboptimal solutions for practical parcel delivery scenarios. The intent
of the approach is to optimize the delivery services performed by UAVS, and thus balance
the cost and delivery time, the SA heuristic is used to show that the minimum cost has
an inverse exponential relationship with the delivery time limit. The overall minimum
delivery time, on the other hand, has an inverse exponential relationship with the budget.
The numerical results confirmed the importance of using UAVS, in the parcel delivery
ecosystem mainly highlighting the importance of route optimization and the reflection of
this on the autonomy of the UAV.

Several works have been using machine learning (ML) techniques in route optimiza-
tion issues to find a middle ground between the objective and the challenges within
scenarios, thus finding an intelligent and balanced solution [34–38].

The authors of [34] address an intelligent solution based on reinforcement learning for
finding the best position of multiple small cell drones (DSCs) in an emergency scenario.
The main goal of the proposed solution is to maximize the number of users covered by
the system, while the UAVs are limited by backhaul and radio access network constraints.
The states of the DSCs are defined as their three-dimensional position in the environment,
and each UAV can take any of seven possible actions, i.e., move up, down, left, right,
forward, backward, or not move at all, and the reward was defined by the number of users
allocated by the base station. The results showed that the proposed Q-learning solution
vastly outperforms all other approaches with respect to all metrics considered.

During the works [35], the trajectory of several UAVs is planned to maximize power
efficiency due to the quality of service (QoS) rendered to users. Authors have considered
the recharge periodicity of UAVs in recharge stations distributed throughout an area to
reduce the length of the trajectories. To properly balance this, our group has utilized
Q-learning techniques to find an optimal point between communication quality and power
expenditure for UAVs to move. Therefore, simulation results have shown that the power
efficiency of the proposed algorithm is 5% lower than the results of a linear programming-
based solution. It is important to highlight that the solution presented herein does not
consider climate variation dynamicity when writing the algorithm.

In [36], reinforcement learning (Q-learning) is used to decentralize the UAV’s trajectory
in a cellular network scenario. Based on this, maximization and transmission of data based
on the route chosen by the AI was expected to enable coordination of multiple UAVs during
their tasks as relays; therefore, it received data in real-time from multiple surrounding
applications and forwarded them to the base station. Initially, a sense-and-send protocol
was proposed. Based on this, the probability of valid data transmission was analyzed
using a Markov chain. Then, the Q-learning algorithm was run for multiple UAVs to
determine optimal routes. Ref. [37] relies on Deep Reinforcement Learning (DRL) to
create its solution and uses regional traffic as a decision criterion based on Flow Level
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Models (FLMs). The simulation environment is characterized by nine UAVs in downtown
San Francisco (1280 m × 1280 m), where the UAV trajectory was defined by 20 discrete
actions. In [38], Deep Reinforcement Learning is used to control a swarm of UAVs to extend
telecommunication coverage over time to maintain connectivity while reducing energy
consumption

Considering the work collected here, some gaps were identified in the modeling of
strategies in [11,25,26,34–37] where UAV routing did not consider battery consumption to
affect the actual accessibility of UAVs during a mission, while weather factors were not
considered in the work of [11,21,25,26,29,34–37,39–46]. This leads to unrealistic scenarios
with no accuracy in terms of data exposure and therefore can create a false expectation
of the actual deployment time of a UAV fleet. Other works such as [47–51] ignore the
dynamicity and the capacity to adapt when encountering new environments under critical
situations, only considering specific scenarios. While considering disaster scenarios that
involve people during the rendering of services, it is important to consider factors that
may influence the minimum service quality such as signal interferences, delays, and user
satisfaction. Such variables were not covered by works [40,52] and it could be damaging
to the main objective, which is maintaining full communication under scenarios where
people may be victimized, therefore, may be trapped amongst the debris. Under these
extreme circumstances, people require immediate aid, and that is why is prime that clear
and objective communication is established with authorities, without interference or noise.

Contrary to what is currently found in the literature, our work aims to provide
an alternative to the problems of energy efficiency due to urban obstacles and urban
microclimate that can affect the timing of UAVs’ missions. In the literature, the project
team has found that most of the available works use mathematical models with statistical
variables for the UAV flight conditions during their flight. This means that for each UAV
trajectory, a fixed speed is specified for the entire trajectory, which is different from our
solution that focuses on the dynamics of the variable s for each T time point. On the other
hand, these works dealing with reinforcement learning in trajectory planning usually do
not consider weather variations such as wind. Therefore, it is important to emphasize that
the uniqueness of our work lies in the planning of real-time trajectories from UAVs to a
target, where the UAV is responsible for computing its trajectory (onboard computation)
to adapt to changes in the scenario and wind speed and not only avoid obstacles, but
also reduce energy consumption in propulsion. The constant decision-making in each
T-time point for each UAV is based on the Q-learning technique, which assumes that a UAV
understands the local wind aspects and can detect the presence of obstacles

3. Preliminary
3.1. Reinforcement Learning (RL)

Reinforcement learning is a subfield of machine learning characterized by systems
that receive only one set of inputs and attempt to obtain information about the possible
values of each input through a reward function and is usually formalized by a Markov
Decision Process (MDP) [53]. In this formalization, the environment is represented by a
state st, where t is a discrete moment in which there is an interaction with the environment
in which the agent must choose an action until the environment stochastically changes
to a new state st+1, resulting in a numerical reward rt that indicates whether that specific
action was good or not in that state. Based on the reward received for each input, and
after repeated execution, the computer begins to improve its knowledge of the world and
must be able to formulate a strategy that determines which actions it considers best for
the possible states of the environment. The basic framework of reinforcement learning is
shown in Figure 1.
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Figure 1. Reinforcement learning algorithm flowchart.

The agent learns the updates to the action state value function by observation. There
are two algorithms based on reinforcement learning that use different methods, SARSA
(State − action − reward − state − action) and Q-learning, where the first algorithm uses
on-policy control [54] and the second algorithm uses off-policy control [55,56]. Both are
characterized by the learning rate α which determines how much the algorithm should learn
from the new observations of the environment, which varies between 0 and 1. The discount
factor γ, which decides the importance of the future reward. If γ is 0, the agent will only
consider current rewards, and if the factor is 1, the agent will attempt to obtain a high
long-term reward. Finally, the initial condition Q(s0,a0)

is necessary because it is responsible,
through iteration, for measuring optimal knowledge concerning what should be optimized.

3.2. SARSA

The name SARSA originates from the tuple Q(s, a, r0, s0, a0), where s and a are the
state and action at time t, r0 the reward achieved at time t + 1, and s0 and a 0 the state
action pair achieved at time t + 1. It uses discounting the value of the selected action
according to the policy used in the successor state Q(st+1, at+1), so SARSA does not adopt
maximization of actions like Q-learning. Thus, the learning matrix is updated as seen in
Equations (1) and (2) [54]:

∆SARSA ← [rt+1+γQ(st+1,at+1)−Q(st ,at)] (1)

Q(st ,at) ← Q(st ,at) + α∆SARSA (2)

3.3. Q-Learning

Although the algorithms of Q-learning and SARSA are technically quite similar, they
differ in some respects [57]. From a technical point of view, the difference between the
two algorithms is the requirement to consider near-state information. On the one hand, Q-
learning acquires the best policy even when actions are performed based on exploratory or
random policies. Q-learning uses the discounted value of the optimal action in the successor
state Q(st+1, π∗) [55,56]. The value function of the current state Q(st, at) is updated from
its current value, the immediate gain rt+1, and the difference between the maximum value
function in the next state, i.e., the action in the next state that maximizes the value of the
current state function at the current time is found and selected. A feature of Q-learning
is that the learned value function Q directly approximates the optimal value function Q∗

without depending on the policy being used. This fact greatly simplifies the analysis of the
algorithm and allows initial convergence tests. The policy still has some influence on which
of the state-action pairs to visit and update. Convergence requires that all state-action pairs
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are visited, which makes Q-learning an off-policy [58] method. Q-learning is represented
sequentially in the Equations (3)–(5):

π∗argmaxπ∈Actions(t+1)
Q(st+1, π), (3)

∆Qlearning← [rt+1 + γQ(st+1, π∗)−Q(st, at)], (4)

Q(st, at)← Q(st, at) + α∆Qlearning. (5)

3.4. Exploration and Exploitation

At some point in algorithmic processing based on reinforcement learning, an agent
may act greedily based on the information available to it to maximize the expected total
gain. This is also referred to as exploitation, where the agent acts solely based on their
knowledge of the environment. This may be insufficient for optimal choice and is especially
problematic at the beginning of interactions with the environment, so the agent acts greedily
based on its limited knowledge of the environment and is very unlikely to learn optimal
behavior in the environment. How is an agent supposed to know what it is in state 2 if it is
satisfied with the reward it receives in state 1? Therefore, exploration should be considered.
When an agent explores, it does not necessarily act to the best of its ability but explores
various available options determined by an exploration strategy [53,55].

3.5. ε-Greedy

According to [53], the e-greedy method is the most common approach to balancing
exploitation and exploration in RL. This method controls the amount of exploration and
determines the randomness of the [55] action selection. An advantage of e-greedy is that
exploration-specific data, such as [59] counters or [60] confidence bounds need not be
defined. The agent chooses a random action with a probability between 0 and 1 and eagerly
chooses one of the optimal actions learned concerning the Q-function:

π(s) =
{

ε Choose a random action
1− ε Be greedy and exploit

(6)

3.6. ε-Greedy Decay

In this method, the value of epsilon greedy decreases as the number of iterations
increases. Therefore, it will have a higher proportion of exploration samples in early
iterations and fewer exploration samples in later iterations. In Equation (7), a new allocation
of ε is defined for each iteration ep between minε and maxε defined in the algorithm [61,62].

ε = minε + (maxε −minε)e−ep∗decayRate (7)

3.7. Assumptions

In this work, the group considers an urban scenario consisting of obstacles charac-
terized by buildings and also considers the influence of climatic variations, which in this
case are strong wind gusts. During the UAV’s course, obstacles and wind speed points
are represented in an unprecedented way to the reinforcement learning heuristic, and at
the end of the processing, it will indicate a route that the UAV will follow, respecting the
displacement limits determined by the UAV’s speed. The project team assumes that the
UAVs are connected to the weather station in real time and that the UAVs have all the
object detection sensors built into them that are needed to avoid collisions. The following
assumptions are responsible for clarifying and narrowing down the path-planning problem
of this work:

• The UAV knows its position at all times;
• The final destination and the goal of each heuristic subprocess are known to the UAV;
• The route calculation takes place independently between the UAVS;
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• The height of the buildings is randomly arranged;
• Obstacles are all buildings and structures whose length is more than 120 m;
• The speed of the UAVS is constant;
• The velocity vector of the UAVs will always be opposite to the wind speed.

4. Proposed Solution

The proposed solution was divided into two main segments: the first is related to the
positioning of a resource station under the adopted topology, whence the UAVs will depart
from. The second segment is related to the movement of UAVs under a scenario.

4.1. Positioning Strategy For Resource Stations

Resource stations are the location from which the UAVs should depart. During this
phase, it is important to consider the geographical positions of these stations, which should
serve two purposes: to act as resource-storing stations (radio interfaces) for UAVs, and
in due course, should act as power recharge stations. To improve the positioning of the
stations, a K-means-based cluster algorithm was utilized since it is required to consider
the traveled distances of UAVs, once the layout of the stations should directly affect the
roundtrip time of UAVs during a mission. Therefore, it is important to consider strategies
that aim toward the optimization of resource stations’ positioning so that the distances
traveled by UAVs are minimized to reduce power consumption in both ways. Algorithm 1
describes the adopted positioning strategy.

Algorithm 1 k-means algorithm for position of resource bases and energy loading
Input: Network Graph NG
Output: Set of datasets clusters DC

1: while no convergence criteria is met do
2: Calculate the arithmetic means of each cluster formed in the dataset
3: K-means assigns each record in the dataset to only one of the initial clusters
4: Each record is assigned to the nearest cluster using a Euclidean distance
5: k-means re-assigns each record in the dataset to the most similar cluster and re-

calculates the arithmetic mean of all the clusters in the dataset
6: end while

4.2. UAV Travel Strategy Based On Q-Learning

In this phase, climatic factors such as the wind and urban obstacles may hamper the
arrival of UAVs to the area of interest. To overcome these adversities, a travel strategy has
been developed for UAVs based on Q-learning, which is represented by Algorithm 2. It is a
machine learning technique based on reinforcement made of a set of statuses and actions
to find an optimal solution under scenarios that require fast decision-making based on a
wide array of options within the environment [35,56]. The algorithm works with a reward
structure; therefore, an agent observes the current status and receives variables from the
environment to make decisions about its next action.

A maximum altitude of 120 m was considered for the UAV’s locomotion toward the
target point. This altitude was set according to [63] for urban centers. The UAV can face
two situations. The first is when the UAVs fly over regions where the urban buildings are
smaller than 120 m. In this case, the heuristic will always have the UAV fly over the smallest
buildings to minimize the climatic impact, as shown in Figure 2. For each transition state,
the relative distance that the UAV travels is considered. Finally, the UAV may encounter
buildings that are higher than the maximum allowable flight altitude. In this case, the UAV
cannot fly over the buildings as in the previous situation, so the lateral deviation is the most
acceptable alternative. Figure 3 illustrates the behavior of the UAV in the face of obstacles
or buildings higher than 120 m.
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Algorithm 2 Q-learning for UAV route optimization
Input: Q-table, α ∈ [0, 1], γ ∈ [0, 1],R, S(i, j), A(z),
Output: Optimal strategy π∗, Optimal router UAV

1: while ep <= MaxEpisodes do
2: Select an initial state S0
3: while criteria != true or step <= MaxSteps do
4: Init a random number x ∼ X[0, 1]
5: if x > ε then
6: Exploit
7: Ai = arg mina∈A Q(S, A))
8: Obtain immediate reward Rt Equation (1)
9: set the next state St+1

10: Update Q-table Equation (2)
11: else
12: Explore
13: Ai = rand[a1, az]
14: Obtain immediate reward Rt Equation (1)
15: set the next state St+1
16: Update Q-table Equation (2)
17: end if

ε = minε + (maxε −minε)e−ep∗decayRate

18: end while
19: end while
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Figure 2. Big picture UAV path over buildings.
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Figure 3. Big picture UAV path around buildings.

Within the proposed strategy, UAVs act as agents. It has also been considered that each
UAV shall receive regular information from weather stations regarding wind conditions in
the area of a mission. Based on this, a UAV may be able to calculate an optimized route
through Q-learning to reach the desired destination. The algorithm is regularly executed;
therefore, the reading of the environment is carried out several times until the UAV reaches
the area of interest. The final state of Q-learning processing is the initial point of the
next Q-learning processing. Figure 4 illustrates the Q-learning processing while a UAV
is traveling.
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Figure 4. Q-learning processing scheme during the UAV journey.

4.2.1. Agents

In Q-learning aspects, an agent is responsible for exploring an environment and mak-
ing decisions regarding which actions should be taken during the next t instant based on
received rewards. Within the proposed strategy, each UAV acts as an agent. Each agent has
an independent Q-matrix; therefore, actions and states that differ within the environment.

4.2.2. States

Within the algorithm, the travel space of a UAV is discretized in a grid. Each state
represents a potential positioning in the next t instant. Therefore, a UAV should execute
actions (traveling) until it reaches an area of interest. Each state is defined by a coordinate
that represents a 2D point in the grid. Consequently, for each algorithm episode, a UAV
has 9 potential states, as it is illustrated in Figure 5.
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Figure 5. UAV movement space in the scenery.

4.2.3. Actions

Within the algorithm, each action is defined by a trip. The UAVs may execute an
action at each episode towards a new position among 8 potential ones: up, right-up, right,
right-down, down, left-down, left, and left-up. A UAV is not allowed to leave a defined
grid. In Figure 5, it is possible to observe the potential actions of a UAV.

4.2.4. Reward

In constructing the reward function in this paper, three crucial aspects were considered
to achieve the expected optimal result. First, minimize the distance traveled by the UAV to
the target point. Second, consider all the obstacle points present in the scenario. And finally,
minimizing the impact of the high wind speed. Based on these points, the Equation (8)
is considered:

R← ϕRobstacle + µRwind + κRDtarget (8)

where ϕ, µ, and κ are the weights associated with the obstacles, wind speed, and distance
to the point of interest.

According to [64–67], there is a proportionality relation between the height of a UAV’s
flight and the wind velocity; therefore, the higher the altitude of a flight is, the higher the
effects encountered by a UAV due to wind velocity shall become. Within this proposal,
we have considered that when there are buildings in an area that corresponds to a grid
quadrant, a UAV must fly 5 m above the tallest building in the area. To better illustrate
this, in Figure 5, the quadrant that was defined by State 4 has buildings with three different
heights: 40 m, 80 m, and 35 m. Therefore, a UAV flying under these circumstances should
be at an altitude of at least 85 m (5 m above the tallest building in the area). Thus, the
reward from this action should correspond to the wind velocity influence at this height.
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The reward calculation can be observed in Equation (9), where Rwind is a result of the reward,
fVwind represents the function of the wind velocity, G represents the environment grid, and
Buildheight represents the height, in meters, of the tallest building within that quadrant.

Rwind ← Vwindmax − fVwind

(
Gi,j(max Buildheight + 5)

)
(9)

To measure a reward quantifying the shortest distance traveled by the UAV (RDtarget),
the following Equation was used (10), where Dtarget(s) is the distance from the current state
to the target, while Dtarget(s−1) is the distance from the previous state to the target. Then,
in the Equation (11), the reward for detecting obstacles (Robstacle) is calculated, where distobst
is the distance from the current position of the UAV to each obstacle in the environment and
n is the number of obstacles. Both the distance and obstacle detection reward calculations
are based on the work of [68].

RDtarget ← Dtarget(s−1) − Dtarget(s) (10)

Robstacle ← −
n

∑
i=1

1
distobsti

(11)

4.2.5. Q Strategy

In Q-learning, the Q table is defined by all potential states that an agent might en-
counter. Each value linked to a quadrant within the Q table is directly linked to a reward
value. Therefore, the Q table learns with the environment and estimates a value function
for each state and action through a series of interactions. The objective of using Q-learning
to approach this work is to minimize the effects caused by wind velocity, and to get around
obstacles without traveling long distances while the UAVs are traveling to an area of in-
terest. Equation (12) represented maximum Q values using the update rules within the Q
table for each iteration. Whence Q(st ,at) represents the current table value for each action,
γ is the learning rate, α is the discount factor, and min Q(st+1,a) represents the minimum
optimal value of a given action on the next phase.

Q(st ,at) ← Q(st ,at) + α[R(s) + γ max Q(st+1,a) −Q(st ,at)] (12)

4.2.6. Algorithm Initialization

UAVs should depart from resource stations. It is important to highlight that each UAV
under a scenario is an Agent, and for each Agent, there is a Q matrix. It is considered that
the Q matrix of each UAV shall be booted with zeroes. The values of this matrix shall be
updated at each iteration following rewards obtained during the exploration of the scenario
until the stopping criteria are met.

4.2.7. Stopping Criteria

Two stopping criteria have been utilized within the proposed solution. The first criteria
are whence a UAV reaches an area of interest, referred to as a maximum reward. It has
been considered that this area corresponds to the location in which an optic fiber has been
burst. Should the algorithm not reach these criteria, the algorithm shall stop when a UAV
has moved throughout a maximum number of MaxSteps iterations within the grid.

4.3. Evaluation Metrics

To evaluate the behavior of the solution using reinforced learning techniques, some
metrics must be considered, such as the distance traveled by the UAV, the energy consump-
tion, the effects of wind speed, and finally the success rate in reaching the target point
without colliding or losing the route.
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4.3.1. Distance Traveled

This metric is used to determine which reinforcement learning technique managed
to reach the point of interest with the shortest possible distance, despite the presence of
obstacles and adverse weather conditions. To calculate this metric, we need to consider the
absolute distance, i.e., the Euclidean distance between the current state s and the next state
s + 1 Equation (13). Then, it is necessary to check whether the flight altitude has changed
between state s and state s + 1 to determine a new distance (Drelative) traveled by the UAV
(Equation (14)). Finally, the total distance traveled by each UAV is stored (Equation (15))
where K is the number of UAVs, t is the time needed for the route, and PL is the matrix
with the distance covered by each UAV to the respective target point.

Dabsolute ←
√
(x(s) − x(s+1))

2 + (y(s) + y(s+1))
2 (13)

Drelative =

{
H(s) 6= H(s+1)

√
(Dabsolute)2 + (Hs − H(s+1))

2

otherwise Dabsolute
(14)

PLi,j ←
k

∑
i=1

p

∑
j=1

Drelative(i,j) (15)

where K is the number of UAVS, t is the time instants spent on the route, and PL is the
matrix with the distance traveled from each UAV to the respective point of interest.

4.3.2. Energy Consumer

The power consumption Econsumer is an important factor that determines the deploy-
ment time of the UAV. In this work, two types of situations are considered in which power
consumption plays a role. First, when the UAV is moving to the target point, i.e., when it is
under the direct influence of the wind (Equations (17) and (18)). At the second moment,
when the UAV establishes communication, i.e., hovers in the air without being influenced by
the wind (Equation (16)). Gravity g, wind speed vwind, payload m, and distance traveled D
have a direct impact on the drone’s power consumption during missions [28,69,70].

Econsumer ← mgtoperation (16)

vp← vUAV + vwind (17)

Econsumer ←
(mv2

pD) + (mgD)

2vUAV
(18)

where vp is the propulsion speed required for UAV flight, toperation is the time the UAV
performs its service in hover, and vUAV is the displacement speed of the UAV.

Through the work [28] it was possible to infer the wind effects according to Equation (18)
have been illustrated in Figure 6, in which the higher the wind velocity is, the power
consumption increases exponentially, while the distance influences a rectilinear behavior.

4.3.3. Success Rate

This metric is intended to determine how many times the UAV successfully reached
the target Nsuccess within a series of N attempts. The value of this metric is calculated by
Equation (19).

SR← Nsuccess

N
(19)
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Figure 6. Power consumption based on wind speed and distance traveled.

4.3.4. Wind Speed

To calculate the average wind speed at different altitudes, one must know a reference
value at the same location at a certain altitude. Here z0 is the value of the roughness factor
that depends on the terrain of interest, as shown in Table 1. h1 is the altitude at which
you know the wind speed v1, which you can get from the metrology department of the
region. The h2 is the altitude at which you want to calculate the speed. Using what is
discussed in [71], the logarithmic profile of wind speed v2 can be measured according to
the Equation (21):

v2 = v1

ln
(

h2
z0

)
ln
(

h1
z0

) (20)

vpath(i,j) =
k

∑
i=1

t

∑
j=1

v2(i,j) (21)

where K is the number of UAVs and vpath is the wind speed observable by each UAV at
each instant t.
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Table 1. Roughness factor by land cover types [71].

Roughness Length
z0

Land Cover Types

0.0002 m Water surfaces: seas and Lakes

0.0024 m Open terrain with smooth surface,
e.g., concrete, airport runways, mown grass, etc.

0.03 m
Open agricultural land without

fences and hedges; maybe some far
apart buildings and very gentle hills

0.055 m Agricultural land with a few buildings
and 8 m high hedges separated by more than 1 km

0.1 m Agricultural land with a few buildings and 8 m
high hedges seperated by approx. 500 m

0.2 m Agricultural land with many trees, bushes, and
plants, or 8 m high hedges separated by approx. 250 m

0.4 m Towns, villages, agricultural land with many
or high hedges, forests and very rough and uneven terrain

0.6 m Large towns with high buildings

1.6 m Large cities with high buildings and skyscrapers

5. Experiments and Tests

To ensure the reliability of the strategy proposed in this work, it was decided to
perform some tests illustrating the behavior of the chosen reinforcement learning techniques
in the face of some scenarios with different speeds and a variable number of obstacles.
The experiments were divided into 5 sections, summarized in Table 2 and described in
detail in the next subsections. For the development of this work, the Python programming
language was used to build the algorithms discussed in this work and the MATLAB
(student version) was used to plot the figures.

Table 2. Configuration of the test experiments.

Experiment Number of Obstacle Arrangement of High Wind
Speed Points in the Scenario

1 1 Randomly

2 2 Randomly

3 9 Randomly

4 49 (in the center) In the center

5 49 (in the center) in the upper half

To select the parameters of the heuristics based on reinforcement learning, such
as the learning rate (α) and the discount rate (γ), numerous tests were performed with
1000 different scenarios in which wind speed and obstacles were randomly inserted into
the environment with dimensions of 30 × 30 cell grids. The tests were designed to show
the extent to which the variation of α and γ is fundamental for the UAV to reach the target
point without deviating from the route or colliding with obstacles. After this, the success
rate of the UAV to reach the desired goal in each scenario within the sample is calculated.
The values α and γ are varied between 0.1 and 0.9, and after completing the tests, was
found that for 100% of the samples, Simple Q-learning and Q-learning with ε-greedy decay
had a value of α equal to 0.9, while for SARSA the same value of learning rate covered
23% of the samples. For (γ), SARSA obtained the best results for rates of 0.2–0.3, while the
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other techniques obtained better results for rates above 0.5. Figure 7 illustrates the results
obtained in this evaluation.
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Figure 7. Cross-checking RL parameters for 1000 samples.

After analyzing the learning rate and discount factor variables, the project team needed
to know the number of episodes required to train the Q table. For each experiment, the
convergence curve was analyzed in terms of minimizing the distance traveled by the UAV
as a function of the iterated episodes, according to [68]. From Figure 8, it can be seen that
the convergence process of the algorithms tends to require more iterations as the number of
obstacles and points with high wind speed increases, which directly affects the algorithm
processing time. In Experiment 1 with only one obstacle, the convergence of Q-learning
with ε-greedy decay and Simple Q-learning is estimated to be 2500 and 3100 episodes,
respectively, while in Experiment 5 with multiple obstacles and multiple points of high
wind speed, approximate convergence is reached at 41,000 and 43,000 episodes, respectively.
Despite the high value of convergence, the algorithm is executed in a few seconds, varying
from the lowest to the highest complexity between 5.67 s and 37.43 s. In all, the 1000
simulations took in average 4 h:48 mim:56 s for SARSA, 5 h:28 mim:26 s for Simple Q-
learning, 6 h:15 mim:13 s for egreedy decay Q-learning. In most experiments, Q-learning
converged with ε-greedy decay faster than the other heuristics and proved to be the most
efficient of the techniques. In all experiments, SARSA proved to be quite inefficient during
the convergence process and almost always increased the distance traveled by the drone
because the heuristic directs the UAV to redundant routes, i.e., often gets stuck at isolated
points on the grid and persistently repeats the same steps during iterations.

For the values of γ and α we use the values obtained from Figure 7 while ϕ, µ and κ
are respectively 0.65, 0.75 and 0.95.
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Figure 8. Convergence Analysis by UAV distance traveled.

5.1. Experiment 1

Experiment 1 was designed to represent the case with less complex obstacles, consid-
ering only 1. Both Q-learning and ε-greedy decay and Simple Q-learning followed similar
routes, always favoring the shortest path. Unlike the other techniques, SARSA collided
with the obstacle and remained stuck in the condition where it followed a repetitive path.
For the wind speed points, the Q-learning heuristic with ε-greedy decay had an advantage
in the first moments because it avoided a point with high wind speed. Figure 9 illustrates
the behavior of the heuristics for Experiment 1.
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Figure 9. Convergence Analysis by UAV distance traveled.
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5.2. Experiment 2

Experiment 2 is configured with 2 heterogeneous obstacles in the center and with
randomly placed wind speed points. Q-learning with ε-greedy decay tracked a route more
toward the low wind speed zones compared to Simple Q-learning. Figure 10 illustrates the
behavior of the heuristics for Experiment 2.
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Figure 10. Convergence Analysis by UAV distance traveled.
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5.3. Experiment 3

In Experiment 3, the scenario is configured with 9 heterogeneous obstacles distributed
throughout the network. The wind speed was randomized as in the other experiments.
In the first half of the path, Simple Q-learning takes a similar path to the Q-learning with
ε-greedy decay in Experiment 2, but gets into more high-speed points, while the Q-learning
based one ε-greedy decay follows a path with fewer turns and low gusts. Figure 11
illustrates the behavior of the heuristics for Experiment 3.
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Figure 11. Convergence Analysis by UAV distance traveled.



Drones 2023, 7, 123 23 of 34

5.4. Experiment 4

Experiment 4 elaborated the worst-case scenario for UAV flight, adding a grid with
49 obstacles in the center of the grid and positioning points of high wind speed between
the obstacles. In this situation, both the heuristic based on ε-greedy decay and Simple
Q-learning ignored the wind gusts and prioritized the obstacles and the distance to the
target. SARSA Figure 12 illustrates the behavior of the heuristics for Experiment 4.
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Figure 12. Convergence Analysis by UAV distance traveled.
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5.5. Experiment 5

In this experiment, the scenario was configured similarly to Experiment 4 but differed
in the placement of high wind speed points plotted in the upper half of the grid. Despite
the generated SARSA route that assigned a collision to the UAV, all techniques avoided the
zone of high wind influence, especially Q-learning with ε-greedy decay, which created a
shorter route through fewer gust points than the route determined with Simple Q-learning.
Figure 13 illustrates the behavior of the heuristics for Experiment 5.
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Figure 13. Convergence Analysis by UAV distance traveled.
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6. Simulation Results
6.1. Simulation Scenario

For our simulations, was considered the topology described in [72] and shown in
Figure 14. We considered the cost and installation of a UAV-based air telecommunication
structure in terms of the number of UAVs and communication interfaces radio. Among
several disaster scenarios, the case with the highest number of broken connections within
the Stockholm topology in Sweden was selected.

The existence of four points has been considered, named resource stations, from which
the UAVs should depart. Upon the actuation of an emergency, therefore, an optic fiber
cutoff, a UAV departs from the nearest station to the mission location, which in this case, is
Resource Station 1. Subsequently, the heuristics-based reinforcement learning is responsible
for coordinating the UAVs to deviate from the adversities within the area such as windy
zones and physical obstacles.

To characterize the mission, an optic fiber link was chosen among all of those within
the topology, which should be inactive or malfunctioning. The selected enlace has 30.89 km
of extension between two backbones (A & B), (Figure 14) in which 15 UAVs have been
distributed equidistantly 2 km from one another according to the communication enlace
specs based on free-space optics (FSO) [73]. Table 3 breaks down all parameters adopted
for this experiment.

ID 1 ID 2 ID 3 ID 4 ID 5 ID 6 ID 7 ID 8 ID 9 ID 10 ID 11 ID 12 ID 13 ID 14 ID 15
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Node 
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Figure 14. Stockholm optical link topology.
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Table 3. Simulation parameters.

Parameter Value

Total Payload 90 kg [32]
UAV speed 15 m/s

Number of UAVs 15
Maximum distance between UAVs aerial links 2 km

Number of Resource stations 4
Maximum wind speed 13 m/s
Minimum wind speed 6 m/s

Minimum height of obstacles 30 m
Maximum height of obstacles 121 m

Gravity acceleration (g) 9.8 m/s [74–76]
Maximum exploration rate (maxε) 1
Minimum exploration rate ( minε ) 0

Roughness factor(z0) 1.6 m
Initial wind speed (v1) 5 m/s

Initial altitude the speed (h2) 8.5 m
Exploration decay rate 0.01

6.2. Numerical Results

To prove the potential of this work as an alternative for route optimization of UAVs in
urban scenarios, was considered the distance traveled, wind speed, power consumption,
and success rate as performance indicators between techniques based on reinforcement
learning: SARSA, Simple Q-learning and ε-greedy decay. In addition, we compared
our method that takes climatic conditions into account with the methods based only on
obstacles, which again are widely discussed in the literature. The group also considers, in
the comparison, a naive strategy where the UAVs fly in a straight.

To determine the probability of success of the UAV in reaching the final destination,
we checked the success rate for each processing of the algorithm along the route and then
averaged these values as a function of each specified episode boundary. An 8-element
set represented by the number of episodes is used for the SARSA, Simple Q-learning,
and ε-greedy decay (1000, 3000, 5000, 7000, 1000, 15,000, 20,000, 25,000). As shown in
Figure 15, the success rate of heuristics based on Simple Q-learning and ε-greedy decay
increased with an increasing number of episodes, in contrast to SARSA, which evolved little
and achieved an average increase in the success rate of 0.77% with an increasing number
of episodes, while ε-greedy decay had a rate of 13.52%, followed by Simple Q-learning
with 14.18%. Despite the wider variation of Simple Q-learning, it is important to note
that ε-greedy decay for elements 1000 to 10,000 had the highest success rates during the
mission among all the techniques discussed. This can be an alternative if you want to make
faster decisions at the expense of the optimal path, i.e., if you want to switch between an
automated alternative and another manual or less intelligent alternative, such as steering
the UAV over all obstacles in a straight line.

Was added to SARSA, Simple Q-learning, and ε-greedy decay strategies that involve
minimizing the effects of wind speed, avoiding obstacles, and minimizing distance. For
heuristics whose strategy is only about obstacle avoidance, the simple Q-learning adapted
for this purpose was used. The naive solution is the strategy where a UAV travels in
a straight line at the lowest possible altitude without colliding with obstacles. For this
purpose, was consider the processing grid of algorithms configured as 30 × 30, where
each state can be a possible displacement of the UAV. 25,000 episodes were fixed for all
techniques. We determined γ and α according to the results from Figure 7, i.e., a learning
rate of 0.9 and a discount factor of 0.5 for Simple Q-learning and epsilon-greedy decay,
while for SARSA the learning rate was 0.3 and the discount factor was 0.8. The same values
were used for ϕ, µ, and κ for all techniques based on reinforcement learning, except for the
heuristic that aims to avoid obstacles in its composition, we use 0 to determine the value
mu. Table 3 shows all parameters used during the simulations.
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Figure 15. Average wind speed variation for each UAV during the mission.

In Figure 16 we can measure the wind variations experienced by each UAV along the
path considering the different algorithms. In this Figure, we can see that the heuristics
that incorporate the wind speed minimization strategy stand out compared to the naive
solution. However, for UAVS 5, 9, 12, 14, and 15, SARSA had a worse result than the
solution that only considers the obstacles, this happens because when a heuristic is not able
to succeed in elaborating the route, either due to collision or discontinuity of the path to the
target, it is automatically replaced by the route of the naive solution from the interrupted
point. Therefore, the complexity of the path taken by UAVs 5, 9, 12, 14, and 15 SARSA has
approached the naive solution, which makes this strategy less attentive to changes in the
scenario compared to others that identify high-speed zones from the wind, making it a less
efficient solution than Simple Q-learning and ε-greedy decays. The proposed strategy not
only reduces the effects of wind speed but was also able to minimize the distance traveled
by the UAV. This is due to the minimized relative distance, as the heuristic used in this
work aims to keep the UAV flight at lower altitudes where the wind speed is lower to
ensure lower peak fluctuations, which significantly reduce the relative distance traveled by
the UAV.

The results shown in Figure 17 refer to the distance traveled by each UAV during the
mission. Here we can see that both Simple Q-learning and ε-greedy decays reduced the
trajectory for all UAVS compared to the other approaches. On average, Simple Q-learning
reduced trajectories from 5.83% to 11.94% compared to Simple Q-learning (obstacles only)
and Naive, respectively, while ε-greedy decays performed slightly better with an estimated
9.39% compared to Simple Q-learning (obstacles only) and achieved a reduction of 15.39%
for Naive. As we know from the topology illustrated in Figure 14, the UAVs do not travel
the same distances. For example, the UAV with ID 8 travels a shorter distance than the UAV
with ID 15 because they occupy different points in the UAV network. To find out how much
distance affects the performance of the solutions, we took the value of the distance of the
strategy that achieved the best (ε-greedy decays) and worst (Naive) results for each UAV at
the ends (1, 2, and 15) and in the center (7, 8, and 9), and shortly calculated the average
between the edge and center points to obtain a value for the path reduction between the
closer and farther UAVs of the target. we obtained a distance reduction of approximately
15.82% for the central UAVs, while for the edge UAVs the reduction was 14.26%, i.e., a gain
of 1.56% relative to the edge UAVs. Based on these results, we can see the tendency that
points of interest closer to the starting points have better distance reduction results.
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Figure 16. Average wind speed variation for each UAV during the mission.
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The energy consumed by the UAV during flight is the result of the varying effects
of wind speed, load, and distance traveled [28,69,70]. From Figure 18, it is clear that the
solutions that considered wind speed as a strategy obtained the lowest results in energy
consumption during the UAV flight, with a maximum reduction of 15.93% decreases by
the ε-greedy based heuristic in contrast to the naive case, however, our group must pay
attention to the behavior of the results, which in turn is strongly influenced by the distances
traveled by each UAV, proving that although wind speed is a relevant factor in the energy
consumption formula, the distance traveled is still the main factor limiting the autonomy
of the UAVs during the missions. In this sense, the results have shown that the intelligent
heuristic proposed in this work not only finds routes with lower wind influence but also
significantly minimizes the distances traveled by the UAVs.

Energy optimization is fundamental to extending the lifetime of UAVs during missions.
Based on the results of this work, we were able to: diversify the scenarios (different numbers
of obstacles and high wind speed points randomly selected and concentrated in different
parts of the network); analyze the behavior of reinforcement learning techniques, such as
the definition of the best parameters. Finally, the scenario was chosen based on the optical
topology of Stockholm, Sweden, and then applied what was discussed in the experiments,
where it was possible to analyze graphically the behavior of UAVs in flight.

Finally, our analyses not only reduced the distances traveled by UAVs but also mini-
mized the impact of high wind speeds. This is because high wind gusts not only contribute
negatively to energy efficiency but can also cause damage and disruption to the UAV’s
navigation, leading to loss of control and consequently financial and safety losses as the
UAV is exposed to destruction or even causes serious accidents in urban environments.
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6.3. Results and Discussion

In the currently implemented model, the wind velocity vector is always opposite to
the UAVS velocity vector. This assumption is somewhat restrictive because, in certain
situations, the energy consumption depends on how the angle between the vectors is
arranged. During the scenario characterization, the buildings were randomly arranged
in the scenario, i.e., not faithfully characterizing the urban infrastructure of Stockholm
(Sweden), Nevertheless, the results obtained showed that the energy consumption of
the UAVS can be reduced by using reinforcement learning. Finally, the project team did
not produce a model that would provide an optimal solution to the problem addressed.
Moreover, our group is aware that it is interesting to study how far the locally optimal
solutions obtained by the proposed method are from the globally optimal solutions, which
does not harm the analysis of the results obtained, since the main objective of the paper was
fulfilled. Our model is fully flexible and suitable to include, in future works, new analyses
to mitigate the current limitations and make it more efficient and robust.

For future work, our team aims to investigate other machine learning techniques
such as deep Q-learning and neuro-fuzzy, and compare them with what has already been
implemented in this study. We also intend to consider the energy consumption during the
communication between the UAVs during the provision of the wireless communication
service or bridge. In addition, we plan to incorporate a control unit into the UAV in a
controlled environment, enabling the management of its flight through the reinforcement
learning techniques discussed in this study. This will allow us to consider both heteroge-
neous obstacles and the variation of wind speed experienced by the UAV. We will compare
the results of the test bed with those obtained in simulations.

7. Conclusions

In this work, a new method has been proposed to contribute to the path optimization of
UAVS in urban scenarios. The proposed strategy aims to minimize the distance traveled and
reduce the effects of wind speed that UAVs are exposed to minimize energy consumption.
The heuristic was implemented using three reinforced learning methods (Simple Q-learning,
ε-greedy, and SARSA) and compared to a naive solution and a path optimization method
in multi-obstacle scenarios, a solution widely studied in the literature.

Our group have performed several tests to find out the values of the variables that
best fit the problem studied in this paper, and we have found the values of γ, α, and the
number of episodes that best fit our solution. Several experiments were conducted to prove
the efficiency of our method given the variability of the scenarios (obstacles and high wind
speed points), and in most experiments, our solution avoided both obstacles and high wind
speed areas.

To prove the efficiency of the proposed method, the project team conducted a case
study considering the topology of the metropolitan optical network in Stockholm, Sweden.
The numerical results of the simulations showed that the solution based on climatic factors
could reduce the power consumption of the flying network from 2% to 15.93% compared
to naive heuristics and those considering only physical obstacles, which can help to extend
the deployment time of UAVs.

The strategy proposed in this work was tested by simulating an urban scenario
consisting of buildings of different heights, similar to real urban environments. In this
case, the UAV chose the best route based on the shortest distance traveled and the lowest
wind speed. The results were obtained using the different reinforced learning methods
tested in this work. The method that stood out the most among all the scenarios tested was
Q-learning with ε-greedy. This is because it was able to find the shortest distances and the
regions with the lowest wind speed. On the other hand, the SARSA method was generally
not more efficient than the other two Q-learning-based methods for any of the performance
metrics considered. Finally, the results of this work contribute to the increasing efficiency of
UAV routing, which in turn contributes to the increasing use of UAVs in civil applications,
as expected for smart cities.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicles
CIT Information and communication technology
BANs Body area networks
LoS Line of sight
NTSB The National Transportation Safety Board
SARSA (State − action − reward − state − action)
MDP Markov Decision Process
VTOL Vertical Take-Off and Landing
FSO Free-space optics
Q-L Q-learning
ϕ Obstacle weights
µ Wind speed weights
κ Distance weights
Robstacle Obstacle reward
Rwind Wind speed reward
RDtarget Distance of target reward
Robstacle Obstacle reward
Vwindmax Maximum wind speed
Dabsolute Absolute distance
K Mumber of UAVS
vp Propulsion speed
D Distance travaled
m Payload
Drelative Relative distance
Buildheight Height of the building
z0 Roughness factor
h2 Altitude to calculate the speed
h1 Initial altitude the speed
vU AV UAV speed
vwind Wind speed
γ Discount rate
α Learning rate
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