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Abstract: This paper proposes a new method that fuses acoustic measurements in the reverberation
field and low-accuracy inertial measurement unit (IMU) motion reports for simultaneous localization
and mapping (SLAM). Different from existing studies that only use acoustic data for direction-of-
arrival (DoA) estimates, the source’s distance from sensors is calculated with the direct-to-reverberant
energy ratio (DRR) and applied to eliminate the nonlinear noise from motion reports. A particle filter
is applied to estimate the critical distance, which is key for associating the source’s distance with the
DRR. A keyframe method is used to eliminate the deviation of the source position estimation toward
the robot. The proposed DoA-DRR acoustic SLAM (D-D SLAM) is designed for three-dimensional
motion and is suitable for drones. The method is the first acoustic SLAM algorithm that has been
validated on a real-world drone dataset that contains only acoustic data and IMU measurements.
Compared with previous methods, D-D SLAM has acceptable performance in locating the drone
and building a source map from a real-world drone dataset. The average location accuracy is 0.48 m,
while the source position error converges to less than 0.25 m within 2.8 s. These results prove the
effectiveness of D-D SLAM in real-world scenes.

Keywords: simultaneous localization and mapping; robot audition; direct-to-reverberant energy
ratio; mobile robots

1. Introduction

Recently, there has been renewed interest in simultaneous localization and mapping
(SLAM). Many meaningful and excellent works in SLAM have been based on optical and
visual sensors, such as VINS [1]. Different from visual SLAM, some works have focused on
acoustic SLAM, where acoustic sensors are involved. Most works on acoustic SLAM have
been conducted in underwater environments [2–4], while indoor acoustic SLAM [5–7], by
contrast, has received scant attention. Conventional SLAM techniques based on optical and
visual sensors are unsuitable for some special indoor environments, for example, foggy
rooms where light and lasers cannot penetrate. Conversely, the indoor acoustic SLAM-
based acoustic sensors can use continuous environmental sources as landmarks to assist
the mapping of robots in such a foggy indoor environment. It is preferable to use acoustic
SLAM in an indoor environment where light and lasers cannot penetrate and continuous
environmental sources exist.

Based on the sensor type used, indoor acoustic SLAM can be classified as active or
passive acoustic SLAM. Active indoor acoustic SLAM is usually based on active sonar,
and a sonar beam is utilized in an active sonar sensor model to measure the positions
of landmarks. To assist in localization, a motion sensor is required to generate motion
reports. Passive indoor acoustic SLAM is usually based on microphone arrays for direction-
of-arrival (DoA) estimates and motion sensors (such as an odometer) for motion reports.
In 2009 Hu et al. [5] proposed an acoustic SLAM method based on a cross-shaped micro-
phone array and odometry, and in 2013, Kallakuri et al. [6] developed a method based
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on a microphone array and light detection and ranging (LiDAR). The two studies above
were both capable of locating the robot and mapping the environment in experiments.
However, highly accurate motion reports from odometry or LiDAR are necessary for accept-
able results. For example, the robot’s trace measured with only motion sensors (without
information from acoustic sensors) coincided perfectly with the final estimation where
all sensors were involved (see experimental results in Figure 4 of [5]). Thus, the accuracy
of those methods is likely heavily dependent on the accuracy of motion sensors. Due to
indoor reverberation, strong noise or even errors are common during DoA estimates. When
the motion reports are inaccurate or even false, the above methods can hardly achieve
acceptable results.

To facilitate robustness against false DoA estimates using motion sensors such as
inertial measurement units (IMUs), Evers et al. [7,8] developed their own acoustic SLAM,
“Acoustic SLAM” (aSLAM) with probabilistic source triangulation in 2018. However,
aSLAM was only tested in simulations where the measurement noise of motion reports
is ideal. Specifically, simple Gaussian noise was added to the true velocity of the robot to
simulate the velocity measurement. However, the noise of a typical motion sensor, such as
an IMU, is mainly non-Gaussian and nonlinear. It will be demonstrated in this paper that
the result of feeding the aSLAM with practical datasets is undesirable.

As mentioned before, there are occasionally false DoA estimates due to reverberation
in real indoor environments. At the same time, due to unavoidable integral error, motion
sensors such as IMUs cannot provide accurate velocity logs or motion paths. Acoustic
SLAM methods [5–7] that fuse DoA estimates and motion reports can be considered bearing
only SLAM [9]. As the DoA estimates contain only directional information, highly accurate
motion sensors are necessary to gain an acceptable overall positioning and mapping
accuracy. However, low-price motion sensors, including IMUs, have an evident integral
error, and their noise model is nonideal. If we want to obtain acceptable SLAM results
with low-accuracy motion measurements in experiments, more information from acoustic
sensors is vital in addition to the DoA. In addition to bearing information, the range that
denotes the distance between the source and the robot should be beneficial for acoustic
SLAM, especially when false DoA estimates are common and motion reports coming from
low-accuracy IMU sensors suffer from severe drifting.

Several methods have been proposed for estimating the source’s distance [10], includ-
ing the time difference of arrival (TDOA), deep learning, triangulation, and the direct-to-
reverberant energy ratio (DRR). The TDOA is sensitive to the array size [10], and the sound
source distance estimation methods based on deep learning are unable to adapt to new
environments unless retraining is carried out in advance for each new environment [11,12].
The distance estimations with triangulation vary considerably and are still affected by the
accuracy of the motion sensors [13]. The DRR method, which is based on the phenomenon
of indoor sound reflections, can be used to estimate the direct source’s distance from the
sensor in a reverberant field. Estimates with the DRR method are insensitive to the array
size and do not rely on information from motion sensors [14], so it may be suitable to
estimate the range to eliminate the error of motion sensors.

In 2018, M. Strauss, P. Mordel, V. Miguet, and A. Deleforge published the DREGON
dataset, aiming at source localization research [15]. In this dataset, a drone with a mi-
crophone array and an IMU flies in an airtight room containing a loudspeaker. Publicly
available data include the IMU data and the audio recordings during the entire flying
period. Moreover, the airtight room was equipped with a motion capture system to obtain
precise ground truth positions of the drone and the loudspeaker at all times. The DREGON
dataset contains all the information needed for the evaluation and comparison of different
acoustic SLAM algorithms and will be applied here to validate our proposed method.

In this paper, a DoA-DRR acoustic SLAM (D-D SLAM) is proposed for the situation
when strong noise exists in IMU motion reports. The source’s distance from the robot,
which is estimated using the DRR method in different time frames, is added to acoustic
SLAM as a new constraint of D-D SLAM. The critical distance, which is necessary for



Drones 2023, 7, 120 3 of 24

associating the source’s distance with the DRR, is estimated with an online method during
the complete time period. Overcoming the deficiencies of Evers’ aSLAM [7], the proposed
D-D SLAM is validated using datasets generated from simulations and real-world indoor
scenes drone measurements in the DREGON dataset. The continuous environmental
source is required as a landmark in the D-D SLAM. The DRR metric is unsuitable for
estimating sound source distance in a free field, so the D-D SLAM is only applicable to
indoor scenarios. Generally, this paper proposes a new methodology for acoustic SLAM
using only a microphone array and IMU. The essay has been organized in the following way.
Section 2 is the problem formulation, and Section 3 introduces the necessary background
knowledge. Section 4 derives the proposed D-D SLAM. Section 5 presents the setup of
the simulation and experiment. Section 6 shows and analyses the results. Section 7 is
the conclusion.

2. Problem Formulation

In previous acoustic SLAM research, the applied robot movement model always
constrained the robot’s velocity to be along the direction of orientation of the robot [5–7].
This constraint can be easily satisfied in simulation. Meanwhile, the coupling of the robot’s
orientation and its velocity direction simplified the mathematical deduction. However, it is
only practical in a few kinds of real robots, for instance, two-wheel robots.

For the sake of generality, a three-dimensional robot movement model is applied in
the proposed method. The model decouples the direction of the robot’s velocity from its
orientation; thus, it is suitable for most real robots, such as drones. As depicted in Figure 1,
the robot’s state at time t is considered as rt= [pT

t , Rt], where pt= [ux,t,r, uy,t,r, uz,t,r, vx,t,r,
vy,t,r, vz,t,r] is the position/velocity vector and Rt is the rotation matrix corresponding to
the robot’s orientation. Symbols az, el, and r in Figure 1 denote the azimuth, elevation,
and radius of the sound source in the robot frame, respectively. The robot dynamics are
given by:

pt = Ftpt−1 + dpt−1|t + vt,p, vt,p ∼ N
(
06×1, Σt,p

)
(1)

Rt = ζ
(
[θ, ψ, ϕ]T + vt,R

)
, vt,R ∼ N (03×1, Σt,R) (2)

where vt,p denotes unbiased Gaussian noise with covariance Σt,p. dpt−1|t is the small
variation of pt from time step t − 1 to t, and ζ(θ, ψ, ϕ) is a nonlinear function converting
Euler angles, [θ, ψ, ϕ], to a rotation matrix. The matrix Ft and dpt−1|t are given by:

Ft= [ I6 ] (3)

dpt−1|t = [dux,t−1|t, duy,t−1|t, duz,t−1|t, dvx,t−1|t, dvy,t−1|t, dvz,t−1|t] (4)

where In is the n×n identity matrix. It is clear that dux,t−1|t, duy,t−1|t, and duz,t−1|t are
related to dvx,t−1|t, dvy,t−1|t, and dvz,t−1|t. The method to estimate these values will be
introduced in Section 3.

The measurements of the robot velocity v and orientation R are defined as yt , [yt,v, yt,R]
and modeled as:

yt,v = hpt + wt,v (5)

yt,R = ζ([θ, ψ, ϕ]T + wt,R) , wt,R ∼ N (03×1,σ2
w,Rt

) (6)

where wt,v is non-Gaussian noise, and wt,R denotes the measurement of Gaussian noise
with covariance σ2

w,Rt
. In addition, h , [03 × 3, I3]. In fact, robots equipped with a 9-axis

IMU can provide accurate Euler angles with small errors. Therefore, D-D SLAM neglects the
influence of the measurement noise on orientation, which means that σ2

w,Rt
is considered

to be zero. Thus, (6) can be simplified to:

yt,R = yt−1,R∆Rt−1|t (7)
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where ∆Rt−1|t denotes the constraints of robot orientation from time step t − 1 to t and is
introduced in Section 3.
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As the absolute positional state of the sound source is the landmark in mapping, the
absolute state (sa

t,n , [xa
t,n, ya

t,n, za
t,n]T) of source n in the world frame at time step t is defined

as [7]:
sa

t,n = sa
t−1,n + nt,n, nt,n ∼ N (03×3, Q) (8)

where n = 1, . . . ,Nt is the index of Nt sources, the superscript a stands for the world frame,
and nt,n is the process noise with covariance Q. The transformation of the source’s position
in the world frame to that in the robot frame is given by:

st,n = Γ(sa
t,n − [ux,t,r, uy,t,r, uz,t,r]

T), Γ = Rt (9)

where st,n , [xt,n, yt,n, zt,n]T is the positional state of the source in the robot frame, and Γ is
the rotation matrix between the world frame and the robot frame.

The bearing information of the source is estimated by the DoA algorithm and is
modeled as [7]:

Ωt = [
Nt
∪

n=1
D(st,n)] ∪ Kt (10)

where D(st,n) is the process that models the missing DoAs and estimation errors, and Kt
denotes the Poisson point process of Nt independent and identically distributed (IID) false
DoA estimates distributed uniformly over a unit sphere.

The source’s distance from the sensors is also estimated solely with the DRR. The DRR
estimation method is developed using interaural magnitude-squared coherence (MSC),
and the source’s distance is estimated by computing the discrete Fourier transform (DFT)
on overlapped windowed signal frames [16]. A small sound piece is sampled at time step t
and divided into several parts by a sliding window. In each part of the sound piece, the
source’s distance from the sensors is estimated. The estimation is modeled by:

d̂n
t,µ ∼ N (dn

t , Rt,d) (11)

where µ denotes the windowed signal frame indices, and dn
t is the true source’s distance

from the sensors at time step t. In a short time, the estimated distances d̂n
t,µ in different

window frames at time step t tend to follow a nearly normal distribution that is modeled
with the mean dn

t and the covariance Rt,d.
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The positional state of the sources in the robot frame st,n is associated with the DoA,
and the distances of the sources are computed with the DRR. The relationship is as follows:{

[ωt,m, rt,m]
T = G(st,n) + et,m

et,m ∼ N (03×1, diag(Rt,m, Rt,d))
(12)

where m = 1, . . . ,Mt denotes the index of DoA estimates, Mt is the number of DoA estimates
in time step t,ωt,m = [φt,m, γt,m]T, G(•) is a function that is used to transform from Cartesian
coordinates to spherical coordinates (azimuth φt,m, elevation γt,m, and radius rt,m), and
et,m denotes the measurement error with covariance which consists of DoA estimation
covariance Rt,m and distance estimation covariance Rt,d.

Estimating rt and sa
t,n using Ωt, d̂n

t,µ, and yt, presents more challenges than other methods.

(1) The robot’s movement is nonuniform motion, and the velocity direction is decoupled
from the robot’s orientation. Therefore, the robot dynamics in this paper have more
freedom of motion than in [5–7], meaning the movement estimation becomes more
complex and difficult.

(2) The velocity and orientation are measured using an IMU, whose velocity measurement
noise is non-Gaussian and nonlinear. This kind of noise is common in real instruments
and cannot be simply removed with a traditional Kalman filter or even an extended
Kalman filter (EKF) by fusing DoA measurements due to its strong nonlinearity.

(3) The distance estimation and the DoA measurement usually intermingle with strong
noise and disturbances, causing a few incorrect estimations of the sound source
position, leading to no convergence.

(4) The critical distance, which is essential for the estimation of the distance from the
DRR, is usually calculated with the acoustic coefficients and geometry of the room.
However, these parameters are unknown in our situation.

As mentioned before, new constraints, i.e., the source’s distance from the sensor, are
needed to overcome challenges 1 and 2. Based on a particle algorithm, a method for
online estimation of the critical distance is designed to handle challenge 4, which will be
introduced in Section 4. Regarding challenge 3, a filter based on a Gaussian mixture model
is implemented, which will be discussed in Section 4.

3. Background Knowledge about IMU Preintegration and DRR
3.1. IMU Preintegration

To summarize hundreds of inertial measurements into a single relative motion con-
straint and update the robot states expediently, IMU preintegration [17] is used in this
paper. The absolute robot state is updated by [17]:

Rt = Rt−1∆Rt−1|t (13)

Vt = Vt−1 + g∆t + Rt∆Vt−1|t (14)

Xt = Xt−1 + Vt−1∆t +
1
2

g∆t2 + Rt∆Xt|t−1 (15)

where Xt = [ux,t,r, uy,t,r, uz,t,r]T, Vt = [vx,t,r, vy,t,r, vz,t,r]T, g denotes the gravitational accelera-
tion, ∆t is the time difference from time step t − 1 to t, and ∆Rt−1|t, ∆Xt|t−1, and ∆Vt|t−1
represent the pre-integrated measurements calculated with Gaussian pre-integrated mea-
surements (GPMs) [18]. To be specific, ∆Rt−1|t, ∆Xt|t−1, and ∆Vt|t−1 are estimated with
Equations (20), (27), and (26) of Ref. [18], respectively, by feeding IMU measurements.
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3.2. DRR Computing and Distance Estimator

For distance estimation, it is useful to determine how sound is reflected in reverberant
fields. The DRR is a useful ratio to estimate a source’s distance [19] and can be calculated
using only acoustic data. The source’s distance d(µ) is estimated by

d(µ) = dc(
√

ηMSC(µ))
−1

(16)

where ηMSC(µ) is the broadband DRR calculated with the algorithm based on interaural
MSC [16], and dc is the critical distance that connects the source’s distance and the DRR.
The equivalent relative HRTF of the microphone array is used to apply the MSC [16] on
drone data. The interaural level difference is estimated with the directivity indices of the
microphone array, and the interaural time difference (ITD) is calculated with the DoA result
and the array shape. The coherence of the reverberant components is set as a sinc function
related to the frequency index and the pairwise distance between microphones [20]. The dc
is defined as [19]:

dc = 0.1
√

ρsρr

√
VR(πT60)

−1 (17)

The accuracy of the proposed D-D SLAM is based on the source’s distance estimation
with the DRR. A large reverberation time, which indicates a small critical distance, con-
tributes to the improvement of the source’s distance estimation with the DRR, but larger
reverberation times also make the estimation of ITD and ILD more distorted, which may
affect the DRR estimation [16]. If the critical distance is too small, the reverberant energy
received by the microphone array is much larger than the direct energy, and thus, the
ITD and ILD would be seriously affected. If the critical distance is too large, the direct
energy received by the microphone array is much larger than the reverberant energy, so the
acoustical field of the room is similar to the free field. The acoustical free field does not meet
the subject of the proposed D-D SLAM. Thus, the D-D SLAM cannot be used outdoors.

For common SLAM problems, the critical distance dc is initially unknown because the
source directivity indices ρs, the receiver directivity indices ρr, the room volume VR and
the reverberation time T60 cannot be measured in advance. Hence, an online method is
proposed in Section 4 to estimate the critical distance during SLAM exploration.

4. Mapping and Locating

With the fundamental theory of SLAM [21], the acoustic SLAM problem can be
modeled with the SLAM posterior probability density function (PDF), which is usually
factorized into two parts:

p(rt, st, dc|η1:t, Ω1:t, y1:t) = p(st|rt, Ω1:t)p(rt, dc|η1:t, Ω1:t, y1:t) (18)

where st is the set of all sound source positions, p(st | rt, Ω1:t) is a sound source’s position
posterior PDF corresponding to the mapping problem in SLAM, and p(rt, dc |η1:t, Ω1:t, y1:t)
represents the robot posterior PDF corresponding to the locating problem in SLAM. The
critical distance dc is the random variable to be estimated. η1:t denotes the DRR estimates
from the beginning to time step t that are computed with the method based on interaural
MSC [16].

4.1. Mapping

The sound sources are considered landmarks on the map, so the focus of the mapping
procedure is the estimation of the source positions. To solve existing problems, including
false DoA estimates, Evers et al. [7] proposed a mapping method based on probabilistic
source triangulation and a random finite set. Their method performs well when the robot
keeps moving and receiving a signal from the sound source. However, when the positions
of both the robot and the sound source remain stationary, mapping mistakes may occur
during the emerging process, which is often used to limit the number of Gaussian mixture
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(GM) components. In this situation, the robot’s position and DoA estimates do not change,
resulting in the repeated emergence of the same new GM components located in the same
zone. As the new GM components satisfy both the wrapped Gaussian distribution in
angle and the uniform distribution in the radial direction [7], the component’s distribution
density in the sector region is uneven. The distance between any two GM components l
can be calculated by:

l =
√

2r2 + ∆r2 + 2r∆r(1− cos(∆γ)) (19)

where r is one of the component’s distances from the robot, and ∆r and ∆γ are the difference
between the two components in radius and angle, respectively. With the same ∆r and ∆γ,
the shorter the radius distance of the GM component is, the shorter the distance between
different GM components is. Thus, the component density in the region closer to the robot
is higher than others. Figure 2c reveals this false trend.

Figure 2. Extensive simulation of the origin method when the robot and the source remain still for
(a) beginning (3 time steps), (b) 10 time steps, and (c) 17 time steps.

Before the clustering of GM components for source estimation, mixture reduction
is usually applied to limit the number of components through merging. The criterion
equation of merging components is given by [22]:

(mi
k −mj

k)
T
(Pi

k)
−1

(mi
k −mj

k) ≤ U, i = 1, . . . , Jk (20)

where Jk is the number of GM components, j is the index of the component with the
maximum weight, mi

k denotes the position of the GM component in the robot frame, Pi
k is

the covariance of the GM component’s position, and U is the threshold of merging.
With the criterion Equation (20), it is found that the component merging is relevant to

the covariance and the range between components. The new components are created with
the same covariance and weight. Therefore, when they have a denser distribution (closer
to the robot), they are more likely to be merged together, forming merged components
with larger weights. When both the sound source and the robot remain stationary, new
components will be created repeatedly in the same zone, and the distribution of weights
(after merging) will become increasingly uneven over time. The area closer to the robot
will receive much larger weights compared with that far from the robot. This trend has a
negative influence on GM component clustering and may finally lead to a false estimation
of the sound source position, indicating that it is much closer than the true value. Here, a
simulation test is conducted to illustrate the problem mentioned above, while a solution
will also be introduced in this section. The simulation test setup is basically the same as that
of part C in Section 4 of [7], while an extra time segment is added when the robot remains
stationary for several time steps.

Figure 2 is a heatmap of the source weight density calculated using the origin method [7] in
the simulation setup with an extra time segment. A higher saturation level of red indicates
a higher weight density. As shown in Figure 2a, just after the robot moved for three time
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steps (same as that in the original simulation [7]), the GM components were clustered into
the place close to the true source where the probability density peak is located. However,
as shown in Figure 2b,c, the longer the robot remains stationary, the greater the peak of
the probability density deviates toward the robot. The same trend can be found with the
weighted centroid of the GM components. This deviation causes an incorrect estimation of
the source position, leading to incorrect mapping.

To fix this problem, a solution is developed. The solution is the use of keyframes.
When the robot and source remain stationary, new GM components are always created in
the same region so that the new GM components are merged into a false component with
a large weight. The weight of the false component increases over time, and the weighted
centroid of the components is eventually shifted toward the robot. If the creation and
merging of GM components stop when the robot and source remain stationary, a false
component with a large weight is avoided. The basic idea is that a keyframe factor is
calculated to evaluate the difference between the current frame and the last keyframe:

T = (T̂1
t > T1

KF)‖(T̂2
t > T2

KF)‖(T̂3
t > T3

KF) (21) T̂1
t = ‖(ux,t,r, uy,t,r, uz,t,r)

T − (ux,KF,r, uy,KF,r, uz,KF,r)
T‖

T̂2
t = OSPA(Ωt, ΩKF)

T̂3
t = ‖ζ−1(RtRT

KF)‖
(22)

where the subscript KF denotes a keyframe, Tk
KF for k = 1, 2, 3 denotes the given threshold

of the keyframe, ||•|| is the two-norm, ζ−1(•) is a function converting a rotation matrix
to Euler angles, || indicates the OR operation, and OSPA is the Optimal Subpattern
Assignment distance [23]. The correspondence of the DOA estimations between the two
sets is unknown, so the OSPA is applied for the best match. The OSPA is defined as:

OSPA(Ωt, ΩKF) = [
1
N

min
π∈ΠN

M

∑
i=1

lc(Ωt,i, ΩKF,π(i)) + (N −M)c] (23)

where Ωt , {Ωt,1, . . . , Ωt,N}, ΩKF , {ΩKF,1, . . . , ΩKF,M}, ΠN stands for the set of permu-
tations of length M with elements from {1, . . . , N}, lc (Ωt,i, ΩKF,π (i)) = min(c, || Ωt,i −
ΩKF,π (i)||) and c is a cutoff value of 30◦.

When the robot and the source remain stationary, T̂k
t will be less than Tk

KF, making T
false. When T is false, the current frame in time step t is not a keyframe. In contrast, when
the robot moves far enough, T̂k

t becomes larger than Tk
KF, making T true. Thus, the current

frame is considered a new keyframe, and the state of the keyframe is updated with the
following equations: (ux,KF,r, uy,KF,r, uz,KF,r)

T = (ux,t,r, uy,t,r, uz,t,r)
T

ΩKF = Ωt
RKF = Rt

(24)

When GM components are only created and merged in keyframes, a false merged
component with a large weight is avoided. To eliminate accidental errors, a limiting filter is
applied to the clustering of GM components. The limiting filter is modeled as:

LF(st) =

{
st , OSAP(st, st−1) ≤ sLF

st−1, OSAP(st, st−1) > sLF
(25)

where st is the source estimation which is calculated with the mapping method based on
probabilistic source triangulation and random finite set [7] by feeding the data of keyframe,
sLF denotes the threshold value of the limiting filter, which is related to the maximal
variation of the source position between time steps t − 1 and t. The OSAP is also applied,
but the cutoff value c is changed to 0.5 m.
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Using the probabilistic source triangulation in [7] and the keyframe method mentioned
above, the source posterior PDF p(st | rt, Ω1:t) can be estimated using the evidence of the
DoA estimation L(Ωt | rt, dc). The implementation is given by:

L(Ωt|rt, dc) , e−Nt,c−pd Nt|t−1
Mt

∏
m=1
l(ωt,m|rt, dc) (26)

where pd denotes the probability of detection, Nt,c is the number of false alarms, Nt|t−1
stands for the quantity of predicted features [7], andωt,m is the DoA estimation computed
from the GM components and the position of the robot. `(ωt,m|rt,dc) is evaluated with
Equation (34) in [7]. The mapping process is only fed with the data of the keyframe.

4.2. Locating

This section proposes a method to estimate the robot’s location by fusing the IMU
measurements and the DoA and DRR estimates. Additionally, the critical distance is
estimated online. Because the relationship between the state of the robot and the sensor
measurements is nonlinear and complicated, it is difficult to estimate the critical distance
dc and the state of the robot rt directly from just the IMU measurements and the DoA and
DRR estimates. Particle filters [24] are usually applied to model the robot posterior PDF of
this nonlinear problem. With this method, the robot posterior PDF p(rt, dc |η1:t, Ω1:t, y1:t)
is modeled as:

p(rt, dc|η1:t, Ω1:t, y1:t) ≈
I

∑
i=1
αi

tδr̂i
t ,d̂

i
c
(rt, dc) (27)

where I is the number of particles, αi
t denotes the weight of a particle, and δr̂i

t ,d̂
i
c

(rt, dc) is

the Dirac-delta function centered at rt, dc and evaluated at r̂i
t, d̂i

c. Because the state of the
robot and the critical distance are estimated at the same time, there is a large amount of
uncertainty, so large quantities of particles are required to model the robot posterior PDF.

Using (16) the source’s distance from robot d̂ can be computed with the DRR if the
critical distance is known. As the source’s distance is helpful in the estimation of the robot’s
position, it is easier to estimate the state of the robot when the critical distance is known.
To simplify the robot posterior PDF, the marginalization [25] is adopted to decouple the
posterior PDF into that of dc and rt separately, i.e., the robot posterior PDF p(rt, dc |η1:t,
Ω1:t, y1:t) is factorized into two parts:

p(rt, dc|η1:t, Ω1:t, y1:t) = p(dc|η1:t, Ω1:t, y1:t)p(rt|dc,η1:t, Ω1:t, y1:t) (28)

Using (15), the state of the robot can be computed from the IMU measures. Meanwhile,
the source’s distance from the robot computed from a given dc, η1:t using (16), and DoA
estimates can be used to correct the state of the robot. Therefore, this paper takes the
estimation of the robot’s state rt as a nonlinear substructure [25] of the estimation of critical
distance dc. Thus, for each dc particle, there is a substructure corresponding to the robot
state and the source position.

The critical distance is assumed to be within a certain range d̂c∈[dmin
c , dmax

c ] and obeys
a uniform distribution:

d̂i
c ∼ U (dmin

c , dmax
c ), i = 1, . . . , I (29)

where dmin
c and dmax

c are the minimum and maximum of the critical distance, respectively,
and I is the number of particles. A critical distance particle is drawn from the uniform
distribution. For each critical distance particle and each source, the estimations of the
source’s distance at time step t can be calculated in the following formula according to (16):

d̂i
t,m,µ = d̂i

c(
√

ηt,m,µ)
−1, µ = 1, . . . , B (30)
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where B denotes the number of windowed signal frames in time step t, m = 1, . . . , Mt and
d̂i

t,m,µ is the source’s distance corresponding to d̂i
c.

Theoretically, the state of the robot can be computed using iterative calculation of
(13)–(15) as long as the initial value of the robot’s state is given. In fact, a 9-axis acceleration
gyroscope sensor can provide an accurate rotation matrix Rt that can be used to accurately
describe the attitude of the robot. Therefore, Rt is computed directly from IMU measure-
ments and the GPMs in this paper. However, the velocity and position of the robot cannot
be computed using only the IMU measurements due to unacceptable integral error. There-
fore, the DoA estimates and DRR are used to eliminate those errors by fusing all measures
with an EKF [26]. For weakly nonlinear systems, an EKF has better performance than a
Kalman filter. The sound source distance estimation from DRR is added as a constraint to
suppress the noise of IMU measurements along the direction of sound arrival. With the
addition of range information, the state of the robot has weaker nonlinearity than that of
the robot which only contains bearing information and IMU measurements. Therefore,
EKF is suitable for the estimation of the weakly nonlinear state of the robot in D-D SLAM.
Using (13)–(15), the implementation of the EKF is given by:

X’i
t = Xi

t−1 + Vi
t−1∆t +

1
2

g∆t2 + Rt ∆Xt−1|t (31)

where X’i
t denotes the prediction of the robot’s position in the EKF. The rotation matrix

Rt and the velocity Vt are determined from Equations (13) and (14). The pre-integrated
measurement of position ∆Xt−1|t is estimated with Equation (27) of Ref. [18] by feeding
IMU measurements. The prediction of covariance in the EKF is given by:

Cov′it,m = FtCovi
t−1,mFt

T + Qi
Xt

(32)

where Covi
t−1,m denotes the covariance of the EKF, Ft is given by (3) and Qi

Xt
is the process

non-Gaussian noise of the robot position. Qi
Xt

is associated with the process noise of the
robot’s velocity, according to (31) with the variance-covariance propagation law:

Qi
Vt

= Qi
Vt−1

+ dQVt−1|t
(33)

Qi
Xt

= Qi
Xt−1

+ ∆tQi
Vt−1

∆t + dQXt−1|t
(34)

where dQXt−1|t
and dQVt−1|t

denote the variances of the GPMs of the robot’s position
and velocity, respectively. For each source, the observational equation in the EKF is
determined by:

[ω̂i
t,m, r̂i

t,m]
T
= G(Rt(X′it − ŝi

t−1,m)) (35)

where m = 1, . . . , Mt, Rt is estimated with Equation (13) and G(•) is the Cartesian-to-
spherical transformation. According to the mapping procedure (Section 4.1), the estimation
of source ŝi

t−1,m is given using GM component clustering of the keyframe data. Hence, the
Kalman gain and the correction of Kalman gain are given by:

Ki
t,m = Cov′ it,m (Hi

t,m)
T
(Hi

t,m Cov′ it,m (Hi
t,m)

T
+ REKF)

−1
(36)

X̂i
t,m,µ = X’i

t + Ki
t,m([Ωt,m, d̂i

t,m,µ]
T − [ω̂i

t,m, r̂i
t,m]

T
) (37)

V̂i
t,m,µ = (X̂i

t,m,µ − Xi
t−1)/dt (38)

Covi
t,m = (I3 −Ki

t,mHi
t,m)Cov′ it,m (39)

where H is the Jacobian matrix of the observational equation, V̂i
t,m,µ is the velocity of the

robot corresponding to each output of the EKF, dt denotes the time difference between
two adjacent keyframes, which is different from ∆t, and REKF is the measurement noise,
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which is assumed to be known. The output of the EKF, X̂i
t,m,µ, corresponds to each source’s

distance d̂i
t,m,µ. As the estimation of the robot’s position is nonlinear and the rotation matrix

Rt is computed directly from IMU measurements, the Gaussian mixture model (GMM) is
applied to model the robot posterior PDF p(Xt |d i c, η1:t, Ω1:t, y1:t):

p(Xt|di
c,η1:t, Ω1:t, y1:t) =

m

∑
Mt

µ

∑
B

wi
t,m,µN (Xt|X̂

i
t,m,µ, Covi

t,m) (40)

where wi
t,m,µ denotes the weights of the GM components in the windowed signal frame

indices µ of time step t and is given by:

wi
t,m,µ = N (X̂i

t,m,µ|X’i
t, Qi

Xt
) (41)

It is clear that the smaller the difference between the outputs of the EKF and GPMs
is, the larger the component weight wi

t,m,µ is. For the GMM, the estimation of the robot
position, the robot velocity, the source’s distance from the robot, and the covariance in the
EKF are computed with the weighted average method

Xi
t =

m

∑
Mt

µ

∑
B

wi
t,m,µ X̂i

t,m,µ (42)

Vi
t =

m

∑
Mt

µ

∑
B

wi
t,m,µV̂i

t,m,µ (43)

di
t,m = ‖Xi

t − ŝt,m‖ (44)

Covt,m =
m

∑
Mt

µ

∑
B

wi
t,m,µ Covi

t,µ (45)

The weight of each critical distance and robot position particle is given by:

αi
t = N (Xi

t

∣∣∣X’i
t, Qi

Xt
) (46)

Equation (46) reflects the coincidence degree between the robot position corresponding
to each critical distance particle and the GPM measurements. The GPMs of the IMU are
used to evaluate each critical distance particle. The weights of the critical distance particle
that fits the GPM measurements well will become larger. The final estimation of the robot
and source position will be in the best interests of all measurements.

4.3. Posterior PDF of the D-D SLAM

This section provides the implementation of evaluating the SLAM posterior PDF.
Because a rotation matrix can describe the attitude of the robot accurately with the GPMs of
the IMU data and the source triangulation does not depend on velocity, (18) is reduced to:

p(Xt, st, dc|η1:t, Ω1:t, y1:t) = p(st|Xt, Ω1:t)p(Xt, dc|η1:t, Ω1:t, y1:t) (47)

According to the Bayes rule, using (26) and (27), the posterior PDF p(Xt, dc |η1:t, Ω1:t,
y1:t) is given by:

p(Xt, dc|η1:t, Ω1:t, y1:t) =

I
∑

i=1
αi

t L
(

Ωt

∣∣∣X̂t, d̂c

)
δX̂t ,d̂i

c
(Xt, dc)

I
∑

j=1
α

j
t L
(

Ωt

∣∣∣X̂t, d̂c

) (48)
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Using (48) in (47), the SLAM posterior PDF is reduced to:

p(Xt, st, dc|η1:t, Ω1:t, y1:t) =
I

∑
i=1

βi
t δX̂t ,d̂i

c
(Xt, dc) p(st|Xt, Ω1:t) (49)

βi
t =

αi
t L
(

Ωt

∣∣∣X̂t, d̂c

)
I

∑
j=1

α
j
t L
(

Ωt

∣∣∣X̂t, d̂c

) (50)

where βi
t is the weight and is used to evaluate the particle and estimate the position of the

robot and the source. The D-D SLAM is summarized in pseudocode (see Algorithm 1).

Algorithm 1: D-D SLAM

Data: DoAs Ωt, DRR ηt, IMU Measure yt
for i = 1, . . . , I do

Compute r̂i
t using (13)(14)(15);

Compute KeyFrame factor using (21)(22);
if KeyFrame then

Compute Qi
Xt

, Cov′ it,m using (34)(33)(32);
for m = 1, . . . , Mt do

Predict ω̂i
t,m, r̂i

t,m using (35);
Compute Ki

t,m using (36);
for µ = 1, . . . , B do

Evaluate X̂i
t,m,µ, V̂i

t,m,µ using (37)(38);
Compute wi

t,m,µ using (41);
end

end
Update Covt,m using (45);
Update Xi

t, Vi
t using (42)(43);

Evaluate αi
t using (46);

Compute si
t using the mapping method [7] by

feeding the date of keyframe;
GM reduction of mapping [27];
Evaluate L(Ωt | rt, dc) using (26);
Evaluate βi

t using (50);
Update particle state;

else
Update Qi

Xt
, Cov′ it,m using (34)(33)(32);

end
end

Resampling [28];

Each particle is now evaluated by the evidence of mapping (26) and the weight of
locating (46). When the velocity of the robot is updated with (43), first-order recursive
temporal smoothing is applied to smooth the speed to minimize the jitter of the velocity:

Vi
t = apVi

t−1 + (1− ap)
m

∑
Mt

µ

∑
B

wi
t,m,µV̂i

t,m,µ (51)

where ap is a smoothing parameter. In the procedure “Update particle state”, the estimation
of the robot and the source at time step t is computed with the weighted mean method.
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5. Simulation and Experiment Setup
5.1. Simulation Setup

This simulation is designed to compare the performances of D-D SLAM and aSLAM [7]
in a simulation room. In the simulation, the feasibility of the proposed online estimation
algorithms for the critical distance used in D-D SLAM is also illustrated. The simulation
room is similar to that in [7], i.e., a sealed 6 m × 6 m × 3 m room. A continuous signal
source is placed in the center of the room (3 m, 3 m, 1.5 m), and the reverberation times
T60 are set to 0.15 s and 0.5 s, respectively. The robot moves in the direction of a random
orientation, similar to the movement in [7]. The magnitude of the velocity is set to 2 m/s
with reference to the famous robot, TurtleBot2.

Under the condition of the reverberation times of 0.15 s, the signal of the source is a
piece of music. The frequency of the music used in the simulation is time-varying and is
within the range of 0–4000 Hz. A random path where the robot always keeps moving is
used to test the proposed D-D SLAM (with the keyframe method) and the aSLAM. Another
similar path where the robot keeps still for 10 times step during movement is used to justify
the use of the proposed keyframes-based solution. The D-D SLAM with and without the
keyframe method is tested in this path. The removal of the keyframe method means that
each data frame is fed to the locating and mapping process.

Under the condition of the reverberation times of 0.5s, the signal of the source is white
noise. The frequency range of the white noise sound source used in the simulation is
0–8000 Hz. Different levels of noise are added to the received signal of the microphone
array, corresponding to different Signal-Noise Ratios (SNR). The D-D SLAM is tested with
different SNRs, which contain 6 dB, 3 dB, 0 dB, and −3 dB.

The trajectory and IMU data are simulated using Robot Operating System (ROS) and
Gazebo. A TurtleBot2 equipped with a microphone array and IMU is set in the room and
moves randomly. The IMU data that are simulated by ROS contain only the numerical error.
For vraisemblance, two types of Gaussian white noise are added artificially to the output
data of the accelerometer and the gyroscope with variances of 1 × 10−3 and 1 × 10−2,
respectively, similar to that of the familiar low-cost IMU MPU6050. Therefore, the simulated
IMU data contain both the nonlinear numerical error and the Gaussian measurement noise.
The true trajectory data are recorded as the ground truth.

A sound record with eight channels is generated according to the image source
method [29,30] using a room impulse response (RIR) simulator. The sample frequency is set
to 16,000 Hz, and the microphone array shape is the same as in the DREGON dataset [15]
mentioned above. The microphone array is fixed on the robot, and the transformation
matrix between their positions and orientations is constant.

The DoA method based on SRP-PHAT [31] is applied to estimate the direction of the
source, and the GPMs are applied to provide the observed values of the velocity, position,
and orientation. With SRP-PHAT, the error of the DoA estimates is less than 2 degrees. The
DRR computation is introduced in Section 3.

In [7], the measured velocity is simulated by adding Gaussian noise directly to the
true velocity, which is different from the true IMU model. However, the velocity computed
using IMU integration contains an accumulated error, which is nonlinear and cannot be
eliminated simply by a Kalman filter. As a result, the accuracy of aSLAM with true IMU
data will decrease over time. For comparison, three groups are developed under the
condition of reverberation times of 0.15 s. Group I: aSLAM with motion reports, which
is simulated by adding Gaussian noise to the true velocity directly, i.e., the same as in [7].
The noise signal is unbiased, and the root mean squared error (RMSE) of the noise signal is
0.75 m/s for velocity and 5 deg for azimuth. Group II: aSLAM with motion reports, which
is computed with GPMs on the simulated IMU data that contain both nonlinear numerical
error and Gaussian measurement noise. Group III: the proposed D-D SLAM with the same
simulated IMU data as that in Group II. In all groups, the same DoA measurements are
used, the robot starts in the same place, the number of particles is set to 10, the standard
deviation of the DoAs is set to 2 deg, and the standard deviation of the source’s distance
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from the robot is set to 0.35 m. In this simulation, the time step, i.e., the time difference
between nearby frames, is 1 s, and the total simulation time is 100 s (100 data frames).

5.2. Experiment Setup

To evaluate the effects of the algorithms on real indoor data, the DREGON dataset [15],
which contains real data sampled with a drone flying in a real room, is applied. In the
DREGON dataset, a MikroKopter unmanned aerial vehicle (UAV) equipped with a micro-
phone array and IMU flew indoors. In this paper, the Free Flight-White Noise Source at
High Volume case in the DREGON dataset is used. A continuous white noise sound source
was placed in the room and sampled by an array of eight microphones (8SoundsUSB and
ManyEars). The motion reports were measured with the onboard IMU (which is integrated
with FlightCtrl 2.5). Meanwhile, the positions and orientations of the UAV and the source
were recorded precisely by a 12-camera Vicon motion capture system and considered the
ground truth. According to the dataset, the speed of the UAV is no faster than 1 m/s, and
the flight contains hovering, a rectangle, spin, up and down.

It is clear that the magnitude of the UAV velocity is variable and that the direction
of the UAV velocity is independent of the orientation of the UAV. To test aSLAM on the
DREGON dataset, the robot dynamics must be updated for the flight patterns of the UAV.
For comparison, three experimental groups were used. Group IV: aSLAM [7] with updated
observer dynamics. Group V: the proposed D-D SLAM with the keyframe method. Group
VI: the proposed D-D SLAM without the keyframe method. In both groups, the DoA
estimates and motion reports are computed using the same method as in the simulation,
and the particle number is set to 10. The UAV started in the same place and with the
same posture. On the real indoor dataset, the elevation search boundaries are limited in
[−90◦, 20◦] to avoid the drone noise’s influence, which has an elevation angle that is mostly
60◦. The error of the DoAs estimated with SRP-PHAT is also less than 2 degrees. Then, the
standard deviation of the DoA estimates is set to 2 degrees. The standard deviation of the
source’s distance estimation from the robot is set to 0.35 m. In this experiment, the time
step, i.e., the time difference between nearby frames, is 0.0464 s, and the total simulation
time is 46 s (993 data frames). Each data frame in the experiment contains 2048 audio
sample points (0.0464 s) and 43 IMU measurements on average.

5.3. Performance Metric

To quantitatively analyze the accuracy, the error between the positional estimation
and ground truth is evaluated with the Euclidean distance. The Euclidean distance is
calculated by:

d(Xgt
t , Xest

t ) = ‖Xgt
t − Xest

t ‖ (52)

where the superscripts gt and est denote the ground truth and estimation, respectively, and
X(•)

t is the position of the robot or the source.

6. The Results
6.1. Simulation Results

The results of the aSLAM and the proposed D-D SLAM in the simulation are shown
in Figure 3. The results of the D-D SLAM under different conditions are shown in
Figures 4 and 5, respectively. As shown in Figure 3 with the orange dashed-dotted line
and solid circles, the trajectory and source position estimations of aSLAM with the true
speed, which only contains Gaussian noise similar to that in [7], reach the expected effect,
meeting the mean accuracies of 0.136 m and 0.14 m for estimations of the trajectory and
source position, respectively.
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However, when the simulated IMU data that contain nonlinear numerical error and
Gaussian measurement noise are applied, aSLAM has poor performance. As shown by the
blue dashed line in Figure 3, the trajectory estimation deviation increases with time. Within
29 s (29 time steps), the estimated position of the robot starts to be outside the room. The
corresponding source position estimations are nonconvergent and sometimes even out of
the room, so they cannot be marked as static points in Figure 3. In contrast, the proposed
D-D SLAM with the same simulated IMU data performs well. As shown in Figure 3, the
trajectory estimation of D-D SLAM in the red dotted line basically matches the ground
truth, and the source position estimation in the red solid triangles is always close to the
true source’s position. During the whole process of 100 s (100 time steps), the estimation of
the trajectory and source position with the proposed D-D SLAM is convergent and stable.

The poor performance of aSLAM with IMU data implies that additional constraints are
needed in this situation. As the nonlinear noise is due to the integration error of the IMU,
the DRR is used to compute the source’s distance from the robot, which is applied as a new
constraint. The result shown in Figure 3 demonstrates the different performances under the
same conditions between aSLAM and the proposed D-D SLAM, proving the effectiveness
of D-D SLAM. The use of the DRR for source distance estimations, which is considered an
additional constraint, is key to eliminating the nonlinear error of IMU measurements.

Quantitative analysis of the accuracy using the Euler distance is illustrated in Figure 6.
Under the condition of T60 = 0.15 s, the result of aSLAM is drawn as a blue line with solid
squares, while that of the proposed D-D SLAM is drawn as a red line with solid squares.
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For aSLAM with IMU data, the trajectory error reaches a maximum of 3.9 m at 91 s
(91 time steps), and its mean value is 1.55 m, as shown in Figure 6a. Moreover, the overall
trend of its trajectory error increases over time. With the random initial source position, the
corresponding source position estimation error is unstable, as shown in Figure 6b. The error
also reaches a maximum of 6.0 m at 91 s (91 time steps), and its average is 3.0 m. Within a
room of 6 m × 6 m × 3 m, the trajectory and source position errors are unacceptable.

For the proposed D-D SLAM with IMU data, the maximum trajectory error is less than
0.48 m, and the mean value of the trajectory error is 0.14 m. Meanwhile, the source position
error is less than 0.19 m just after 16 s (16 time steps), even though the source position error
at the beginning is quite large due to the random initial source position. Compared with
aSLAM, the source position error of D-D SLAM converges faster even with the larger initial
value of the source position error. These results show that the proposed D-D SLAM has
better performance using the same simulated IMU measurement, which proves that D-D
SLAM has stronger robustness for the nonlinear noise of motion reports.

The good performance of the proposed D-D SLAM relies on reliable source distance
estimates, which are based on the accurate estimate of the critical distance dc. However, dc is
initially unknown. With the online estimation method in this paper, dc is calculated during
the SLAM process. Different particles of critical distance dc are initialized in the beginning,
and the weight of each dc particle is evaluated with the coincidence degree between the
robot position, which corresponds to each dc particle and the IMU measurements. During
the SLAM procedure, those dc particles whose corresponding robot position matches poorly
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with IMU measurements, DoA estimates, and sound source distance estimations from DRR
are dropped. Figure 7 is the result of dc at different time steps, where the different color
dashed lines represent values of different dc particles and the red solid line represents
their weighted mean. The mean of dc converges rapidly to a stable value in less than 27 s
(27 time steps). The results show that the proposed online estimation method can obtain
a convincing critical distance, even though the directivity of the source and receiver, the
room size, and the reverberation time are unknown.
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The reverberation time T60 of the room is a general acoustic character of the environ-
ment. The simulation results of different reverberation times (T60 = 0.15 s and T60 = 0.5 s)
are shown in Figures 3 and 5, respectively. As shown in Figure 6, the average errors of
trajectory and source position are 0.14 m and 0.21 m, respectively, when T60 = 0. 5 s and
SNR = 6 dB, while the average errors of trajectory and source position are 0.14 m and
0.29 m, respectively, when T60 = 0. 15 s. In different acoustic environments, the proposed
D-D SLAM still gets small errors and has similar performances, showing its robustness
against changing the environment.

As shown in Figures 3 and 5, the D-D SLAM can work with the continuous sound
source of music or white noise, so the white noise sound source is unnecessary. The
frequency ranges of the music and the white noise used in the simulation are different,
and the frequency of the music is time-varying, so the D-D SLAM is insensitive to the
frequency range.

The influences of different SNRs are studied. As shown in Figure 6, the average errors
of trajectory and source position are 0.14 m and 0.21 m, respectively, when SNR = 6 dB,
while the average errors of trajectory and source position are 0.16 m and 0.27 m, respectively,
when SNR = 3 dB. The errors of trajectory estimation do not converge when SNRs are
0 dB and −3 dB. The trajectory error of −3 dB SNR grows faster than that of 0 dB SNR.
Therefore, simulation results show that received signals whose SNR is bigger than 3 dB is
necessary for the proposed technique.

In the simulation, the results of the D-D SLAM with and without the keyframe method
are shown in Figure 4. The trajectory estimations of the D-D SLAM with and without the
keyframe method are comparable before the robot remains stationary. The robot begins to
remain stationary after moving for 20 time steps. After remaining stationary for 10 time
steps, the trajectory estimations of the D-D SLAM without the keyframe method (blue
line) go seriously wrong. And the source position estimations of the D-D SLAM without
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the keyframe method (blue triangle) are much closer to the position where the robot
remains stationary rather than the position of the true source. This result is similar to the
phenomenon presented in Figure 2. On the contrary, the D-D SLAM with the keyframe
method (red line) still performs well after remaining stationary for 10 time steps. It is
possible for a robot to remain stationary for some time during the SLAM procedure, so the
keyframe method is necessary to prevent false source and trajectory estimations when the
robot keeps still.

6.2. Experimental Results

Figure 8 shows the estimated trajectory and source position using D-D SLAM and
aSLAM for real indoor datasets [15]. Even worse than that in simulation Group II, the esti-
mated trajectory of aSLAM in the experiment goes outside the boundary of the experiment
room after 18.7 s (402 time steps) and never returns during the remainder of the experi-
ment. Therefore, it is not fully shown in Figure 8. The gradual divergence of the estimated
trajectory is because of the shifting integrated velocity from the IMU measurements. Due
to the incremental error of trajectory estimation, the source estimation of aSLAM is also
unstable, and out of the room, so it cannot be marked in Figure 8. In contrast, the estimated
trajectory of the proposed D-D SLAM always converges to a small neighborhood of the
ground truth, as shown in Figure 8. Meanwhile, the estimation of the source position also
converges with the true source position.
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Figure 9 illustrates the estimation errors of the trajectory and source position. For
aSLAM with real indoor data, the overall trajectory error tends to increase during the
complete SLAM process, which is unacceptable. The source position error has the same
trend as that of the trajectory error.

For the proposed D-D SLAM with the keyframe method, the maximum trajectory error
reaches 1.18 m at 16.1 s (347 time steps), and its mean value is 0.48 m. In the meantime, the
maximum error of the source position estimates of 0.66 m occurs at the beginning because
the initial source position is random, and the error quickly converges to the stable value of
0.25 m after 2.8 s (60 time steps).
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Compared with aSLAM, the proposed D-D SLAM has an acceptable performance in
the trajectory and source position error, proving its validity for real world indoor scenes.
The results in Figure 9 show the potential of the proposed D-D SLAM to work with an IMU
in closed environments.

In the experiment, the results of the D-D SLAM with and without the keyframe
method are shown in Figure 8, and the corresponding errors are shown in Figure 9. There
are only small differences between the results of the D-D SLAM with and without the
keyframe method. Thus, the keyframe method has a limited impact on the accuracy of
estimations. Meanwhile, the use of the proposed D-D SLAM contributes to reducing the
computing effort.

Figure 10 shows the critical distance estimation on the DREGON dataset. Similar to
that in the simulation, the estimated critical distance converges rapidly to a stable value
near 6.8 m.
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With Intel i5-7500 CPU (4 cores 3.40GHz), under the condition of 10 particles, the
expected latency is 0.1392 s, and the D-D SLAM performs at a speed of 7.1 FPS. The received
audio signals do not change significantly when the microphone on the robot moves slightly,
so the FPS of 7.1 should be acceptable for acoustic SLAM.

6.3. Analysis

In this section, the reasons for the trajectory errors are analyzed. The trajectory errors
are affected by the number of particles, the max number of GM components used in
source mapping, the DoA estimates, the IMU measurements, and the robot’s distance from
the source.

The positional errors in different particle numbers are observed (as triangle and circle
marks in Figure 11a). It is also important to determine the influence of the particle number
on the critical distance estimation. The experiment in Section 5.2 is repeated for 5, 8, 10, 15,
and 20 particles to investigate if a further improvement of the positional accuracy and the
critical distance estimation can be achieved.
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Figure 11. The positional error and the critical distance estimation with (a) different numbers of
particles and (b) the max number of GM components.

When the number of particles increases from 5 to 10, the errors of source position
and robot trajectory estimation decline quickly because the brute force strategy consists
of increasing the number of particles and proves to be effective [32]. When the number
of particles increases above 10, the errors of the source position and the robot trajectory
estimation stabilize at values of 0.25 m and 0.48 m, respectively. The reason for this is that
the contribution of increasing the particle number is negligible after a few iterations [33].
The critical distance estimation also quickly converges to a stable value for the same reason.

The experiment in Section 5.2 is also repeated for different max numbers of GM
components used in source mapping (as triangle and circle marks in Figure 11b). With an
increase in the maximum of GM components, the positional error and the critical distance
estimates quickly converge to a stable value.

As mentioned before, the SRP-PHAT with limited elevation search boundaries has
high-accuracy DoA results. Even if the direction of the drone noise is in the range of
the source direction, the Wiener Filter with the noise sample can be applied for noise
reduction [15]. Incidentally, the drone noise can only affect the ITD and the coherence of
binaural signals in the calculation process of DRR. As the ITD is calculated with accurate
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DoA estimates, the ITD is robust to drone noise. As the drone noise is diffuse and inco-
herent between different channels, it can be suppressed when calculating the coherence of
binaural signals.

As the covariance of the DoA estimates and the IMU measurements are considered
to be time-invariant while the trajectory errors have obvious variation with time, the
time-varying robot’s distance from the source is considered. In Figure 12, the true robot-
source distance is represented with the blue dashed line, and the trajectory error of D-D
SLAM is drawn with the solid red line. What Figure 12 clearly shows is that the trajectory
error increases with the decrease in the true robot-source distance. Roughly speaking, the
trajectory error reaches the maximum when the true robot-source distance approaches the
minimum. Therefore, it can be assumed that the trajectory error is associated with the
robot-source distance.
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Using (16), the estimation of the robot-source distance depends on the critical distance.
The critical distance should be fixed when the reverberation field is stable. However, the
reverberation field may vary if there are moving objects. The closer the robot is to the
source, the larger its influence on the reverberation field. The reason is that when they are
close, the multiple diffractions and the multiple reflections they cause will become stronger,
and the influence on the reverberation field is also heavier, and vice versa.

As shown in Figure 10, when the robot is still far from the source, the critical distance
estimation has already converged to a stable value, leading to particle dilution of the critical
distance. After that, the variation in the reverberation field caused by the change in distance
between the robot and the source can no longer be considered with the diluted particle
filter. As a result, the outdated estimation of the critical distance will affect the estimation
of the robot-source distance, according to (16). The deviation of the robot-source distance
finally causes an increase in the trajectory estimation error.

7. Conclusions

Focusing on the solution of indoor SLAM with acoustic data and an IMU, D-D SLAM
is proposed. With the keyframe method, D-D SLAM performs well in mapping regardless
of whether the robot moves or remains stationary. The use of the DRR for the estimation of
the source’s distance from the robot as a new constraint in D-D SLAM effectively eliminates
the nonlinear noise of the IMU measurements. As the key factor to calculate the source’s
distance from the DRR estimates, the critical distance is unknown initially, so a particle
filter is applied to estimate the critical distance online, and the estimation of the critical
distance converges to a stable value.

According to the results, D-D SLAM has good performance in both simulations and
experiments. For the first time, an acoustic SLAM algorithm is validated with a real indoor
dataset containing only acoustic data and IMU measurements. Different from previous
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work, D-D SLAM is designed for three-dimensional motion and rotation. On the real indoor
dataset, the proposed D-D SLAM can locate the robot with an average accuracy of 0.48 m
and build a source map with an average accuracy of 0.25 m. Even though the initial source
position is random, the error of the source position converges to less than 0.25 m within
2.8 s.

These results demonstrate the effectiveness of the proposed D-D SLAM in real-world
indoor scenes. In the future, D-D SLAM may contribute to robot localization and map build-
ing when conventional optical sensors are not suitable for special indoor environments, for
example, foggy rooms where light and lasers cannot penetrate during navigation missions.
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