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Abstract: In this paper, we address aerial tracking tasks by designing multi-phase aware networks
to obtain rich long-range dependencies. For aerial tracking tasks, the existing methods are prone to
tracking drift in scenarios with high demand for multi-layer long-range feature dependencies such
as viewpoint change caused by the characteristics of the UAV shooting perspective, low resolution,
etc. In contrast to the previous works that only used multi-scale feature fusion to obtain contextual
information, we designed a new architecture to adapt the characteristics of different levels of features
in challenging scenarios to adaptively integrate regional features and the corresponding global
dependencies information. Specifically, for the proposed tracker (SiamMAN), we first propose
a two-stage aware neck (TAN), where first a cascaded splitting encoder (CSE) is used to obtain
the distributed long-range relevance among the sub-branches by the splitting of feature channels,
and then a multi-level contextual decoder (MCD) is used to achieve further global dependency
fusion. Finally, we design the response map context encoder (RCE) utilizing long-range contextual
information in backpropagation to accomplish pixel-level updating for the deeper features and
better balance the semantic and spatial information. Several experiments on well-known tracking
benchmarks illustrate that the proposed method outperforms SOTA trackers, which results from the
effective utilization of the proposed multi-phase aware network for different levels of features.

Keywords: aerial tracking; Siamese tracker; multi-phase aware network; feature fusion

1. Introduction

The task of aerial tracking is a challenging task, aiming at determining the target’s
position in subsequent frames and generating predicted boxes with the information of the
initial position of the target in the first frame. Originally, it was a task that simulated human
cognitive mechanisms; recently benefiting from the rapid development of cross-disciplines,
it is widely used in video surveillance [1,2], UAV applications [3–5], and intelligent trans-
portation [6,7], etc. To achieve efficient and accurate tracking, we need to distinguish
between the two properties of the target foreground and background. Distinguished from
general tracking, aerial tracking faces many challenges introduced by the UAV’s shooting
perspective which are not present in general tracking tasks, such as occlusions that require
high long-range dependence on shallow features containing more spatial information,
scenarios with scale and viewpoint changes that require a high global generalization of
mid-level features, and small-target or low-resolution tracking scenarios which are more
sensitive to pixel-level context optimization updating of deeper semantic features. Based
on the aforementioned analysis of the properties of aerial tracking, one question is raised
naturally: Can we design a new multi-phase aware framework to adapt the characteristics
of different levels of the features to adaptively integrate regional features and the corre-
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sponding long-range relevance information to improve the feature representation capability
for pixel-level tracking?

In recent years, the Siamese tracker-based methods [8–11] have become highly efficient
approaches to addressing aerial tracking tasks, with huge performance improvements and
a balance between accuracy and real-time performance, becoming a hot research area in
deep learning-based methods [12–15]. The core idea of the Siamese tracker-based method is
to use two branches of the same feature extraction network for the target template and the
search region, respectively and transform the tracking problem into a similarity matching
problem between the features of the two branches through the process of the correlation
operation. Finally, the best matching search area is obtained by the subsequent classification
regression network. The development trend of the Siamese tracker reflects that how to
effectively utilize different levels of features is the key to improving performance. One
way is through linear multiscale context fusion. For example, some works [16,17] achieve
feature fusion by direct summation or channel cascading of feature blocks extracted by the
backbone network. Other works [18,19] enable the network to obtain richer dependency
information by designing efficient local modeling encoders or expanding the receptive field
by decomposing the feature information. While the existing approach of feature utilization
enables the tracker to utilize the dependency information, linear fusion or local modeling
does not take full advantage of the global view of feature information, and the pixel-level
intercorrelation between features at different levels is often neglected, which is necessary
for accurate tracking.

To address the above problems, designing the adaptive aware network for different
levels of features is an effective and feasible approach. We propose a new Siamese multi-
phase aware network called SiamMAN for aerial tracking tasks, as shown in Figure 1. It
contains a multi-phase aware network adapted to the features at different depth levels
to better capture the dependencies between features at different levels and improve the
utilization of information from shallow spatial location features and deep semantic features.
In the two-stage aware sub-network, the three feature blocks 3,4,5 extracted by the backbone
network are first sent to the proposed cascade splitting encoder (CSE) to break the receptive
field limitations and obtain the distributed long-range relevance among the sub-branches
by the splitting of feature channels. Then, the multi-level contextual decoder (MCD) using
a pooling strategy is used to achieve further global dependency fusion. Finally, in the
similarity matching sub-network, we designed the response map context encoder (RCE)
network utilizing long-range contextual information in backpropagation to accomplish
pixel-level updating for the deeper features and better balance the semantic and spatial
information. Our main contributions can be summarized as follows:

(1) We propose a novel multi-phase Siamese tracking method, SiamMAN, to enhance the
network’s ability to distinguish feature representations for the task of aerial tracking
to improve accuracy in scenarios with high requirements at different feature levels.
Specifically, the response map context encoder (RCE) module achieves optimization
of deep semantic features by means of non-local perceptual modeling, and the multi-
level contextual decoder (MCD) module achieves global relevance aggregation of
features using an improved transformer structure. The cascaded splitting encoder
(CSE) module can obtain long-range relevance information through channel splitting.

(2) A muti-phase aware framework adapted to different depth features is proposed to
learn the dependency information between the channels in a global view, and we
propose solutions to achieve better feature representation and utilization for different
depth-level features, relying on the rich dependency information obtained from
different levels to significantly improve the tracking results.

(3) We achieve the best performance compared with SOTA trackers on several well-known
tracking benchmarks containing challenging scenes, including UVA123, UVA20L,
DTB70, and LaSOT. Experiments show that the proposed SiamMAN can effectively
improve the tracking performance in challenging scenes, such as those with low
resolution and scale variation.
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Figure 1. The overall framework of the proposed tracker.

2. Related Work

In this part, we briefly review the research related to our work in recent years, including
a summary of the Siamese tracker and fusion networks.

2.1. Siamese Trackers

In recent years, Siamese network-based trackers have stood out from the crowd
of trackers with excellent tracking performance; before that, correlation filtering-based
approaches [20–22] received widespread attention for their efficient processing and easy
deployment with low computation, driving the development of the aerial tracking field.
However, the lower performance caused by artificially designed features makes it difficult
to cope with challenging scenarios. In contrast, Siamese trackers emerged with many
model variants for enhancing contextual information aggregation trying to achieve more
efficient feature utilization and better performance. The early Siamese tracker was not
specifically designed to solve the aerial tracking tasks but rather was designed to solve
the challenges of the general target tracking tasks in pursuit of model generalization. The
first algorithm to apply Siamese networks to address the tracking task was SINT [23],
and the subsequent SiamFC [24] first introduced a correlation layer to unite feature maps,
pioneering an end-to-end deep learning-based tracking approach, but the operation of
the correlation operation required the network to satisfy strict translational invariance.
Inspired by Faster R-CNN, Li et al. proposed SiamRPN [25] to avoid the process of multi-
scale extraction of feature maps by introducing RPN networks [26] commonly used in
target detection tasks, and the subsequent DaSiamRPN [27] achieved further performance
improvements, but they extracted features at shallow depths. SiamRPN++ [28] applies
a simple and efficient spatial perception strategy to achieve a deeper feature extraction
network application, but it is sensitive to parameters such as pre-defined anchors. To
address these problems, trackers such as SiamCAR [16], SiamBAN [17], and SiamFC++ [29]
that redesign regression networks using an anchor-free strategy have been proposed, but
the interference of unbalanced samples on features at different levels still exists. Later, the
Siamese tracker designed for aerial tracking tasks began to appear in the field of target
tracking such as the SOTA tracker SiamAPN [30] and SiamAPN++ [31] in the field of aerial
tracking; they have enhanced the ability to cope with unbalanced samples through the
study of adaptive anchors, but the strategy of adaptive anchors still cannot cope well with
the need for multi-level feature utilization in challenging aerial scenarios.
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2.2. Transformer and Fusion Networks

Transformer was first proposed in the literature [32], and the transformer structure has
been widely used in the field of NLP in recent years, driving breakthroughs in the research
of many tasks in the field of artificial intelligence [33]. The core goal of Transformer is to
select the information that is more critical to the current task goal from a large amount
of information, and the essential idea is to selectively filter a small amount of important
information from a large amount of information and focus on the important information,
ignoring most of the unimportant information. For example, NonLocal [34] proposed a
non-local information statistical mechanism based on capturing dependencies between
long-range features, which directly integrates global information and provides richer se-
mantic information while obtaining global information through multiple convolutional
layers. DaNet [35] proposed a pixel-level optimization module based on a self-attentive
mechanism to capture global contextual dependency for image segmentation tasks, which
achieved good results. Later, ViT [36] and MobileViT [37] were the first to introduce a
more effective transformer architecture into computer vision tasks, breaking the limita-
tion that CNNs can only acquire local information and ignore global information, thus
enabling the modeling of dependencies between distant pixels. SiamHAS [38] proposed a
tracking method with a hierarchical attention strategy that makes better use of the global
relevance of features through the introduction of a multi-layer attention mechanism to
achieve more accurate tracking. SE-SiamFC [39] used a scale model to break the limits of
translational invariance and enhance the accuracy of the output prediction frame results
of the classification regression network. SiamTPN [18] and HiFT [19] use the transformer
structure directly in feature fusion networks but do not take into account the effect of
adapting features at different depth levels, and the transformer structure is still limited by
the receptive field of local modeling and could not achieve global contextual modeling for
feature optimization at multilevel scales. SGDViT [40] applies a large-scale transformer
attention structure designed specifically for aerial tracking tasks and is the current SOTA
tracker in the field of aerial tracking. Unlike the above Trackers that employ various
attention networks, we design the CSE module in the shallower feature level to acquire
the distributed long-range dependencies of each branch through the process of channel
splitting, to better cope with the requirements for long-range dependencies in scenarios
such as occlusions. In addition, we designed the MCD module to further learn the global
dependencies of the middle-level features to cope with the demand for global generaliz-
ability of features in common scale-view change scenarios in aerial tracking and to further
solve the problem that the CSE module is unable to fully explore the global information
due to the splitting of feature channels. Finally, we design the RCE module to complete
the pixel-level updating of deep features by utilizing the contextual information and the
characteristics of receptive field mapping in backpropagation, so that the network achieves
a better balance between deep semantic information and spatial information, and better
copes with scenarios such as small-target tracking and low-resolution scenes, which are
particularly sensitive to semantic information. To summarize, SiamMAN proposes a mul-
tiphase awareness network strategy, where each special network designed to solve the
aerial tracking challenges at different depth levels is well integrated into the framework,
which has a greater advantage over the tracker using an attention network in challenging
scenarios of aerial tracking. Comprehensive empirical experimental results validate the
effectiveness of our proposed method.

3. Proposed Approach

In this section, we specify the general framework of the proposed network and then
describe the designed two-stage aware network and response map context encoder for
obtaining rich pixel-level global contextual information, respectively. Finally, we present
the efforts made to adapt different levels of features for further optimization and the loss
function during training.
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3.1. Overall Architecture

The overall framework of the tracking algorithm proposed in this paper is shown in
Figure 1.

The Siamese multi-phase aware network (SiamMAN) tracker consists of the following
four main sub-networks: feature extraction backbone network, two-stage aware neck, simi-
larity matching network, and prediction heads. The feature extraction backbone ResNet50
network takes a pair of images consisting of two branches of the target template and the
search region as the inputs and uses a model that has been trained on ImageNet as its initial
pre-trained model. The backbone network extracts the feature maps of the target template
branch image patch Z and the search region branch image patch X, respectively, and uses
the extracted feature blocks in the 3rd, 4th, and 5th as the input of the subsequent CSE
block in the TAN module. In the backpropagation of the training process, the parameters
are shared between the two branches of the search region and template in the Siamese
network. In the model, the two-stage aware neck part achieves global contextual informa-
tion aggregation of features using transformer architecture designed to adapt to different
scale features. The adjustment layers use multilayer convolutional layers to dimensionally
adjust the output data of the CSE block of each branch, and the number of channels of
the three-layer feature blocks is uniformly adjusted from the original [512, 1024, 2048]
channels to [256, 256, 256] channels to reduce the subsequent parameters and computation.
In the similarity matching sub-network, the depth-separable correlation operation is used
to achieve the fusion of the deep and shallow features in the output response maps by
convolving the target template and the corresponding layers of 3, 4, and 5 of the search
region layers. The process of deep intercorrelation operation can be described as

R = ϕ(X) ? ϕ(Z) (1)

where ? denotes the depth-separable correlation operation. The feature fusion module
achieves the optimization of response map features based on the modeling of dependencies
between long-range pixel features, which provides richer semantic information and better
balances the utilization of deep feature information. Finally, the classification regression
network with an anchor-free strategy is used to obtain the binary attribute classification
results and the prediction box size information for each pixel point.

3.2. Two-Stage Aware Neck

Some challenging scenarios such as viewpoint change and target occlusion that may
exist in different frames in aerial tracking tasks require high demand for multi-layer feature
utilization and algorithmic robustness. Existing trackers such as SiamCAR and SiamBAN
that utilize linear summation or cascade fusion strategies can neither fully utilize contextual
information nor cope well with scale changes of small targets. Therefore, we propose a
two-stage aware neck feature fusion network that contains two functional components
before and after the adjustment layers: a cascaded splitting encoder and a multi-level
contextual decoder. For the cascade splitting encoder, the computation process of the
third feature block extracted by backbone in the target template branch Z, for example,
is a branch computation process with 512 channels of input, decomposed into 4 sub-
branches with 128 channels of input and two 512 channels of input sub-branches after
four convolution operations, one pooling layer, and gamma function, to obtain distributed
long-range information under each sub-branch by channel decomposition and cascading
additive information exchange between sub-branches. The detailed calculation process is
shown in Figure 2.
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For the first four branches, it is equivalent to dividing the input features x(Z) into
4 subsets. Each subset of channels has the same size and is denoted as xi(Z) ∈ RC×H×W ,
where i takes values in the set {1, 2, 3, 4}, and H, W, and C denote the shape of the input
operational tensor data, the number of channels, and the height and width of each feature
map, respectively. The first subset is sent into the 3 × 3 deep convolution, and the output
is added to the next subset and used as the input of the next branch. The output of each
sub-branch is represented separately as Fi, After that, we concatenate and sum it with
the output of the fifth sub-branch as the final output of the module. In the fifth branch
operation, the input can eliminate part of the noise interference after the average pooling
layer and finally find the optimal fusion of the network through the continuous adjustment
of the gamma parameter function in the training process to achieve better feature utilization.
The specific formulas are as follows.

Fi = conv3×3(xi); i = 1
Fi = conv3×3(xi + Fi−1); 2 ≤ i ≤ 4

(2)

F′i = Concat(Fi); i ∈ {1, 2, 3, 4} (3)

F5 = AvgPool[x(Z)] + Gama[x(Z)] (4)

Finally, after cross-channel information optimization, we obtain the output feature
map x′:

x′ = F′i + F5 (5)

Compared with the traditional convolutional operation, the cascade splitting encoder
can obtain the distributed long-range relevance among the sub-branches by the splitting of
feature channels, break the limitation of the receptive field in the traditional CNN structure,
and make full use of the multi-scale features between different levels of features to enhance
the recognition ability of the network at relatively shallow feature layers that contain more
spatial information.

For the Multi-level Contextual Decoder (MCD), after the CSE modules and subsequent
dimensional adjustment layers, the feature blocks of each layer are flattened into sequence
information using convolutional operations and used as the input of subsequent MCD
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modules. Inspired by the global dependency modeling capability of Transformer, we design
the global feature modeling (GFM) network to obtain global dependency relationships
between channels over long distances using a muti-head awareness component to achieve
further global dependencies fusion and address the problem that the cascade splitting
encoder method does not fully explore global information due to the splitting of feature
channels. The MCD blocks in the target template and search region each contain four of
the proposed GFM modules. Specifically, the adjusted feature block L4 corresponding to
the fourth layer feature block of the feature extraction backbone network is used as the
query variable Q input of the three-way GFM modules, respectively, to realize the mutual
aware mechanism and information exchange between different branches for a better global
dependency modeling of long-range location and semantic information. The key–value
pair inputs of each path correspond to the dimensionally adjusted output features L3, L4,
and L5 at each level, respectively. The output tensor T whose key–value input is L4 is sent
to another GFM block to achieve a better balance of deep and shallow features through a
two-layer calculation to obtain the final output tensor L′4, which can be expressed as

T = GFM(L4, L4, L4)
L′4 = GFM(T, T, T)

(6)

For the proposed GFM module, specifically, in contrast to the traditional Transformer
encoder structure, we use an averaging pooling strategy on the ternary input side of
the aware computation as a preprocessing mechanism to optimize the input data for
the K and V parameters. To further optimize for a more lightweight structure for aerial
tracking tasks, we replace the position-encoding step in the traditional Transformer with
the image itself, encoding sequence information using a zero-padding strategy to ensure
the integrity of the sequence information. The GFM module consists of a multi-head
aware module, a feed-forward network, and a normalization layer, whose core process
is the processing of the input ternary data. The multi-head aware strategy enables the
model to pay joint attention to the information from different representation subspaces at
different locations. The calculation process of QKV ternary inputs illustrates the broadly
theoretical implementation process of muti-head awareness, where Q, K, and V represent
the query variables, the values of keys, and the values in the initial key–value pairs. This
module calculates the similarity of Q and K, and multiplies V by the normalized distribution
weights to achieve the feature enhancement of V. The final output is obtained with the same
dimensionality as the original input. Softmax is used to obtain probability values about
specific value parameters to norm the layers. To prevent the network from degradation, we
add the input of the residual term to the output of the computation and perform hierarchical
normalization after the residual connection. The overall calculation process of the GFM
module can be summarized as

GFM(Q, K, V) = Norm(I + MLP(I))
I = Norm(Q+MutiHead(Q, Norm&AvgPool(K, V)))

(7)

3.3. Responsemap Context Encoder

After performing deep correlation to obtain the response maps, we design the re-
sponse map contextual information encoder utilizing long-range context information in
backpropagation to accomplish pixel-level updating for the deeper features and better
balance the semantic and spatial information. This could make the model break through
the local modeling limitation, and its structure is shown in the following Figure 3.
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Specifically, the response map feature information sent into the module is first con-
verted into four dimensions by a linear mapping process of unsqueezing and reshaping to
fit the subsequent high-dimensional convolutional optimization. The three-branch input
feature maps are then adjusted to half the original number of channels by three convolu-
tional processes. The feature block of the θ-branch is multiplied with the feature block of
the ϕ-branch after flattening and transpose operations, and the result is normalized by
a softmax layer to obtain the distribution score, which is applied to the feature block of
the g-branch after flattening and transpose, and multiplied with it to obtain the optimized
feature R. The above process can be summarized in theoretical modeling as

Ri =
1

C(x)∑∀j
f (xi, xj)g(xj) (8)

where x denotes the input feature maps, i represents the spatial and temporal index of the
corresponding features, the f function calculates the similarity of i and j, the g function
computes the representation of the feature map at position j, and the response factor C(x) is
used to normalize the output to obtain the final output. The temporal information obtained
in the training phase through the temporal index could break the limitations of the local
receptive field to obtain long-range relevance information, which is important for scenes
with occlusion and a low resolution.
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After that, R is transposed and flattened by a convolution layer, and then dimensionally
expanded X′ features are added, and the result is reshaped into the dimension of the features
sent into the branches as feature R′. The above process can be summarized as

R′ = Reshape(X′ + conv(transpose&flatten(R))) (9)

Finally, R′ is cascaded with the initial input feature X. Then, the channel dimension is
adjusted by a 1 × 1 convolution layer to be consistent with the input X as the final output
Y. The above process can be summarized as

Y = conv1×1(Concat (R′, X)) (10)

Compared with the constantly stacked convolution and RNN operator, the above oper-
ation can quickly capture the long-range dependence by directly computing the relationship
between two spatial–temporal locations, and the high-dimensional global modeling of
long-range dependence can effectively improve the feature expression of deep response
maps, achieve the effect of pixel-level deep and shallow information balance and semantic
information optimization, and have higher computational efficiency.

3.4. Training Loss

For the prediction heads, after similarity matching and feature optimization of the
response map context encoder, the output tensor of dimension 25 × 25 × 256 is used as
the input data for each head. For the regression head, it outputs the regression maps Freg
∈ RH×W×4, where W denotes the width of the output feature map and H denotes the
height, both of which are 25; each pixel position of the 4-channel feature maps records the
distance from each corresponding position point to the 4 edges of the bounding box, noted
as the four-dimensional vector t(i, j) = (l, t, r, b), which can be calculated as follows:

l = x− x0; t = y− y0
r = x1 − x; b = y1 − y

(11)

where (x, y) denotes the location coordinates (i, j) of the search area corresponding to that
point, and (x0, y0) and (x1, y1) denote the coordinates of the ground truth.

For the classification head, we use the cross-entropy loss BCE to calculate the classifi-
cation loss:

Lcls = 0.5× BCE(δpos, I) + 0.5× BCE(δneg, I) (12)

where I is the ground truth, when calculating the BCE loss, and the fit with I denotes the
foreground and background scores corresponding to the specific location of the search area
branch, respectively.

We use the regression target boundary box T(i, j) and the prediction boundary box t(i, j)
to calculate the regression loss, which can be calculated by the following equation:

Lreg =
1

∑
(i,j)

I(i, j) ∑
(i,j)

I(i, j)× LIOU [T(i,j), t(i,j)] (13)

where LIOU

[
T(i,j), t(i,j)

]
means that the IOU loss of T(i,j) and t(i,j), I(i, j) is an indicator

function defined by:

I(i, j) =
{

1, (l, t, r, b > 0)
0, (otherwise)

(14)
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For the centrality head, it outputs a single channel of size 25 × 25 centrality feature
map Fcen ∈ RH×W×1 recording the centrality score C(i, j) at the corresponding position. The
centrality score is calculated as

Lcen =
1

∑ I(i, j) ∑
I(i,j)=1

C(i, j)× log R(i, j) + (1− C(i, j))× log(1− R(i, j)) (15)

where C(i, j) denotes the predicted centrality score for a specific location and R(i, j) repre-
sents the actual centrality score for this location.

The overall loss of the algorithm is as follows:

L = Lcls + α1Lcen + α2Lreg (16)

where Lcls, Lcen, and Lreg represent the classification loss, centrality loss, and regression loss,
respectively. α1 and α2 are used as weight hyperparameters to adjust the network and are
set to 1 and 3, respectively, during the training process.

4. Experiments and Discussion
4.1. Experiment Setup
4.1.1. Implementation Details

The experimental environment for the algorithms in this paper is set up as follows:
the operating system of the platform used is Windows 10, CUDA version 11.8, and the
Python 3.7 + pytorch 1.13 programming framework is used to train and verify the algo-
rithm performance. The hardware platform used is AMD Ryzen5 5600 for CPU and Nvidia
GeForce RTX3080 for GPU. The parameters in the training process were set as follows:
We trained the proposed network using COCO [41], GOT-10K [42], VID, and LaSOT [43]
datasets. To evaluate the generality and robustness of the proposed algorithm from mul-
tiple perspectives, the model is trained by applying a stochastic gradient descent SGD
optimizer with a momentum of 0.9, the batch size is set to 12, and a warm-up [44] training
strategy is used to freeze the ResNet50 backbone network in the first ten rounds of training
and unfreeze the backbone network in the second ten rounds for training, for a total of
20 iterations of the process. In our testing experiments, the traditional one-pass evaluation
(OPE) setup was used. That is, we run the tracker from the first frame to the end frame.
The tracker is initialized with the position of the first frame of the target in ground truth,
and then the tracker is run to obtain the average precision and success rate, during which it
is not initialized again.

4.1.2. UAV123 Benchmark

UAV123 [45] contains 123 image sequences collected by low-altitude UAVs, including
image sequences with various challenging features, including scale variation, low resolu-
tion, occlusion, etc., and is one of the authoritative datasets in the field of aerial tracking.
The UAV123 dataset involves the following attributes in general and aerial tracking scenes:
aspect rotation changes (ARC), background clutter (BC), fast motion (FM), full occlusion
(FOC), illumination variation (IV), out of view (OV), partial occlusion (POC), similar object
(SOB), and scale variation (SV), especially for aerial difficulties there are camera motion
(CM), low resolution (LR), and viewpoint change (VC). Success rate and Precision are used
as evaluation metrics. The center position error between the prediction box and the ground
truth within 20 pixels or a region overlap ratio within 50% are used as the criteria to dis-
criminate successful tracking in terms of Precision and success rate, respectively. The ratio
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of the number of frames judged to be successful to the total number of frames is defined as
the Precision and success rate, respectively. The Precision is calculated as follows:

CLE =
√
(xpr − xgt)

2 + (ypr − ygt)
2

f =

{
1, CLE < 20
0, CLE ≥ 20

Precision = ∑N
i=1 f
N

(17)

In this formula, (xpr, ypr) and (xgt, ygt) refer to the coordinates of the centers of the
prediction box and ground truth, and CLE refers to the Euclidean distance between their
centers. Accordingly, the success rate is calculated as follows:

S = IOU |Rpr∩Rgt|
|Rpr∪Rgt|

f =

{
1, S ≥ 0.5
0, S < 0.5

Success = ∑N
i=1 f
N

(18)

4.1.3. UAV20L Benchmark

UAV20L is the definitive benchmark for evaluating and analyzing long-duration
aerial tracking with 20 different long-duration video sequences of urban neighborhood
scenes. These 20 long-duration sequences include complex scenes in various types of urban
neighborhoods and challenging frame intervals, such as target occlusion, scale changes,
and disappearance of targets.

4.1.4. DTB70 Benchmark

DTB70 [46] contains 70 UAV video sequences and is one of the most commonly used
authoritative benchmarks for testing the comprehensive generalization performance of
algorithms in the field of aerial tracking. The video sequences contain numerous compre-
hensive and challenging scenarios such as occlusion, scale variation, and low resolution.
DTB70 also uses Precision and success rate as evaluation parameter metrics.

4.1.5. LaSOT Benchmark

LaSOT is a large-scale, high-quality, comprehensive benchmark for evaluating long-
term tracking performance, and is a commonly used authoritative dataset in the field of
target tracking, containing 280 long-term test video sequences of 70 object classes in a
variety of scenarios. The LaSOT dataset still uses Precision and success rates for tracking
effectiveness evaluation.

4.2. Ablation Studies

To verify the effectiveness of the proposed multi-phase aware strategy, CSE, MCD,
and RCE modules in this paper, we conduct a comprehensive analysis and discussion
of the effectiveness of the proposed method in aerial tracking scenes under the UAV123
benchmark and UVA20L benchmark, respectively, and conduct comprehensive and detailed
ablation experiments. First, we add a two-stage aware network (TAN) including CSE and
MCD to the framework for two benchmark evaluation experiments and compare the
tracking results before and after adding the TAN network; then, we verify the effectiveness
of adding the response map contextual encoder (RCE) proposed in this paper to the
framework and compare the tracking results on the two benchmark; finally, we add the
proposed TAN and RCE networks to the framework together and compare the tracking
results to determine the better performance improvement that would be achieved by adding
both together. As shown in Table 1, on the UAV123 benchmark, the RCE network improves
the success rate and Precision of the tracker by 0.6% and 1.3% compared to no addition,
reaching 62.1% and 80.5%, respectively. The MCD network improves the success rate and
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Precision of the tracker by 1.4% and 2.5% compared to no addition, reaching 62.9% and
81.7%, respectively. Adding all the networks ultimately improves the success rate and
Precision of the tracker by 2.4% and 3.8% compared to no addition, reaching 63.9% and
83.0%, respectively. On the UAV20L benchmark, the RCE network improved the success
rate and Precision of the tracker by 0.3% and 1.1% compared to non-addition, reaching
55.5% and 71.5%, respectively. The CSE network improves the success rate and Precision of
the tracker by 1.0% and 1.5%, reaching 56.2% and 71.9%, respectively, while adding all the
networks eventually improves the success rate and Precision of the tracker by 2.6% and
4.7%, reaching 57.8% and 75.1%, respectively, compared to non-addition.

Table 1. Ablation study on RCE, CSE, and MCD modules. The symbol 8 means that we add the
corresponding module to the baseline model.

NO RCE CSE MCD

UAV123 UAV20L

Pre
(%)

Succ
(%)

Pre
(%)

Succ
(%)

1 79.2 61.5 70.4 55.2
2 8 80.5 62.1 71.5 55.5
3 8 80.4 62.3 71.9 56.2
4 8 81.7 62.9 73.5 56.7
5 8 8 8 83.0 63.9 75.1 57.8

In summary, through the ablation experiments, we can conclude that the RCE, CSE,
and MCD modules contribute to the Precision and success rate improvement of the frame-
work to different degrees. The best performance can be obtained by using RCE, CSE, and
MCD simultaneously.

4.3. Comparison with State-of-the-Art Methods

We compare our proposed model with plenty of state-of-the-art methods in the field
of aerial tracking, including SiamCAR [16], SiamBAN [17], SiamTPN [18], HiFT [19],
SiamRPN [25], DaSiamRPN [27], SiamRPN++ [28], SiamFC++ [29], SiamAPN [30],
SiamAPN++ [31], SiamHAS [38], SE-SiamFC [39], SGD-ViT [40], SiamMask [47], Ocean [48],
ATOM [49], SiamDW [50], MDNet [51], SiamAttn [52], ECO [53], Neighbor Track [54], TC-
Track [55], ARTrack [56], MixFormer [57] and several recent traditional SOTA trackers
TMCS [58] and CFIT [59]. For a fair comparison, all the tracking results are provided by the
authors or achieved using available codes.

4.3.1. UAV123 Benchmark

(a) Overall performance:

Table 2 shows the success rate (Succ.) and Precision (Pre.) of the comparison track-
ers. Compared with the tracker with a similar architecture design such as SiamTPN, the
proposed SiamMAN has a great improvement, the success rate of which increased from
59.3% to 63.9%, and the Precision increased from 79.0% to 83.0%. It is observed that our
proposed SiamMAN ranks first in success rate and precision, outperforming all the selected
state-of-the-art trackers. This is mainly because the adaptive awareness networks used in
SiamMAN have advantages in measuring the edges of objects and in scenarios such as scale
changes, resulting in an advantage in terms of Precision and success rate. Furthermore, we
design a new architecture to adapt the characteristics of different levels of features in chal-
lenging scenarios to adaptively integrate regional features and the corresponding global
dependency information; the multiphase awareness network adopted by our SiamMAN
can realize long-distance contextual information aggregation, which can complete pixel-
level measurements more accurately and determine the centre position of the target more
precisely, and thus has an advantage in terms of success rate. The above description il-
lustrates the effectiveness of the multiphase awareness network used in SiamMAN. Also,
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SiamMAN ensures a high success rate and real-time requirements at faster speeds of 43 FPS
with the hardware RTX3080. Also, we perform a fair speed comparison experiment on our
RTX3080 platform based on the accessible codes of SiamBAN, SiamCAR, SiamHAS, Ocean,
SiamTPN, and HiFT with the same environmental parameter settings. The experiment
shows that SiamMAN achieves the same level of tracking speed and real-time performance
as the mainstream Siamese trackers. Additionally, SiamMAN obtains a score of 64.6%
in AUC and outperforms Ocean by 7.2 percentage points, which is a huge improvement
relative to the mainstream, non-large model SOTA tracker.

Table 2. UAV123 benchmark comparison results. The bold font is the best score.

Metrics SiamMAN SiamBAN SiamHAS Ocean SiamCAR SiamTPN HiFT SiamFC
++

Neighbor
Track ARTrack Mix-Former

Succ (%) 63.9 63.1 62.7 62.1 61.4 59.3 58.9 54.9 - - -
Pre (%) 83.0 82.8 82.0 82.3 80.4 79.0 78.7 76.5 - - -

AUC (%) 64.6 62.5 63.1 57.4 60.8 - - - 72.5 71.2 70.4
Hardware

for FPS
Test

RTX3080 RTX3080 RTX3080 RTX3080 RTX3080 RTX3080 RTX3080 GTX2080Ti - RTX
3090 GTX1080Ti

FPS 43 45 46 56 49 108 135 70 - 45 25

(b) Performance under different challenges:

Tables 3 and 4 show the comparison of the success rate and Precision of the trackers
in ten groups of video sequences, including LR, POC, OV, VC, CM, and SOB challenges.
Compared with the contrast trackers, it can be observed that, in the majority of cases, our
proposed SiamMAN tracker achieves the best or second evaluation results compared to
the state-of-the-art tracker, such as viewpoint change, fast movement, scale change, and
low resolution, demonstrating the effectiveness of the proposed method in improving the
performance in challenging scenarios. Specifically, for scenes including LR, POC, and VC
attributes, such as Bike3, Car15, Person21, and Car1_s, SiamMAN obtains the best scores in
success rate. For scenes including SOB, POC, and CM attributes, such as Bike3, Person21,
and Car1_s, SiamMAN obtains the best scores in precision.

Table 3. The success rate achieved by the SimMAN tracker and other eight trackers on ten
videos in the UAV123 benchmark. The best and the second-best results are highlighted in red
and green, respectively.

Video Attribute SiamMAN SiamBAN SiamHAS Ocean SiamCAR SiamTPN HiFT TMCS SiamFC++

Bike3 LR POC 66.5 14.1 44.2 55.8 16.3 50.7 18.0 17.8 17.6
Boat5 VC 88.6 88.5 85.8 88.5 87.4 87.7 81.6 38.7 89.0

Building5 CM 78.8 42.3 54.7 59.6 71.4 81.6 81.9 99.8 89.1
Car15 LR POC SOB 69.9 68.0 65.7 5.0 63.9 3.5 5.1 49.1 39.9

Person21 LR POC VC SOB 49.1 41.4 26.3 37.4 33.6 22.8 26.2 28.7 19.2
Truck2 LR POC 32.7 31.5 78.2 79.3 34.2 19.9 31.8 88.5 65.7
Uav4 LR SOB 23.6 6.4 8.4 49.7 7.7 2.5 8.6 8.9 8.1

Wakeboard2 VC CM 73.2 75.3 74.7 74.5 73.5 73.7 69.8 26.1 18.8
Car1_s POC OV VC CM 74.1 30.3 33.0 35.5 39.5 37.9 30.8 23.2 26.7

Person3_s POC OV CM 79.4 79.3 77.7 78.3 73.2 80.4 72.1 48.3 39.9

Why could SiamMAN effectively cope with the challenging attributes? Thanks to the
designed multi-phase awareness network adapted to different levels of feature characteris-
tics, our SiamMAN has a powerful multi-level global long-range dependency modelling
capability, which meets the demands of long-range contextual relationships well in scenes
such as target occlusion and scale viewpoint change. In addition, the designed RCE module
utilizes contextual information to accomplish pixel-level updating of deeper semantic
features, which is critical for small targets and low-resolution scenes that are extremely
sensitive to deep semantic information. Especially in the uniquely challenging attributes
of aerial tracking, SiamMAN’s performance shows great advantages. Compared to the
traditional method such as TMCS, SiamMAN demonstrates absolute superiority under the
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vast majority of attribute challenges. SiamMAN offers a novel and efficient approach in
the field of aerial tracking. In addition, we observe that the proposed method is inferior
to Ocean in terms of success rate and precision in the attributes of POC and CM, which
may be because the template update strategy adopted by Ocean can better adapt to the
real-time changes of the target aspect ratio features, and the incorporation of the online
update feature extraction strategy will be an important further research direction for further
study and improvement of our research.

Table 4. The precision achieved by the SimMAN tracker and other eight trackers on ten videos
in the UAV123 benchmark. The best and the second-best results are highlighted in red and
green, respectively.

Video Attribute SiamMAN SiamBAN SiamHAS Ocean SiamCAR SiamTPN HiFT TMCS SiamFC++

Bike3 LR POC 94.6 34.7 91.7 92.2 34.5 74.4 49.1 65.5 17.6
Boat5 VC 92.6 93.8 90.6 92.6 92.1 93.2 90.1 37.6 89.0

Building5 CM 92.4 87.0 92.3 91.2 93.4 92.7 93.8 99.8 89.1
Car15 LR POC SOB 96.7 96.3 96.7 11.2 96.5 8.0 11.1 99.7 39.9

Person21 LR POC VC SOB 85.9 73.2 50.1 66.6 61.3 39.3 63.3 73.9 19.2
Truck2 LR POC 41.4 42.2 94.4 93.7 41.4 32.3 41.1 99.7 65.7
Uav4 LR SOB 42.7 19.9 20.2 76.8 20.2 5.3 21.0 19.8 8.1

Wakeboard2 VC CM 87.7 88.7 89.0 89.5 89.2 90.4 88.3 64.6 18.8
Car1_s POC OV VC CM 91.7 36.5 40.8 42.3 48.2 42.6 41.5 21.0 26.7

Person3_s POC OV CM 80.7 79.7 78.2 82.0 71.6 80.3 75.9 55.8 39.9

(c) Qualitative evaluation:

To visualize the actual tracking performance of the proposed SiamMAN in various
challenging scenarios compared with other advanced trackers and further discuss its
performance, we visualized and compared the tracking results of seven video sequences
containing various challenging scenarios in the UAV123 benchmark test, as shown in
Figure 4. In the video sequences containing target occlusion scenes such as bike2_1, car7_1,
person21, etc., only SiamMAN completes tracking in the face of the occlusion scenes,
while all other trackers show tracking drift or failure, verifying that the TAN network can
enhance tracking performance in scenes lacking target information using long-range global
dependency modelling. In the video sequences containing low-resolution, fast-moving
scenes such as Uav1_1 and Uav3_1, SiamMAN overcomes the effects of low-resolution
and background clutter to complete tracking, while the rest of the trackers all fail to track.
This further verifies the robustness of the SiamMAN in this paper in the face of complex
scenes containing multiple challenging scenes and also demonstrates the effectiveness of
the RCE network to extract global contextual features to accomplish pixel-level updating of
deeper semantic features for tracking performance improvement in small-target tracking
and low-resolution scenes that are extremely sensitive to deep semantic information.

The above seven tracking sequences demonstrate that the SiamMAN proposed in this
paper has excellent robustness and tracking performance in scenarios such as scale change,
occlusion, background clutter, and fast motion. It can be seen that the tracker’s tracking
accuracy is greatly improved when measuring small targets and in low-resolution scenarios,
which is mainly due to the RCE module that can utilize the contextual information for pixel-
level updating of deep semantic features. As for the occlusion and scale viewpoint change
scenarios, the anchor-free strategy and the powerful long-range dependency modeling
capability of the TAN module could measure the objects more accurately, which not only
overcomes occlusion and other interferences but also further improves the tracking accuracy
of the prediction boxes. SiamMAN provides a new and efficient tracking method for the
aerial tracking field.
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4.3.2. UAV20L Benchmark

To evaluate the performance of the proposed SiamMAN in a long-time aerial target
tracking scenario, we compared it with eight other state-of-the-art trackers in the UAV20L
benchmark, and the obtained results are shown in Table 5. The experiments show that
our tracker achieves the best results (precision score: 75.1%, success rate: 57.8%), with
a Precision score of 1.5% higher than SiamAPN++ and a success rate of 1.8% higher
than SiamAPN++. Compared to the traditional methods that have already been used for
long-duration tracking, such as CFIT, our SiamMAN has made great progress in terms
of Precision and success rate, with a 22.1% increase in the success rate and a significant
increase in Precision of 25.9%. Thanks to the multi-phase awareness network adapted to
the characteristics of different levels, SiamMAN can aggregate long-range dependency
information for different level characteristics, avoiding the circumstance that the short-
time loss of target features may affect the long-time target tracking and the accuracy of
tracking. It can be seen that SiamMAN can obtain long-range global dependency modeling
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information through the multi-phase aware mechanism and can cope well with the scenario
of long-time tracking.

Table 5. UAV20L benchmark comparison results. The bold font is the best score.

NO Metrics SiamMAN SiamHAS Siam
APN++ HiFT SiamAPN SiamFC++ SiamRPN TCTrack SGDViT CFIT

1 Succ
(%) 57.8 57.3 56.0 55.3 53.9 53.3 52.8 51.1 50.5 35.7

2 Pre (%) 75.1 74.5 73.6 73.6 72.1 69.5 69.6 68.6 67.3 49.2

4.3.3. DTB70 Benchmark

We compare our proposed method with seven SOTA trackers on the DTB70 benchmark,
and the success and Precision plots are shown in Table 6, both of which show that our
SiamMAN achieves excellent performance compared with other advanced trackers, with
a success rate of 64.9% and a Precision of 83.6%. Compared with SGDViT, the success
rate is improved by 1.9%, and compared with SiamAttn, the Precision is improved by
1.0%. It can be seen that the multiphase awareness network adopted by SiamMAN is more
effective compared to the attention networks adopted by SiamAttn, which can obtain the
context-dependent update feature expression adapted to different levels from the global
perspective, achieve better expression of positional feature information at the shallow level,
and achieve better expression of feature expression of semantic information at the deeper
level, and better balance between deep and shallow levels of information, at the same time
as achieving better performance for the aerial tracking tasks. Also, we can see that SGDViT
obtains a success of 63.0%, which is mainly because it employs a large-scale transformer
structure that can better measure the foreground and background properties of the target’s
edge pixels. However, the high computational effort makes it difficult to apply to real-time
tracking. In contrast, our SiamMAN achieves a better balance between performance and
computational effort.

Table 6. DTB70 benchmark comparison results. The best and the second-best results are highlighted
in red and green, respectively.

NO Metrics SiamMAN SiamAttn SGDViT TCTrack HiFT SiamAPN++ SE-SiamFC Ocean

1 Succ (%) 64.9 64.5 63.0 62.2 59.4 59.4 48.7 45.6
2 Pre (%) 83.6 82.6 80.6 81.3 82.0 79.0 73.5 69.2

4.3.4. LaSOT Benchmark

To evaluate the performance of SiamMAN for long-time tracking generalization in
more types of scenarios, we compare the proposed method with nine advanced trackers, as
shown in Figure 5.

SiamMAN achieves the best results in both evaluation metrics of success plot and
Precision plot (precision: 53.1%, success rate 52.8%), with the Precision score improving
by 3.4% over ATOM and success rate improving by 6.1% over SiamMask. Compared
to the Siamese family of trackers that utilize a similar architecture, such as SiamCAR,
SimMAN offers a 0.7% improvement in Precision and a 1.1% improvement in success
rate. It can be seen that SiamMAN shows good performance for long-time target track-
ing on the LaSOT benchmark, which contains more generalized scenes. The ability to
achieve such enhancements on extremely challenging and large comprehensive datasets
further elucidates the contribution of the proposed multiphase awareness network to the
performance enhancement of the Siamese tracker. The TAN module accomplishes the
information exchange in global view at a relatively shallow feature level, which makes the
spatial information feature representation more accurate and enhances the model’s ability
to deal with the tracking tasks in the scenes of occlusion, change in view angle, and fast
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motion, etc., which have a high demand for spatial information. The RCE module utilizes
contextual information at a deeper level to complete the pixel-level updating of semantic
information, which helps the model to more accurately measure the position of objects
at the pixel level in small targets, low resolution, and other scenarios that have a high
demand for semantic information. It can be said that the proposed SiamMAN completes
the optimization of feature representation in multi-layer features adaptatively and has
excellent generalization for the accurate tracking of objects in multiple scenes, providing a
new method with excellent generalization and high efficiency in the field of target tracking.
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4.4. Heatmap Comparison Experiments

To more intuitively demonstrate the performance improvement of the proposed mod-
ules with a Siamese tracker for regions of interest in specific challenging video sequences,
and further validate the performance improvement of the proposed two-stage aware net-
work and response map context encoder in optimizing challenging scenarios, we selected
an image sequence bike1 from the UAV123 benchmark for the heatmap experiments, and
we added the proposed three functional modules RCE, CSE, and MCD modules to the
model in turn, and the heatmaps of the three scenarios are shown in Figure 6. It can be
seen that before adding the modules, the tracker’s heatmap area is very fragmented, which
means that the tracker’s attention is easily affected by distractions rather than focusing
on the target’s own features. After adding the RCE module, the distraction of the tracker
is significantly improved, which is mainly due to the pixel-level optimization of the RCE
module for deep semantic features. After adding the CSE module, the tracker’s attention
area is more focused on the target itself, which is mainly due to the ability of the CSE
module to obtain long-distance relevance that allows the model to focus on more levels of
features of the target. After adding the MCD module, the tracker’s heatmap area is more
concentrated, which is mainly due to the powerful global relevance extraction ability of
the MCD module, which can obtain a more accurate representation of the target’s features.
Meanwhile, we can see that the SiamMAN tracker containing three functional modules
achieves the optimal heatmap area covering the target region, and the multiple functional
modules ultimately make our SiamMAN have better accuracy and robustness.
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4.5. Real-World Tests

In this section, we deploy our tracker on the UAV onboard embedded platform Jetson
kits to test its practicability in real-world scenes. During the real-world tests, the utilization
of the GPU and CPU is 71% and 36.8% on average. The challenging scenes in the real-world
tests include scale variation, occlusion, motion blur, and low resolution. Our real-world
tracking results using the UAV platform are shown in Figure 7. It can be seen that our
tracker can accurately track the pedestrian by extracting global relevance when facing
a complex background and small-target tracking scenarios (real-world subset1). When
facing a similar object interference (real-world subset2) scenario, SiamMAN can effectively
distinguish the target object. In the scenario of changing viewpoints (real-world subset3),
SiamMAN can effectively perform the tracking task under different viewpoints due to its
strong spatial and temporal dependency modeling capability. Finally, our tracker remains
at a speed of over 20 FPS during the tests.



Drones 2023, 7, 707 19 of 22

Drones 2023, 7, x FOR PEER REVIEW 19 of 22 
 

due to its strong spatial and temporal dependency modeling capability. Finally, our 
tracker remains at a speed of over 20 FPS during the tests. 

 
Figure 7. Results of real-world tests on the embedded platform. The tracking targets are marked 
with red boxes. 

5. Conclusions 
In this work, we propose a new multi-phase aware framework integrated into the 

Siamese tracker to achieve performance improvement of the algorithm in various chal-
lenging scenarios. Specifically, firstly, we propose a response map context encoder (RCE) 
to enable deep features to aggregate more contextual information and better balance the 
deep semantic information to enhance the tracker’s ability to distinguish target features 
among deep semantic information. Secondly, we propose a two-stage aware neck which 
includes the multi-level contextual decoder (MCD) and cascade splitting encoder (CSE) 
modules to aggregate more long-range spatial–temporal information across channels to 
achieve global modeling and enhance the tracker’s ability to cope with complex scenarios 
such as target occlusion and scale change. Finally, the new multi-phase aware feature-
optimized functional structure is efficiently integrated into the tracker framework. Com-
prehensive and extensive experiments validate the effectiveness of our proposed neural 
network framework. Overall, we believe that our work can boost the development within 
the field of remote sensing, aerial tracking, and learning systems. 

Author Contributions: Conceptualization, F.L.; methodology, F.L.; project administration, X.W.; re-
sources, J.L. and C.L.; software, F.L.; validation, F.L.; investigation, F.L., Q.C. and J.L.; visualization, 
F.L.; writing—original draft preparation, F.L.; writing—review and editing, Q.C. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This work was supported by the National Natural Science Foundation of China under 
Grant 61905240 and the National Natural Youth Science Foundation of China under Grant 62105326. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are contained within the article. 

Acknowledgments: The authors are grateful for the anonymous reviewers’ critical comments and 
constructive suggestions. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 7. Results of real-world tests on the embedded platform. The tracking targets are marked with
red boxes.

5. Conclusions

In this work, we propose a new multi-phase aware framework integrated into the
Siamese tracker to achieve performance improvement of the algorithm in various challeng-
ing scenarios. Specifically, firstly, we propose a response map context encoder (RCE) to
enable deep features to aggregate more contextual information and better balance the deep
semantic information to enhance the tracker’s ability to distinguish target features among
deep semantic information. Secondly, we propose a two-stage aware neck which includes
the multi-level contextual decoder (MCD) and cascade splitting encoder (CSE) modules
to aggregate more long-range spatial–temporal information across channels to achieve
global modeling and enhance the tracker’s ability to cope with complex scenarios such as
target occlusion and scale change. Finally, the new multi-phase aware feature-optimized
functional structure is efficiently integrated into the tracker framework. Comprehensive
and extensive experiments validate the effectiveness of our proposed neural network frame-
work. Overall, we believe that our work can boost the development within the field of
remote sensing, aerial tracking, and learning systems.
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