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Abstract: This paper presents a fixed-time extended state observer-based adaptive sliding mode
controller evaluated in a quadrotor unmanned aerial vehicle subject to severe turbulent wind while
executing a desired trajectory. Since both the state and model of the system are assumed to be
partially known, the observer, whose convergence is independent from the initial states of the system,
estimates the full state, model uncertainties, and the effects of turbulent wind in fixed time. Such
information is then compensated via feedback control conducted by a class of adaptive sliding mode
controller, which is robust to perturbations and reduces the chattering effect by non-overestimating
its adaptive gain. Furthermore, the stability of the closed-loop system is analyzed by means of the
Lyapunov theory. Finally, simulation results validate the feasibility and advantages of the proposed
strategy, where the observer enhances performance. For further demonstration, a comparison with
an existent approach is provided.

Keywords: fixed-time extended state observer; adaptive sliding mode control; robust control;
disturbance rejection; wind turbulence; quadrotor UAV

1. Introduction

External disturbances due to wind produce adverse effects on quadrotor unmanned
aerial vehicles (UAVs) when flying outdoors. Depending on its intensity, the rotorcraft
can suffer from small erratic movements to complete system instability. To avoid the
latter, advanced robust control strategies such as [1–5] have been proposed to handle the
nonlinearities of the UAV in perturbed conditions. However, their rejection against strong
enough disturbances tends to be slow since it relies on a feedback regulation defined by
the error between the states of the quadrotor and their respective setpoints [6]. Moreover, it
has been proven in [7,8] that the vehicle can maintain its flight stability but cannot execute
proper trajectory tracking. Thus, approaches such as [9–12] employ a disturbance rejection
method where the total disturbance affecting the system is estimated through a disturbance
observer and later compensated on the control inputs of the robot.

Frequently, external perturbations are established as step or periodic functions [13–17].
However, such functions do not reflect the actual wind dynamics. Although wind evolution
is hard to describe mathematically due to its random conduct, the US Military standard MIL-
STD-1797A [18] endorses the Dryden and Von Karman wind models to analyze the performance
of aerial vehicles in environments that involve turbulent air behavior at different altitude levels.
These numerical approximations are implemented in Rodriguez-Mata et al. [19] where a nonlinear
high-gain disturbance observer-based PD attitude controller is designed for a quadrotor UAV.
The effects of the wind disturbances represented by the Dryden model are analyzed through the
evolution of the torque of the motors. In Zhang et al. [20], disturbance observer-based backstep-
ping and sliding mode controllers are developed to manage the linear and angular dynamics of a
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rotorcraft, respectively. Furthermore, the approaches from Aboudonia et al. [21,22] present a dis-
turbance observer-linear feedback control scheme for a quadrotor UAV susceptible to mismatched
perturbations. The low-altitude turbulent wind effects are analyzed in the mathematical model of
the rotorcraft as drag forces that actuate over the vehicle. Moreover, the same authors propose a
disturbance observer-sliding mode strategy for a quadrotor UAV considering partial motor failure.
The wind turbulent field given by the Von Karman model is also analyzed in the form of drag
forces [23].

Previous designs require the complete knowledge of the full-state measurements
of the system which may not be available due to a lack of instruments or sensor noise
conditions. Then, in [24], Han proposes an active disturbance rejection controller where an
extended state observer (ESO) provides estimations of both the full-state and slow time-
varying perturbations and uncertainties by adding an extra state to the mathematical model
of the plant. Following the prior approach, the authors of [25] propose a backstepping-
sliding mode strategy to control a quadrotor using the measurement and disturbance
estimations from a linear ESO. Additionally, Shao et al. [26] introduce an ESO-based
dynamic surface controller that improves the performance of a backstepping scheme.
However, its robustness against external disturbances can still be enhanced by employing
a sliding mode controller instead. Then, in ref. [27], the authors present a nonlinear
extended state observer-based fuzzy sliding mode technique to drive the pose of a rotorcraft.
Considering a first-order sliding method as the auxiliary controller, a fuzzy logic approach
is implemented to attenuate the chattering of the control inputs of the vehicle. Nonetheless,
the effectiveness of this strategy in reducing the chattering effect strongly depends on an
appropriate number of fuzzy rules and heuristics which may not provide results as good
as a defined adjustment function.

On the other hand, to guarantee the complete stability of the quadrotor UAV under
an observer-based control scheme, the convergence of the observer must be much faster
than the convergence of the controller. Extended state observers with asymptotic and
finite-time equilibrium achievement are proposed in [28,29], respectively. Even though
finite-time strategies offer a better performance regarding estimation and error reduction,
their convergence time increases as the initial conditions of the error of the system rise. In
addition, these values could be unknown during practice. As a solution, in [30], Polyakov
introduces a fixed-time stable system whose convergence is independent from its initial
conditions. This approach has been adopted for the design of ESO-based controllers
in [31–34]. In that sense, Mechali et al. [35] make a complete analysis of the feasibility of
fixed-time ESO-based terminal sliding mode schemes for the position and attitude driving
of a quadrotor UAVs subject to external disturbances described by the Dryden wind model.
Similarly, Li et al. [36] introduce a fixed-time ESO-based dynamic surface control whose
design follows a fast terminal sliding mode approach. Nevertheless, different from real
conditions, the authors consider external disturbances in the form of periodic functions
only. Finally, Liu et al. [37] present the design of an ESO-based algorithm for a fixed-wing
UAV. The observer is employed to estimate the uncertainties that affect the vehicle when
performing a high angle of attack. Nonetheless, prior approaches rely on fixed-gain control
strategies with heuristically chosen parameters. This may lead to the implementation of
larger gains than necessary, resulting in excessive energy delivery and possible overfitting of
the controller. To avoid the latter, adaptive strategies can be designed to provide the proper
amount of control effort to the system without overestimating the control parameters.

Then, the main contribution of this paper relies on the design of a fixed-time extended
state observer (FxtESO)-based adaptive sliding mode controller (ASMC) for a quadrotor
UAV subject to severe wind turbulent gusts described by the Von Karman model. Through
the assumption of partial state measurements, the FxtESO provides estimations regarding
the full state of the UAV, the complex random behavior of the turbulent wind gust, and
model uncertainties in fixed time, independently of the initial state and without complete
knowledge of the system. The flight control is performed by the ASMC, which offers
properties such as robustness against bounded external perturbations and uncertainties,
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chattering attenuation due to the adjustment of its adaptive gain, and practical finite-time
state convergence. Furthermore, the closed-loop stability of the system is guaranteed
through an analysis based on the Lyapunov theory. Simulation results demonstrate the
improvements in the performance of the rotorcraft due to the implementation of the
observer. Moreover, the effectiveness and advantages such as robustness, estimation of
the full state and perturbations and its adaptive control gain, which modulates the control
input as needed of the proposed approach are compared with an existing observed-based
control methodology.

The paper is divided as follows: Section 2 addresses the dynamics of the quadrotor
UAV and the Von Karman turbulent wind model. The design of the FxtESO-based ASMC
scheme is described in Section 3. Simulation results are revealed and discussed in Section 4.
Finally, the conclusions are presented in Section 5.

2. Preliminaries

The definitions and lemmas that sustain the FxtESO-based ASMC scheme are ad-
dressed. First, we assume a scalar state x ∈ R and a nonlinear function
sigr(x) = |x|rsign(x), with r ∈ (0, 1), |x| as the absolute value of x, and

sign(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

. (1)

Now, we consider the following single-input single-output (SISO) nonlinear system with
control input U ∈ R:

ẋ = f (x, U), x0 = x(t0). (2)

Definition 1 ([38]). The equilibrium point x = 0 is asymptotically stable if there is a continuously
differentiable function V that fulfills V(0) = 0, and V > 0, V̇ < 0 for all x− {0} that exists in the
domain of solutions of (2).

Definition 2 ([39]). The origin of (2) is finite-time stable if it is asymptotically stable and any
solution of the system achieves the equilibrium point x = 0 after a time Tm(x0). In other words,
x(t, x0) = 0, ∀t ≥ Tm(x0).

Definition 3 ([40]). The solution of system (2) is said to be practical finite-time stable if, with ∀x0,
there is value Γ > 0 and time Tk(Γ, x0) < ∞ that satisfy |x(t)| < Γ, ∀t ≥ t0 + Tk(Γ, x0)

Definition 4 ([41,42]). The origin of (2) is fixed-time stable if it is globally finite-time stable and
there is a bounded settling time function Tf (x) such that 0 < Tf ≤ Tmax.

Lemma 1 ([43]). System

ϑ̇1 = ϑ2 −κ1|ϑ1|v1sign(ϑ1)

ϑ̇2 = ϑ3 −κ2|ϑ1|v2sign(ϑ1)

...

ϑ̇n−1 = ϑn −κn−1|ϑ1|vn−1sign(ϑ1)

ϑ̇n = −κn|ϑ1|vn sign(ϑ1)

v1 = v̄

is homogeneous of degree v̄− 1 with respect to weights {(i− 1)v̄− (i− 2)} for 1 ≤ i ≤ n and
vi = iv̄− (i− 1) for 2 ≤ i ≤ n, if v̄ > 1− 1

n−1 .
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Lemma 2 ([44]). We assume that vector field ν f is homogeneous of degree k with respect to vector
field νg. Then, the origin is a finite-time-stable equilibrium under ν f if and only if the origin is an
asymptotically stable equilibrium under ν f and k < 0.

Lemma 3 ([30]). We assume that there is a continuous unbounded function V. We set
Θs ⊂ Rn; it is globally fixed-time attractive if V(q) = 0 ⇒ q ∈ Θs and any q(t) satisfies
V̇(q) ≤ −(αVa(q(t)) + βVb(q(t)))c for α, β, a, b, c > 0, with ac < 1, bc > 1, and settling
time function

Tf ≤
1

αc(1− ac)
+

1
βc(bc− 1)

. (3)

Lemma 4 ([40,45]). We consider system (2) and suppose that there is a continuous function V(x)
that fulfills V(0) = 0 and V(x) ∈ R+, ∀x 6= 0. Then, the origin of (2) is practical finite-time
stable if

V̇(x) ≤ −hV(x)L +W , (4)

where h,W > 0 and 0 < L < 1. Moreover, the trajectories of x are bounded in finite-time as

lim
Y→Y0

x ∈
(
VL(x) ≤ W

(1−L)h

)
, (5)

with 0 < Y ≤ 1, 0 < Y0 < 1 and settling time function

Tk ≤
V1−L(x0)

hY0(1−L)
. (6)

3. UAV Dynamics and the Von Karman Wind Model

In this section, the mathematical expressions that describe both rotorcraft and external
disturbances in the form of turbulent wind are introduced. The Newton–Euler dynamics of
the quadrotor contemplate an inertial reference frame (X0, Y0, Z0) with origin at a point in
the Earth and a body reference frame (X1, Y1, Z1) with origin in the center of mass of the
UAV (see Figure 1). Moreover, the angular dynamics is considered to be the same in both
frames since we assume small roll and pitch rotations [46]. Then, the equations of motion
of the aerial vehicle are defined as

ḋ = Rv, (7)

mv̇ = f−mω× v, (8)

f = −The3 + R−1mge3 + R−1δ, (9)

Θ̇ = ω, (10)

ω̇ = J−1(τ −ω× Jω), (11)

where d = [x, y, z]T represents the inertial frame linear position of the UAV, v = [u, v, w]T

is the body frame linear velocity, Θ = [φ, θ, ψ]T is the attitude of the UAV, while ω is its
angular velocity; R is the body to inertial frame rotation matrix, vector f involves the linear
forces that influence the quadrotor, δ = [δx, δy, δz]T describes the external disturbances that
affect the quadrotor, Th is the total thrust of the four motors, i.e., Th = Th1 + Th2 + Th3 + Th4,
m is the mass of the aerial vehicle, g is the gravity acceleration, and e3 = [0, 0, 1]T is a
direction vector. Furthermore, assuming mechanical symmetry, the inertia matrix J is
established as

J =

Jxx 0 0
0 Jyy 0
0 0 Jzz

. (12)
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Finally, the torques generated by the motors are defined in vector τ = [τφ, τθ , τψ]T , whereτφ

τθ

τψ

 =

l sin(π/4)(Th1 − Th2 − Th3 + Th4)
l sin(π/4)(Th1 + Th2 − Th3 − Th4)

−τ1 + τ2 − τ3 + τ4

, (13)

with l as the distance from the center of each motor to the center of mass of the UAV,
sin(π/4) as the angle between them, and Thi, τi for i = 1, 2, 3, 4 as the thrust and torque
from each motor, respectively, which can be expressed as

Thi = CTΩ2
i , (14)

τi = CτΩ2
i . (15)

with CT as the thrust constant, Cτ as the moment constant, and Ωi as the angular velocity
of motor i. Now, assuming the existence of model uncertainties regarding the angular
dynamics and the mass of the rotorcraft, the inertial frame equations of motion of the
quadrotor are rewritten in the scalar form as

φ̈ =
τφ

Jxx
, (16)

θ̈ =
τθ

Jyy
, (17)

ψ̈ =
τψ

Jzz
, (18)

ẍ =
Th
mu

(sφsψ + cφcψsθ) +
δx(t)
mu

, (19)

ÿ =
Th
mu

(cφsψsθ + cψsφ) +
δy(t)
mu

, (20)

z̈ =
Th
mu

(cφcθ) + g +
δz(t)
mu

, (21)

where mu is a nominal value of m such that mu ≈ m while s? and c? are the sine and cosine
functions, respectively. External disturbance terms δx, δy, and δz are analyzed as drag forces
due to turbulent wind through the following equation [23]:

δ∗ = −
1
2

ρB∗A∗(ḋ∗ − vw∗)
2sign(ḋ∗ − vw∗), (22)

where ∗ = {x, y, z}, ρ is the air density, B is the drag coefficient in the inertial frame axis; A
is the area of the quadrotor in each axis plane, and vw∗ is the inertial frame wind velocity
given by

vwx = v̄wx + ζu,

vwy = v̄wy + ζv, (23)

vwz = v̄wz + ζw,

where v̄w∗ is the inertial frame mean wind velocity while ζu, ζv and ζw are wind deviations
described by the Von Karman wind turbulence model [47]:
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ζu(S)
nu(S)

=
ηu

√
2Lu
πV (1 + 0.25 Lu

V S)

1 + 1.357 Lu
V S + 0.1987( Lu

V )2S2
, (24)

ζv(S)
nv(S)

=
ηv

√
Lv
πV (1 + 2.7478 Lv

V S + 0.3398( Lv
V )2S2)

1 + 2.9958 Lv
V S + 1.9754( Lv

V )2S2 + 0.1539( Lv
V )3S3

, (25)

ζw(S)
nw(S)

=
ηw

√
Lw
πV (1 + 2.7478 Lw

V S + 0.3398( Lw
V )2S2)

1 + 2.9958 Lw
V S + 1.9754( Lw

V )2S2 + 0.1539( Lw
V )3S3

, (26)

with white noise signals nu, nv, nw and low-altitude parameters

Lw = z, (27)

Lu = Lv =
z

(0.177 + 0.000823z)1.2 , (28)

and

ηw = 0.1W20, (29)

ηu = ηv =
ηw

(0.177 + 0.000823z)0.4 , (30)

where Lu, Lv, and Lw are turbulence scale lengths, and

V =
√
(ḋx − vwx)2 + (ḋy − vwy)2 + (ḋz − vwz)2. (31)

Terms ηu, ηv, and ηw depend on W20, whose value denotes the wind velocity at an altitude
of 6 m according to regulation MIL-HDBK-1797 [18] and specifies whether the turbulence
intensity is light (W20 = 15 knots), moderate (W20 = 30 knots), or severe (W20 = 45 knots).

Figure 1. Quadrotor UAV. Reference frames.

4. FxtESO-Based ASMC Design

This section describes the design of a fixed-time extended state observer-based adap-
tive sliding mode strategy. The control objective is to drive a quadrotor UAV while tracking
a desired trajectory in the presence of turbulent wind gusts. Assuming that the position
measurements of the quadrotor are the only available states, the FxtESO supplies full-state
and disturbance estimations within fixed-time convergence, whereas the ASMC drives
the pose of the quadrotor while providing practical finite-time convergence of the state,
robustness against bounded external disturbances and model uncertainties, and chattering
attenuation. Then, the flight control scheme is composed of an inner loop that deals with
the fast dynamics of the vehicle and an outer loop that handles the linear position of the
UAV and the external disturbances rejection; see Figure 2.
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Figure 2. FxtESO−based ASMC scheme.

4.1. Fixed-Time Extended State Observer

We consider the following SISO nonlinear system:

ξ̇1 = ξ2, (32)

ξ̇2 = a(ξ) + b(ξ)ur, (33)

c = ξ1, (34)

where ξ = [ξ1, ξ2]
T denotes the state variables, ur is the control input, c is the output of

the system, and a(ξ), b(ξ) are continuously differentiable functions. Now, extending to a
third-order system, we have

ξ̇1 = ξ2, (35)

ξ̇2 = ξ3 + b̂(ξ)ur, (36)

ξ̇3 = γ(ξ), (37)

c = ξ1, (38)

where |b̂(ξ)| > 0 is a bounded nominal model of b(ξ), and ξ3 = ∆δ + â(ξ) is a continuously
differentiable and globally bounded augmented state that describes the total disturbance
composed of those external perturbations and model uncertainties affecting the system.
Finally, |γ(ξ)| ≥ 0 denotes the dynamics of the extended state. Moreover, estimations of
state variables ξ1, ξ2 and ξ3 are given by FxtESO [48]:

˙̂ξ1 = ξ̂2 + κ1sigα1(ξ̃) + ε1sigβ1(ξ̃),
˙̂ξ2 = ξ̂3 + κ2sigα2(ξ̃) + ε2sigβ2(ξ̃) + b̂(ξ)ur, (39)
˙̂ξ3 = κ3sigα3(ξ̃) + ε3sigβ3(ξ̃) + χsign(ξ̃),

with estimation error ξ̃ = ξ1 − ξ̂1, parameters κ1, κ2, κ3, ε1, ε2, ε3 ∈ R+, and χ > |γ(ξ)|.
Considering a small enough scalar ϕ1, parameters α1,2,3 are defined as α1 ∈ (1− ϕ1, 1),
α2 = 2α1 − 1, and α3 = 3α1 − 2. In that sense, by choosing ϕ2 to be sufficiently small, terms
β1,2,3 are established as β1 ∈ (1, 1 + ϕ2), β2 = 2β1 − 1, and β3 = 3β1 − 2. Furthermore, by
taking Equation (36), the control law of the augmented system yields

ur =
−ξ̂3 + νa

b̂(ξ̂)
, (40)

with νa as an auxiliary control strategy designed to control the positioning and orientation
of the quadrotor UAV.
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4.2. Attitude Controller

In order to design a controller for the rotational motion, the angular dynamics equa-
tions of the quadrotor are rewritten as

v̇ = a(v) + b(v)τ, (41)

ca = ςa(v)v, (42)

with states vector v = [φ, φ̇, θ, θ̇, ψ, ψ̇]T , control input τ = [τφ, τθ , τψ]T , ςa(v) ∈ R3×6, and
ca = [φ, θ, ψ]T as the available state. Introducing the desired states vd = [φd, φ̇d, θd, θ̇d, ψd, ψ̇d]

T

and the error vector ea = [φ− φd, θ − θd, ψ− ψd]
T , a sliding surface vector is designed as

σv = λaea + ėa, (43)

with λa = diag(λφ, λθ , λψ) and λφ,θ,ψ > 0. Then, the changing rate of (43) yields

σ̇v = λaėa + ëa. (44)

Equations (16)–(18) are substituted in (44) to perform a feedback linearization in the form
of (40) as follows [49]:τφ

τθ

τψ

 =

 Jxx(−λφ(φ̇− φ̇d) + φ̈d − ξ̂3,φ + νφ

Jyy(−λθ(θ̇ − θ̇d) + θ̈d − ξ̂3,θ + νθ

Jzz(−λψ(ψ̇− ψ̇d) + ψ̈d − ξ̂3,ψ + νψ

, (45)

where ξ̂3,φ, ξ̂3,θ , and ξ̂3,ψ are the total disturbance estimates for the attitude subsystem while
νφ, νθ and νψ are auxiliary controllers described by the adaptive sliding mode strategy

ν† = −K1†(t)sig1/2(σ†)− K2†σ†, (46)

with † = {φ, θ, ψ}, K2† > 0, and K1† as the adaptive gain with adaptability law

K̇1†(t) =

{
k†sign(|σ†| − µ†) K1† > kmin†

kmin† K1† ≤ kmin†
, (47)

where k > 0 is the adaptation rate regulator, µ > 0 is the adaptiveness threshold, and
kmin ∈ R+ ensures the delivery of the lowest control effort to the system. Then, K1†
increases its magnitude when condition |σ| > µ is met. On the other hand, once |σ| ≤ µ
is true, the adaptive gain starts decreasing until achieving the value of kmin. Moreover,
the chattering attenuation property of the ASMC can be attributed to two factors: first,
structure sig1/2(·) guarantees smooth and continuous responses from (46), and second the
non-overestimation of gain K1† due to its designed dynamics (47).

4.3. Positioning Controller

We consider the translation dynamics of the quadrotor as

$̇ = ap($) + bp($)Th + o(t), (48)

cp = ςp($)$, (49)

with state vector $ = [x, ẋ, y, ẏ, z, ż]T , control input Th, which is equivalent to the to-
tal propulsion force of the motors, o(t) = 1/m[0, δx(t), 0, δy(t), 0, δz(t)]T as the external
disturbances vector, ςp(v) ∈ R3×6, and cp = [x, y, z]T as the available state. Moving
on, the desired linear state and the position error vectors are, respectively, defined as
$d = [xd, ẋd, yd, ẏd, zd, żd]

T and ep = [x− xd, y− yd, z− zd]
T . Hence, the sliding surface is

established as
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σρ = λpep + ėp, (50)

where λp = diag(λx, λy, λz) and λx,y,z > 0. Thus,

σ̇ρ = λpėp + ëp. (51)

Since the translation dynamics of the quadrotor are underactuated, feedback linearization
cannot be performed directly after substituting (19)–(21) in (51). Therefore, the following
virtual auxiliary control strategy is adopted:νvx

νvy
νvz

 =

(Th/mu)(sφ̂sψ̂ + cφ̂cψ̂sθ̂)

(Th/mu)(cφ̂sψ̂sθ̂ + cψ̂sφ̂)

(Th/mu)(cφ̂cθ̂)

. (52)

Recalling that ∗ = {x, y, z}, virtual controller νv∗ is described by the following ASMC with
disturbance compensation:

νv∗ = −K1∗(t)sig1/2(σ∗)− K2∗σ∗ − ξ̂3,∗, (53)

where the adaptability of K1∗ was previously defined in (47), and ξ̂3,∗ is the total disturbance
estimation provided by FxtESO. Additionally, to fulfill the desired x and y trajectories, the
desired roll and pitch rotations are determined by

θd = asin

(
(mu/Th)νvx − sψd sφd)

cψd cφd

)
, (54)

φd = asin

(
(mu/Th)(sψd νvx − cψd νvy)

)
. (55)

Next, the z-dynamics are stabilized by control input Th as

Th =
mu

cφ̂cθ̂

(
νvz − ξ̂3,z + z̈d − λz( ˙̂z− żd)

)
. (56)

4.4. Stability Analysis

The stability analysis of the extended state observer-based adaptive controller is
addressed. Then, the following Theorem is stated:

Theorem 1. The sliding mode controller (46) with adaptive gain dynamics (47) using the fixed-time
estimations from (39) in a closed loop with a nonlinear system (7)–(11) offers a practical finite-time
convergence of the state error at bounded time t ≤ Tk(σ0).

Proof. In order to provide the stability, we have consider three stages:

FxtESO Convergence Analysis

We consider estimation errors

ξ̃i = ξi − ξ̂i, for i = {1, 2, 3} (57)

with time-derivative

˙̃ξ1 = ξ̃2 − κ1sigα1(ξ̃1)− ε1sigβ1(ξ̃1),
˙̃ξ2 = ξ̃3 − κ2sigα2(ξ̃1)− ε2sigβ2(ξ̃1), (58)
˙̃ξ3 = γ(ξ)− κ3sigα3(ξ̃1)− ε3sigβ3(ξ̃1)− χsign(ξ̃1).
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Then, to prove the fixed-time convergence of the observer, the analysis of the estimation
error dynamics (58) is divided into two sections [50]. First, we consider subsystem

˙̃ξ1 = ξ̃2 − κ1sigα1(ξ̃1),
˙̃ξ2 = ξ̃3 − κ2sigα2(ξ̃1), (59)
˙̃ξ3 = −κ3sigα3(ξ̃1),

and terms

K =

−κ1 1 0
−κ2 0 1
−κ3 0 0

; ξ̃α = [ξ̃
1

$1
1 , ξ̃

1
$2
2 , ξ̃

1
$3
3 ]T , (60)

with $i = (i− 1)ᾱ− (i− 2) for i = 1, 2, 3. Referring to the work from Perruquetti et al. [43],
system ˙̃ξα = Kξ̃α is achievable by choosing ᾱ = 1. Since K is Hurwitz, ˙̃ξα is asymptotically
stable. Then, there is a Lyapunov function V(ξ̃α) = ξ̃α

TPξ̃α that fulfills the following:

1. Matrix P is the solution of Lyapunov equation KTP + PK = −I with identity matrix
I ∈ R3×3.

2.

V̇(x̃α) =
˙̃ξα

T
Pξ̃α + ξ̃α

TP ˙̃ξα

= ξ̃α
TKTP + ξ̃α

TPKξ̃α

= ξ̃α
T
(KTP + PK)ξ̃α

= −ξ̃α
TIξ̃α < 0.

(61)

Moreover, Equation (61) is also valid for ᾱ ∈ (1− ϕ1, 1), 0 < ϕ1 < 1 [51]. Thus, V(ξ̃α)
is a Lyapunov candidate function for error Subsystem (59). In addition, according to
Lemma 1, (59) is a homogeneous system of degree ᾱ − 1 < 0. Consequently, Lemma 2
holds for this case and

V̇(ξ̃α) = −ςαV ι1(ξ̃α), (62)

where ςα > 0 and 0 < ι1 < 1. Now, we consider the second half of (58):

˙̃ξ1 = ξ̃2 − ε1sigβ1(ξ̃1),
˙̃ξ2 = ξ̃3 − ε2sigβ2(ξ̃1), (63)
˙̃ξ3 = −ε3sigβ3(ξ̃1),

and we let

E =

−ε1 1 0
−ε2 0 1
−ε3 0 0

; ξ̃β = [ξ̃
1

υ1
1 , ξ̃

1
υ2
2 , ξ̃

1
υ3
3 ]T , (64)

with υj = (j− 1)β̄− (j− 2) for j = 1, 2, 3. Similarly to the previous analysis, if β̄ = 1, system
˙̃ξβ = Eξ̃β is asymptotically stable. Thus, there is a Lyapunov function Va(ξ̃β) = ξ̃

T
βPa ξ̃β

with derivative V̇a(ξ̃β) = −ξ̃
T
βIξ̃β < 0, which also holds when β̄ ∈ (1, 1 + ϕ2) with small

enough ϕ2. By means of Lemma 1, Subsystem (63) is homogeneous of degree β̄− 1 > 0.
Furthermore, referring to Basin et al. [51], the subsystem can be written in the form

V̇(ξ̃β) = −ςβV ι2
a (ξ̃β), (65)
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with ςβ > 0 and ι2 > 1. Hence, there is Lyapunov function Vb(ξ̃) for error System (58) with
derivative V̇b(ξ̃) = −(ςαV ι1

b (ξ̃) + ςβV ι2
b (ξ̃)). Then, according to Lemma 3, observer error

ξ̃ = [ξ̃1, ξ̃2, ξ̃3]
T converges to zero in a fixed time defined by [52]

Tf ≤
λ1−ᾱ

max(P)
ςα(1− ᾱ)

+
1

ςβ(β− 1)λmin(Pa)β−1 , (66)

where λmax(P) is the maximum eigenvalue of P, and λmin(Pa) is the minimum eigenvalue
of Pa. Moreover, since ξ̃1, ˙̃ξ1 → 0 as t→ Tf , ξ̃2 and ξ̃3 also tend to zero. Then, ξ̃ = 0 when
t > Tf , which means that the equivalent control identity given by

˙̃ξ3 = γ(ξ)− χsign(ξ̃1) = 0 (67)

holds [53]. We notice that ξ̃3 = 0 cannot be accomplished in practice due to several factors
such as noise conditions, sampling frequency, and the disturbance dynamics [50]. However,
assuming bounded perturbations and uncertainties, the fixed-time attractiveness of (39)
allows the reaching of a small vicinity κ > 0 such that ξ̃3 ∈ κ, after t > Tf .

Adaptive Sliding Mode Control Stability

By taking Equations (40), (44), and (51), the closed-loop FxtESO-based ASMC system,
in a single-input single-output form, is expressed as

σ̇ = −K1(t)sig1/2(σ)− K2σ + ξ̃3, (68)

recalling that ξ̃3 = ξ3 − ξ̂3 represents the estimation error for the total disturbance. Then,
the Lyapunov candidate function for the stability analysis of the system is selected as [54]

V(σ) =
1
2

σ2 +
1
2
(K1(t)− KM)2, (69)

where KM is a value of adaptive gain K1 that satisfies inequality (K1(t)−KM) < 0 and [49]

KM(t) >
1

|σ| 12
(δmax − K2|σ|), (70)

0 < |ξ3| ≤ δmax. (71)

While condition K1(t) > Kmin holds, the time differentiation of (69) is

V̇(σ) = σσ̇ + (K1(t)− KM)(k sign(|σ| − µ)). (72)

By substituting (68) and (71) in (72),

V̇(σ) ≤ |σ|(−K1(t)|σ|
1
2 sign(σ)− K2σ

+ δmax) + (K1(t)− KM)(k sign(|σ| − µ)).
(73)

Now, terms ±KM|σ|
3
2 are introduced and applied as follows:

V̇(σ) ≤ |σ|(−KM|σ|
1
2 − K2|σ|+ δmax)

+ (K1(t)− KM)(k sign(|σ| − µ)− |σ|
3
2 )

. (74)

For the sake of simplicity, we let hp = KM|σ|
1
2 + K2|σ| − δmax ∈ R+. Then, (74) yields

V̇(σ) ≤ −hp|σ|+ (K1(t)− KM)(k sign(|σ| − µ)− |σ|
3
2 ). (75)



Drones 2023, 7, 700 12 of 23

Then, the new terms ±hq|K1(t)− KM| with |K1(t)− KM| = −(K1(t)− KM) and hq > 0
are added up in (75), which results in

V̇(σ) ≤ −hp|σ| − hq|K1(t)− KM|

+ |K1(t)− KM|(hq − k sign(|σ| − µ) + |σ|
3
2 )

≤ −hp

√
2√
2
|σ| − hq

√
2√
2
|K1(t)− KM|

+ |K1(t)− KM|(hq − k sign(|σ| − µ) + |σ|
3
2 )

≤ −min
{

hp
√

2, hq
√

2
}( |σ|√

2
+
|K1(t)− KM|√

2

)
+ |K1(t)− KM|(hq − k sign(|σ| − µ) + |σ|

3
2 ).

(76)

The previous equation can be rewritten in the form of (4) from Lemma 4 with
h = min

{
hp
√

2, hq
√

2
}

, L = 0.5 andW = |K1(t)− KM|(hq − k sign(|σ| − µ) + |σ| 32 ) > 0.
Therefore, referring to Definition 3, there is a small neighborhood of zero described by
Γ > 0 such that the achievement of the sliding mode in a practical finite-time can be divided
into two phases: (1) the reaching phase when |σ| > Γ and (2) the controller convergence
when |σ| ≤ Γ at time

Tk ≤
V

1
2 (σ0)

0.5 min
{

hp
√

2, hq
√

2
}
Y0

. (77)

FxtESO-Based ASMC Stability

The previously proven fixed-time convergence of FxtESO and the practical finite-time
convergence of the ASMC permit the separation principle to be fulfilled. Hence, both
algorithms, controller and observer, can be designed independently [55]. Then, to avoid
ambiguities, the gains of the extended observer, and thus its dynamics, are chosen such
that the estimated states converge to the actual state at time Tf sufficiently faster than
controller convergence Tk, i.e., Tf � Tk. The aforementioned is guaranteed as long as the
total disturbance affecting the system remains in bounds |ξ3| ≤ δmax. Thus, strong enough
uncertainties and external disturbances, or long delays in the input or output, still can
make the system unstable. The proof is complete.

5. Results

The performance of the proposed observer-based control strategy was verified through
computer simulations in the Matlab/Simulink environment. The 60 s virtual experiment
was run at a frequency of 100 Hz and consisted of a quadrotor UAV executing a stationary
flight followed by a spiral trajectory defined by

xd(t) =

{
0 if 0 ≤ t ≤ 5
−
∫

sin 0.3(t− 5)dt if 5 < t ≤ 60
,

yd(t) =

{
0 if 0 ≤ t ≤ 5∫

cos 0.3(t− 5)dt if 5 < t ≤ 60
, (78)

zd(t) =

{
−2 if 0 ≤ t ≤ 10
−2− 0.1(t− 10) if 10 < t ≤ 60

,

ψd(t) =

{
0 if 0 ≤ t ≤ 5
0.3(t− 5) if 5 < t ≤ 60

.

The rotorcraft was completely exposed to severe turbulent wind fields described by the
Von Karman model with parameters v̄wx = −8 m/s, v̄wy = 10 m/s, v̄wz = 6 m/s,
W20 = 45 knots = 23.15 m/s, and ρ = 1.2 kg/m3, where the resultant disturbances
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can be appreciated in Figure 3. The quadrotor was programmed with initial condi-
tions d(0) = [0, 0, 0]T m, Θ(0) = [0, 0, 0]T rad, and specifications Jxx = 0.0411 kgm2,
Jyy = 0.0478 kgm2, Jzz = 0.0599 kgm2, l = 0.225 m, KT = 1.356× 10−5 N/(rad2/s2),
Kτ = 2.036× 10−7 Nm/(rad2/s2), Bx = By = 0.3, Bz = 0.5, Ax = Ay = 0.1 m2, and
Az = 0.2 m2. Moreover, the vehicle was set with a mass of m = 2 kg. However, an approxi-
mate mass of mu = 1.75 kg was included in the observer-based controller to show its effectiveness
under model uncertainties. Additionally, white Gaussian noise signals of a 100 Hz frequency were
applied to the outputs of the quadrotor. These signals are illustrated in Figure 4 and were established
with mean 0.005 and standard deviation 0.001 for position measurements and mean 0.001 and
standard deviation 0.001 for attitude measurements. Finally, the maximum motor thrust input
was bounded to −30 ≤ Th < 0 N for design purposes. The chosen tuning parameters of the
ASMC were λx = λy = 1, λz = 2, K2x = K2y = 1, K2z = 2, kx = 0.2, ky = 0.3, kz = 0.5,
µx = µy = µz = 0.05, kminx = kminy = kminz = 0.01 for the position subsystem, and λφ = λθ =
8, λψ = 2, K2φ = K2θ = 6, K2ψ = 0.1, kφ = kθ = 0.5, kψ = 0.3, µφ = µθ = µψ = 0.05,
kminφ

= kminθ
= 0.1, and kminψ

= 0.01 for the attitude subsystem. To demonstrate that
FxtESO with gains κ1x,y,z, = κ1φ,θ,ψ = ε1x,y,z = ε1φ,θ,ψ = 10, κ2x,y,z, = κ2φ,θ,ψ = ε2x,y,z =
ε2φ,θ,ψ = 25, κ3x,y,z, = κ3φ,θ,ψ = ε3x,y,z = ε3φ,θ,ψ = 25, α1x,y,z = α1φ,θ,ψ = 0.75, α2x,y,z =
α2φ,θ,ψ = 0.4, α3x,y,z = α3φ,θ,ψ = 0.1, β1x,y,z = β1φ,θ,ψ = 1.2, β2x,y,z = β2φ,θ,ψ = 1.4, β3x,y,z =
β3φ,θ,ψ = 1.6, χx,y,z = χφ,θ,ψ = 0.1 recovers the target system, its initial conditions were set as

d̂(0) = [0, 0,−0.1]T m, and Θ̂(0) = [0.05,0.05,0.1]T rad.
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Figure 3. Resultant external disturbances described by the Von Karman wind model.
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Figure 4. Applied sensor noise to the position and attitude measurements.

5.1. Disturbance Compensation

A comparison involving the FxtESO-based ASMC with (w/DC) and without (w/o DC)
disturbance compensation was given to demonstrate the advantages of its implementation
on the performance of the UAV. The applied turbulent wind gusts reached peak veloc-
ities of max(|vwx|) = 15.83 m/s, max(|vwy|) = 16 m/s, and max(|vwz|) = 11.10 m/s
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which implied maximum drag forces of max(|δx|) = 4.58 N, max(|δy|) = 5.03 N, and
max(|δz|) = 7.51 N. The latter is equivalent to 23.36%, 25.65%, and 38.30% of the total
weight of the aerial vehicle. The execution of the trajectory of the rotorcraft, from a top
view, is portrayed in Figure 5a. It is evident that the approach including the disturbance
compensation action offered a superior tracking performance with slighter oscillations and
deviations from the desired position. In addition, Figure 5b,c demonstrate two important
differences among executions in the x and y axes. First, the disturbance rejection-based
control system presented a more robust reaction to perturbations within the first seconds of
the simulation, during the hover flight execution. Second, we note that it took longer for
the feedback regulation-based sliding mode strategy to become close to the desired state
due to the existence of both external disruptions and model uncertainties. Moving on, the
vertical performance of the UAV is given in Figure 5d. The vehicle managed through the
ASMC without disturbance compensation struggled in achieving the reference altitude
at t ≤ 10 since the turbulent wind fields were continuously pushing the quadrotor down.
After t ≥ 10, the discrepancies between both controllers were less perceptible. However,
the zoomed-in section of the graph denotes slight oscillations on the obtained trajectory
without disturbance compensation.
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Figure 5. Disturbance compensation analysis. Trajectory tracking performance of (a) Top view,
(b) y response, (c) x coordinate and (d) z axis evolution.

The heading performance of the UAV is displayed in Figure 6a. In this particular case,
both controllers delivered a similar execution throughout the simulation except at interval
40 ≤ t ≤ 50 where the disturbance compensation-free ASMC response presented slight
oscillations. The executed roll and pitch rotations of the rotorcraft are shown in Figure 6b.
During the time interval 0 < t < 20, it is visible that the outputs from the proposed
approach were smoother than those from the controller without disturbance compensation.
This is expected since the disturbance compensation action demands faster responses from
the system. Furthermore, we notice that once t ≥ 20, unlike FxtESO-ASMC, the classic
ASMC strategy began to occasionally provide high-frequency rotations. The latter suggests
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that the vehicle was exposed to strong disturbances whose magnitude may be close to the
maximum boundary it can handle without reaching an unstable state.
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Figure 6. Disturbance compensation analysis. Attitude performance and control input evolution.
(a) Yaw angle (b) Roll and pitch responses, (c) Adaptive gains, (d) Thrust.

The evolution of the adaptive gains for the positioning subsystem is portrayed in
Figure 6c. Naturally, the feedback regulation-based controller requires higher magnitudes
from the adaptive gains. Moreover, we note that K1x and K1y exhibited an increasing
tendency, whereas the needed effort from K1z was significantly larger than the perturbation
rejection-based approach. As a consequence, the control input related to the total motor
thrust leaned towards presenting chattering, as seen in Figure 6d. Therefore, the implemen-
tation of a disturbance compensation action in the control input of the system improves the
trajectory execution of the UAV and aids in keeping a lower value from the adaptive gains
of the controller while attenuating the chattering phenomenon in exchange for a regularly
larger control input magnitude.

5.2. Comparison Study

The operation of the proposed FxtESO-based control strategy was compared with the
nonlinear extended state observer-based adaptive sliding mode controller (NESO-ASMC)
from [56] described by NESO:

˙̂ξ1 = ξ̂2 −Q1 f (ξ̃), (79)
˙̂ξ2 = ξ̂3 −Q2 f (ξ̃), (80)
˙̂ξ3 = −Q3 f (ξ̃), (81)

with

f (ξ̃) =

{
|ξ1 − ξ̂1|ιsign(ξ1 − ξ̂1) if |ξ1 − ξ̂1| > Λ
ξ1−ξ̂1
Λ1−ι if |ξ1 − ξ̂1| ≤ Λ

(82)
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and the auxiliary control strategy

ν = −ς1sig1/2(σ)−
∫

ς2

2
sign(σ), (83)

where ς2 = ς3ς1, ς3 > 0, and the adaptability law is

ς̇1 =

{
ς4sign(|σ| − µς) ς1 > ςmin

ςmin ς1 ≤ ςmin
. (84)

For comparative analysis, the NESO-based ASMC parameters were chosen as Q1q = 20,
Q2q = 247, Q3q = 1500, ιq = 0.7, and Λq = 0.05 for q = {x, y, z, φ, θ, ψ}, ς3x = ς3y = 0.01,
ς3z = 0.2, ς4x = ς4y = 0.5, ς4z = 3, ςminx = ςminy = 0.01, ςminz = 0.1, µςx = µςy = µςz =
0.05, ς3φ = ς3θ = 0.3, ς3ψ = 1, ς4φ = ς4θ = ς4ψ = 1, ςminφ

= ςminθ
= ςminψ

= 0.1, and
µςφ = µςθ

= µςψ = 0.05.
The evolution of the disturbance estimation errors from both observer-based methods

is displayed in Figure 7. Although their estimation performance under sensor noise
conditions is accurate, we can notice that the NESO provided a larger peaking phenomenon
than the fixed-time observer (see ξ̃3z) due to the initial estimation error ξ̃z = 0.1 and the
UAV mass uncertainty. As a consequence, Figure 8a shows that the FxtESO-based ASMC
granted a more accurate trajectory tracking response with lower-amplitude oscillations
at some points of the operation. Additionally, the trajectory execution in the z-axis from
Figure 8b clearly portrays the effects of the peaking phenomenon on the NESO-based
ASMC since the quadrotor was not able to take off as fast as the vehicle driven by the
FxtESO-ASMC. Furthermore, the displayed trajectories along the x and y from Figure 8c,d
demonstrate that the proposed method offered stronger robustness specifically during the
hover flight stage of the trajectory where the NESO-ASMC presented deviations between
1 and 3 m. The effect of prior errors in the attitude subsystem is given in Figure 8e. We
notice that, unlike in the proposed approach, the influence of the total disturbance in the
system caused the quadrotor managed under the NESO-ASMC execute high-frequency
rotations within the first 10 s of the simulation. On the other hand, Figure 8f illustrates that
both observer-based controllers provided an effective tracking of the desired heading.

The state estimation performance of the employed observers for the yaw output is
given in Figure 9a. Despite the presence of sensor noise and model uncertainties, both
methods achieved the real state within 0.5 s. However, the proposed FxtESO offered
smoother and more straightforward state tracking since it did not present any overshoot.
The evolution of the positioning subsystem adaptive gains is illustrated in Figure 9b. At
the start of the simulation, the FxtESO-ASMC approach required approximately 400% less
magnitudes of K1x, K1y, and K1z than the NESO-ASMC scheme. Furthermore, at time
t > 20, the adjustments of parameters K1x and K1y from both observer-based controllers
gradually settled down and stayed at a range of values denoted by [0.5,2). Regarding
adaptive gain K1z at t > 20, it is easy to note that it had a more active evolution under
the NESO-ASMC algorithm, whereas the same parameter from the FxtESO-ASMC kept
within the same magnitude interval as K1x and K1y. The applied control inputs for the
quadrotor are portrayed in Figure 9c,d, respectively. The thrust provided by the NESO-
ASMC at time 0 < t ≤ 5 shows the effect of the peaking phenomenon on the propulsion
of the system. While the signal from the FxtESO-ASMC showed no peaking. Moreover, it
allowed operation of the rotorcraft with an average thrust of−22 N with few peaks between
26 and 28 N, which is suitable for a 2 kg vehicle. Finally, the advantage of the proposed
approach with respect to the executed torques is evident. The fixed-time observer-based
controller supplied rotational control inputs within the range of±0.1 Nm, which is available
considering the determined characteristics of the UAV. On the other hand, the torques
given by the NESO-based algorithm remained within the range of ±0.3 Nm, including a
few short-time spikes that reached ±0.5 Nm.
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A quantitative analysis for prior results is presented in Table 1. Performance indicators
such as the mean squared error,

MSE =
1
N

N

∑
i=1

e2
i , for i = {1, 2, . . . , N},

the root mean squared error,

RMSE =

√√√√ 1
N

N

∑
i=1

e2
i , for i = {1, 2, . . . , N},

the integral absolute error,

IAE =
∫ T

0
|e(t)|dt,

the integral squared error,

ISE =
∫ T

0
e(t)2dt,

and the integral time absolute error,

ITAE =
∫ T

0
|e(t)|tdt,

were employed to evaluate and corroborate the advantages of the proposed method.
Statistically, it can be concluded that both observer-based strategies provided the same
position estimation performance since their discrepancies in this aspect were not significant.
However, the computed data show the superiority of the FxtESO-ASMC approach in the
disturbance estimation and position error areas. Furthermore, the information related to
the norm of control suggests that the adaptive fixed-time observer-based controller needed
less control effort than the similar, NESO-based controller.
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Figure 7. ESO−based controller comparison. Disturbance estimation error.
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Figure 8. FxtESO and NESO−based adaptive controller comparison. Trajectory tracking: (a) top
view, (b) z axis, (c) x response, (d) y behavior, (e) Roll and pitch estimation, (f) yaw estimation.
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Figure 9. Quadrotor UAV trajectory. FxtESO and NESO−based adaptive controller comparison.
(a) Yaw convergence, (b) Adaptive gains, (c) Required thrust, (d) Generated torques

Table 1. Quantitative analysis of the results.

Disturbance Estimation

MSE RMSE IAE ISE ITAE

x-axis

FxtESO-ASMC 0.0469 0.2166 9.9390 2.8160 302.7
NESO-ASMC 0.0586 0.2421 11.00 3.5190 305.2
y-axis

FxtESO-ASMC 0.0875 0.2958 13.51 5.25 377.2
NESO-ASMC 0.1059 0.3254 14.34 6.3550 364.6
z-axis

FxtESO-ASMC 0.4698 0.6854 29.25 28.19 729.3
NESO-ASMC 1.0988 1.0482 33.37 65.94 699.5

Position Estimation

MSE RMSE IAE ISE ITAE

x-axis

FxtESO-ASMC 1.41 × 10 −6 1.19 × 10 −3 0.0569 8.50 × 10 −5 1.7110
NESO-ASMC 1.38 × 10 −6 1.17 × 10 −3 0.0562 8.30 × 10 −5 1.6484
y-axis

FxtESO-ASMC 1.43 × 10 −6 1.19 × 10 −3 0.0572 8.62 × 10 −5 1.7180
NESO-ASMC 1.40 × 10 −6 1.18 × 10 −3 0.0565 8.43 × 10 −5 1.69
z-axis

FxtESO-ASMC 5.43 × 10 −6 2.33 × 10 −3 0.0655 3.26 × 10 −4 1.799
NESO-ASMC 6.95 × 10 −6 2.63 × 10 −3 0.0697 4.17 × 10 −4 1.768
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Table 1. Cont.

Quadrotor UAV Position

MSE RMSE IAE ISE ITAE

x-axis

FxtESO-ASMC 0.0075 0.0866 4.1990 0.4472 104.3
NESO-ASMC 0.0566 0.2379 6.0870 3.3990 114.7
FxtESO-ASMC w/o DC 0.0413 0.2032 9.186 2.481 234.9
y-axis

FxtESO-ASMC 0.0111 0.1054 3.5910 0.6640 77.02
NESO-ASMC 0.2925 0.5408 11.65 17.55 117.30
FxtESO-ASMC w/o DC 0.0536 0.2315 8.7970 3.214 153.8
z-axis

FxtESO-ASMC 0.0465 0.2156 3.1020 2.7910 34.13
NESO-ASMC 0.1499 0.3872 6.0870 8.9940 39.97
FxtESO-ASMC w/o DC 0.0917 0.3028 8.0420 5.50 77.95

Quadrotor UAV. Norms of Control

‖Th‖ ‖τ‖
FxtESO-ASMC 1717.70 395.9815
NESO-ASMC 1721.80 1041.7
FxtESO-ASMC w/o DC 1716.80 785.2556

6. Conclusions

A fixed-time extended state observer-based adaptive sliding mode control was de-
signed for driving a quadrotor UAV subject to severe-intensity turbulent wind gusts while
tracking a spiral trajectory. The external disturbances, denoted by the Von Karman wind
model, and the effects of model uncertainties regarding the angular dynamics and the mass
of the rotorcraft were rejected via fixed-time augmented state estimation and feedback
control loop compensation, regardless of the initial conditions of the system. Furthermore,
the adaptive gain from the controller allowed the usage of the necessary control input,
preserving robustness. Moreover, the closed-loop system stability was guaranteed by
means of Lyapunov theory. Finally, simulations in Simulink/Matlab demonstrated the
advantages of disturbance compensation in improving the performance of the UAV and the
effectiveness of the proposed control scheme by making comparisons against a nonlinear
extended state observer-based adaptive controller.
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