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Abstract: Recently, deep learning methods and multisensory fusion have been applied to address
odometry challenges in unmanned ground vehicles (UGVs). In this paper, we propose an end-to-end
visual-lidar-inertial odometry framework to enhance the accuracy of pose estimation. Grayscale
images, 3D point clouds, and inertial data are used as inputs to overcome the limitations of a single
sensor. Convolutional neural network (CNN) and recurrent neural network (RNN) are employed as
encoders for different sensor modalities. In contrast to previous multisensory odometry methods, our
framework introduces a novel attention-based fusion module that remaps feature vectors to adapt
to various scenes. Evaluations on the Karlsruhe Institute of Technology and Toyota Technological
Institute at Chicago (KITTI) odometry benchmark demonstrate the effectiveness of our framework.

Keywords: UGV; odometry; deep learning; attention mechanism; KITTI dataset

1. Introduction

With the advancement of computer and sensor technology, UGVs find applications in
various domains, including military operations and reconnaissance, security surveillance,
search and rescue missions, logistics and delivery, and industrial automation. The odometry
task, as a crucial component of the UGV framework, has been studied for decades but still
presents challenges such as drift of pose estimation and the fusion of data from different
sensors [1]. Our work primarily revolves around enhancing odometry estimation accuracy
and optimizing multisensory fusion.

Traditional odometry methods typically rely on hand-crafted features to estimate
relative pose and have achieved high accuracy [2]. However, these methods depend on
human experience and lack adaptability in challenging scenarios. Recently, odometry
methods based on deep neural networks have gained growing interest. Compared to
traditional odometry methods, deep odometry methods offer several advantages: (1) High-
dimensional features extracted by deep learning demonstrate robustness in the face of
challenging scenarios; (2) Deep odometry methods do not require complex parameter
calibration and geometric transformations; (3) Deep odometry methods can continuously
learn and adapt to new scenes as their datasets expand.

In the face of complex environments, it is necessary for UGV to embrace multisensory
fusion to enhance robustness [3]. These sensors include cameras, lidar, and inertial mea-
surement units (IMUs). In recent years, numerous studies have been proposed to deal with
the odometry task using these different sensors. Monocular cameras, being small-sized
and cost-effective, provide rich pixel information. However, they heavily rely on sufficient
visible light and struggle to extract range information. Stereo cameras can derive range
information from two images but require precise calibration. Lidar captures abundant
3D structural information about the environment, but its cost depends on resolution and
measurement distance, which can impact pose estimation accuracy. Additionally, incor-
rect 3D point associations between two frames can lead to pose estimation drift due to
outliers or inappropriate algorithms. IMUs measure angular velocity and acceleration at
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high frequencies, making them valuable for compensating for the inaccuracies of rapidly
moving cameras or lidar. However, IMUs also suffer from cumulative errors. Recognizing
the limitations of individual sensors in certain scenarios, multimodal sensor fusion has
become a research hotspot. Filter-based methods, including the Kalman filter (KF) and
extended Kalman filter (EKF), have traditionally been applied in sensor fusion frame-
works [4]. However, linearization errors constrain the performance of filter-based methods.
Meanwhile, many deep sensor fusion methods simply concatenate feature vectors encoded
from different sensors without employing effective algorithms.

For the stated reasoning, we introduce an end-to-end visual-lidar-inertia odometry
framework. Initially, we employ CNN to encode grayscale images and 3D point clouds,
and RNN for inertial data. Notably, the 3D point clouds are projected into 2D images to
align with CNN. Subsequently, the resulting feature vectors are concatenated and remapped
to derive a 6-DoF relative pose. Finally, we train our framework in a supervised manner,
utilizing the L2 norm. The main contributions of our work are as follows:

1. We utilize grayscale images, 3D point clouds, and inertial data as inputs to compensate
for the weakness of each sensor, encoding these data by deep neural networks;

2. We introduce a novel fusion module that reorganizes and remaps feature vectors to adapt
to challenging scenes by introducing an attention mechanism and auxiliary vectors;

3. We evaluate the performance of our framework on the KITTI odometry benchmark.
A comparison with several variants demonstrates the effectiveness of our algorithm.

The rest of the paper is structured as follows: Section 2 introduces related work on
the odometry task, categorized as traditional and deep works. Section 3 provides details
about our algorithm. Section 4 presents the experimental results on the KITTI odometry
benchmark. Finally, in Section 5, we conclude the paper and discuss our future plans.

2. Related Work

In this section, we provide an overview of traditional and deep methods applied to
the odometry problem. Given our primary focus on multisensory UGVs, we emphatically
discuss deep sensor fusion methods. As illustrated in Figure 1, odometry methods estimate
the relative pose between two scenes using information from various sensors.

lidar camera IMU other sensors

……

UGV
scene 1 scene 2

relative pose

Figure 1. An overview of the odometry method.

2.1. Traditional Odometry

Behley et al. [5] employed a 2D vertex map and a normal map projected from 3D point
cloud to estimate odometry efficiently. While suitable for mapping large outdoor scenes,
their algorithm needs to exclude the influence of dynamic objects. Mur-Artal et al. [6]
utilized oriented FAST and rotated BRIEF (ORB) feature from visual images to achieve
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real-time operation. However, the extraction of ORB features resulted in sparse point
clouds in the generated map, and the running speed was limited. Moreover, this approach
was sensitive to dynamic objects, leading to tracking loss. In contrast to pre-computed
features, Engel et al. [7] directly employed visual light intensity for motion tracking and can
generate a map of dense point clouds. However, this approach had high requirements for
scene illumination and demanded that the sensor maintain stable exposure. Zhen et al. [8]
updated inertial and lidar measurements using a Gaussian particle filter. Subsequently,
the outputs were fused using an error state Kalman filter to meet the real-time requirements
of UAVs. Although it was efficient, this method did not consider the impact of the system
state on the measurements, resulting in cumulative errors. Qin et al. [9] proposed a tightly-
coupled visual-inertial system comprising a monocular camera and a low-cost IMU, which
achieved highly accurate odometry by fusing pre-integrated IMU measurements and
feature observations. As the method used the optical flow method to track and match
feature points, the images need to be clear and continuous; otherwise, it will lead to
the drift of the predicted trajectory. Shan et al. [10] introduced a tightly-coupled lidar-
inertial odometry framework that incorporated a factor graph to effectively fuse lidar
and IMU measurements. The factor graph framework they proposed demonstrated good
compatibility. Graeter et al. [11] combined visual images with the depth information
extracted from lidar measurements to estimate ego-motion. This method only used the
point clouds in the visual field of the images to provide depth information, and the lidar
was not fully utilized. Shan et al. [12] developed a tightly-coupled lidar-visual-inertial
odometry framework based on a factor graph. This framework includes a visual-inertial
system and a lidar-inertial system, mitigating the risk of single subsystem failure.

2.2. Deep Odometry

Li et al. [13] presented a deep convolutional network for odometry estimation. They
projected 3D lidar point clouds into 2D images using cylindrical projection and then con-
verted them into normal images to ensure geometric consistency. In contrast, Adis et al. [14]
did not project 3D lidar point clouds but instead utilized mini-PointNet to directly handle
point clouds, taking full advantage of point clouds. However, obtaining local point cloud
features with PointNet in this method proved challenging, making the analysis of complex
scenes difficult. Konda et al. [15] were the first to apply deep learning to visual odometry.
They employed a simple CNN structure to predict direction and velocity from stereo images
using the softmax function. But as an early attempt in this field, they had a poor accuracy of
prediction. Zhou et al. [16] proposed an unsupervised framework for learning ego-motion
and depth information from video sequences, with view synthesis serving as a supervisory
signal. However, they did not explicitly incorporate dynamic objects and occlusion into
the constraints, resulting in reduced robustness of the method in scenes that include both.
Chen et al. [17] treated inertial odometry as a sequential learning problem and introduced a
deep neural network based on long short-term memory (LSTM) structure to learn location
transforms. However, the performance of their method is easily affected by the high bias
value of IMU, and the generalization ability of the neural network is not strong.

The combination of multiple sensors can have a complementary effect. Clark et al. [18]
introduced the first end-to-end trainable method for visual-inertial odometry. Their ex-
periments demonstrated that the visual-inertial odometry method based on deep learning
is more robust than conventional methods, particularly when there are errors in sensor
calibration parameters. However, they simply concatenated features extracted from RGB
images and inertial data without deploying a sensor fusion strategy. Han et al. [19] used a
fully connected layer to fuse the outputs of RGB images and inertial data encoder, allowing
for the update of additional bias for the IMU. Despite this, drift problems still exist in their
method due to the absence of place recognition and relocalization pipelines. Son et al. [20]
employed the softmask-based method to fuse lidar and inertial data, enabling the learning
of the weights of each sensor. Their method relied on a multilayer perceptron (MLP), which
may not be sufficient to handle challenging situations in the real world. Sun et al. [21]
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combined soft mask attention fusion (SMAF) and a transformer for lidar-inertial odometry
estimation task, addressing the overfitting problem associated with transformer networks.
Moreover, it is able to fuse a mixture of heterogeneous sensor data, such as lidar and IMU.
However, their fusion module suffers from high redundancy and is not beneficial for easy
training and real-world applications. Aydemir et al. [22] fused the lidar and visual data
using Bayesian inference to enhance depth maps, resulting in improved scale recovery. This
method is a hybrid framework, and the sub-neural network needs to be trained separately,
which can be cumbersome. Li et al. [23] adopted a siamese network architecture with
input from both flipped depth and RGB images. They introduced a flip consistency loss
to facilitate network learning, but it is susceptible to fall into local optima. Song et al. [24]
proposed a feature pyramid network to fuse lidar point clouds and visual images, enhanc-
ing odometry accuracy across different levels. However, their method highly relied on
photometric consistency; otherwise, errors are amplified through the pyramid structure.

3. Method

In this section, we describe the details of our odometry framework. Given two frames,
P and Q, corresponding to time steps t and t + 1, our objective is to estimate the 6-DoF
relative pose (translation on the x, y, and z axes, angle of roll, pitch, and yaw) between
them. Our system comprises feature networks and a fusion network. The feature networks
encode the features from visual images, 3D point clouds, and inertial data. The fusion
network combines these feature vectors to calculate the transformation estimation between
the two frames. The pipeline of our framework is illustrated in Figure 2.

visual images 
feature encoder

t-1

t

gray images

t-1

t

point cloud

IMU
IMU

IMU…

t

t-1

t-N

fusion network
6-DoF 

relative pose
point cloud 

feature encoder

Inertial data 
feature encoder

Figure 2. The pipeline of our odometry framework.

3.1. Data Encoding
3.1.1. Visual Images Feature Encoding

The inputs to the visual images feature encoder are two consecutive grayscale images.
The encoder starts with two 5 * 5 convolutional layers, followed by two 3 * 3 convolutional
layers. These layers are responsible for extracting features from the grayscale images. Each
of the four convolutional layers is followed by a max-pooling layer and a rectified linear
unit to reduce the size of images and introduce nonlinearity to the network. The remaining
structure is a 1 * 1 convolutional layer, which is used to adjust the dimension of the feature
vector. The convolutional layers are detailed in Table 1.
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Table 1. Convolutional layers of visual images feature encoder.

Layer Kernel Size Stride Padding Channel
Number

conv1 5 * 5 2 * 4 2 64
conv2 5 * 5 2 * 3 2 128
conv3 3 * 3 2 * 2 1 256
conv4 3 * 3 1 * 2 1 512
conv5 1 * 1 1 * 1 0 256

3.1.2. Point Cloud Feature Encoding

We project the 3D point clouds into a 2D image. Since a point can be represented as a
3D coordinate (x, y, z), its 2D coordinate (u, v) should be

u = H ∗
(

1
2
− ϕ

KVFOV
+

bias_KVFOV
KVFOV

)
, (1)

v = W ∗
(

1
2
+

θ

KHFOV
− bias_KHFOV

KHFOV

)
, (2)

ϕ = arctan
( y

x

)
, (3)

θ = arcsin

(
z√

x2 + y2 + z2

)
, (4)

where H is the height of the 2D image, W is the width of 2D image, ϕ is the azimuth angle,
θ is the elevation angle, KVFOV and KHFOV are the vertical and horizontal view angle of
the lidar sensor, and bias_KVFOV and bias_KHFOV are the mean of the top and bottom
limitation of the view angle. The position (u, v) of the 2D image is filled with the range
value r =

√
x2 + y2 + z2. If several points have the same 2D coordinate, we keep the point

with the smallest range value. The effect of converting a point cloud into a depth map is
shown in Figure 3.

camera view

Figure 3. An example of point clouds projection.

The point cloud feature encoder has a similar structure to the visual images feature
encoder. The inputs of the encoder are two range images projected by two consecutive
frames of point clouds. Note that we abandon the max-pooling layer in this encoder
since contrast experiments indicate that it decreases the estimation accuracy. Without max-
pooling layers, we adjust the kernel size and stride to reduce the size of the images.
The convolutional layers are detailed in Table 2.
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Table 2. Convolutional layers of point cloud feature encoder.

Layer Kernel Size Stride Padding Channel
Number

conv1 5 * 5 2 * 4 2 64
conv2 3 * 5 2 * 4 2 128
conv3 3 * 5 2 * 4 2 256
conv4 3 * 5 2 * 4 2 512
conv5 3 * 3 2 * 2 1 1024
conv6 1 * 1 1 * 1 0 256

3.1.3. Inertial Data Feature Encoding

Inertial data are typically available at higher frequency (100 Hz) compared to images
(10 Hz). To align the inertial data with visual images and point clouds, we use spherical
linear interpolation. We use quaternions to represent inertial data. Given two quaternions
qt1 and qt2 , corresponding to time steps t1 and t2, the quaternion qt, corresponding to time
step t (t ∈ (t1 , t2)), is expressed as follows:

qt =
sin
((

1− tq
)
θ
)

sin(θ)
qt1 +

sin
(
tqθ
)

sin(θ)
qt2 , (5)

θ = arccos(qt1 ·qt2), (6)

tq =
t− t1

t1 − t2
, (7)

where · denotes dot product.
The input of the inertial data feature encoder is composed of two consecutive inertial

measurements. Due to the kinematic connection between inertial data and time, we choose
RNN as the encoder. The RNN in our setup is a two-layer Bi-directional LSTM with
128 hidden states. The choice of Bi-directional LSTM is motivated by its ability to extract
features from both preceding and succeeding inertial data.

3.2. Fusion Module

Features extracted from different sensors are complementary but not equally important
in certain scenes. For instance, when a multitude of dynamic objects populate the scene,
the contribution of visual and LiDAR features to pose estimation should be diminished.
Inspired by the attention mechanism [25,26], we introduce a novel method for feature vector
fusion. Rather than employing a weight function, we utilize a fully connected network
to reorganize feature vectors, thereby achieving better fine-grained attention. So, we put
feature vectors into the function:

f f use(aV , aP, aI) = FC(aV ⊕ aP ⊕ aI), (8)

where aV is the visual images feature vector, aP is the point cloud feature vector, aI is the
inertial data feature vector, FC is the fully connected network, and⊕ denotes concatenating
two feature vectors together.

Then we remap the feature vector for different targets to further improve the pose
estimation accuracy. Given that the output is a 6-dimensional vector, the reorganized feature
vector is concatenated with six independent vectors respectively. Each of independent
vectors is deterministically parameterized by the network and updated using gradient
descent. Thus, these recombined vectors are passed through six separate fully connected
networks to obtain the final output. The remapping function can be described as follows:

fremap

(
a f use

)
= FC

(
a f use ⊕ vi

)
, (9)
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where a f use is the reorganized feature vector calculated by function 8 and vi is the indepen-
dent vector (i = 1, 2, 3, 4, 5, 6). The detail of the fusion module is shown in Figure 4.
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Figure 4. An example of point clouds projection. The number of fully connected layers’ input
channels is marked on the block. The length of vector is marked on the yellow block.

3.3. Loss Function

The output of our network is a 6-DoF relative pose v:

v = [p, r], (10)

where p is a 3D translation vector and r is a 3D Euler rotation vector. Our loss function of
the network is defined as follows:

L =
1

λ + 1
∗ ||p− p̂||2 +

λ

λ + 1
∗ ||r− r̂||2, (11)

where p̂ is ground truth of translation vector, r̂ is ground truth of Euler rotation vector,
|| ∗ ||2 means L2 norm, and λ is a scale factor to balance the error of translation and rotation.
In our experiment, λ is chosen as 100.

4. Experiment

In this section, we introduce the details of training and experiment. We compare our
method with several representative works on the odometry task. We also compare our
method with its variants.

4.1. Dataset and Evaluation Metrics

We choose the KITTI odometry benchmark for our experiment, which comprises 22 se-
quences containing grayscale images, color images, and Velodyne laser data. Among these
sequences, 10 (00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10) provide ground truth pose data.
Additionally, corresponding inertial data are available in the KITTI raw data for all se-
quences except Sequence 03. For our training, we utilized Sequence 00, 01, 02, 04, 05, 06,
07, 08, and for testing, we used Sequence 09 and 10. Table 3 shows the details of the KITTI
odometry benchmark.
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Table 3. Convolutional layers of Visual images feature encoder.

Sequence Distance (m) Frames
Average
Speed
(km/h)

Max Speed
(km/h) Environment

00 3724 4541 29.5 46 Urban
01 2453 1101 80.2 96 Highway
02 5067 4661 39.1 49 Urban
03 561 801 25.2 31 Country
04 394 271 52.3 56 Country
05 2206 2761 28.8 40 Country
06 1233 1101 40.3 51 Urban
07 695 1101 22.7 39 Urban
08 3223 4071 28.5 43 Urban
09 1705 1591 38.6 52 Urban
10 920 1201 27.6 51 Country

To evaluate the pose estimation results, we follow the official criteria outlined in the
KITTI benchmark [27]. This metric is calculated by averaging the root mean square errors
of the translation and rotation for the involved sequences of lengths (100, 200, 300, 400, 500,
600, 700, 800) meters. Formally, the error metrics are defined as follows:

trel =
1
|F| ∑

(i,j)∈F

Trans
((

p̂j 	 p̂i
)
	
(

pj 	 pi
))

length(i, j)
, (12)

rrel =
1
|F| ∑

(i,j)∈F

Rot
((

p̂j 	 p̂i
)
	
(

pj 	 pi
))

length(i, j)
, (13)

where F is the set of frames (i, j) , i and j represent the subscript of two frames separated
by a fixed distance, length(i, j) represents the fixed distance, Trans() and Rot() represent
figuring out the rotation and translation respectively, 	 denotes calculating the relative
pose transformation between two frames, and p̂ and p represent the estimated and true
values of pose. The evaluation metrics of the KITTI dataset incorporates the length of the
trajectory into the metric, which gives the final error a clear physical meaning.

4.2. Baselines

Several traditional and deep odometry works are chosen as baselines, including
DeepVO [28], DeepLO [29], Au et al. [30], Chen et al. [31], EMA-VIO [32], DeepLIO [33]
and LOAM [34]. These deep learning methods share similar encoder structures with our
method, comprising simple CNN and RNN. DeepVO [28] proposed a deep recurrent
convolutional neural network to estimate pose changes from a sequence of RGB images.
DeepLO [29] projected point clouds into a vector map and a normal map, extracting features
to train for relative pose. Au et al. [30] employed lidar data projection onto the image
plane to generate depth images. They used three depth images from different angles along
with one RGB image as input for their CNN. Chen et al. [31] proposed a selective sensor
fusion module, akin to attention mechanisms, to weight different features. EMA-VIO [32]
introduced an external memory mechanism based on a transformer when fusing visual
and inertial data, showing good performance in accuracy and robustness. DeepLIO [33]
used the soft mask-based method, which relied on MLP to learn the weights of lidar and
inertial data. LOAM [34] extracted edge points and planar points from two scans of lidar
and figured out the ego-motion using the Levenberg–Marquardt method.

DeepVO [28] used Sequence 00, 02, 08, 09 for training and Sequence 03, 04, 05, 06, 07, 10
for testing. DeepLO [29] and Au et al. [30] used Sequence 00, 01, 02, 03, 04, 05, 06, 07, 08 for
training and Sequence 09, 10 for testing. Chen et al. [31] used Sequence 00, 01, 02, 03, 04,
06, 08, 09 for training and Sequence 05, 07, 10 for testing. EMA-VIO [32] and DeepLIO [33]
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used Sequence 00, 01, 02, 04, 05, 06, 07, 08 for training and Sequence 09, 10 for testing.
DeepVO [28], Chen et al. [31], EMA-VIO [32], and DeepLIO [33] trained in a supervised
manner. DeepLO [29] and Au et al. [30] trained in an unsupervised manner. LOAM [34] is a
traditional work that has good performance on the KITTI odometry benchmark.

4.3. Implementation Details

We implement our method based on the PyTorch framework and train our network
using a single NVIDIA RTX 2080Ti. Adam optimizer is used in our training with β1 = 0.9
and β2 = 0.999 . The initial learning rate is 10-4 and controlled by a step scheduler with a
patience of 5 and factor of 0.5. Batch size was set to 5. Our model is trained for 500 epochs.
Note that we do not use normalization layers in our architecture since our experiments
show that adding these layers decreases the accuracy of prediction.

4.4. Result of Comparison

Figure 5 shows the result of our training on the training set. We can see that the
motion trails predicted by our method fit the ground truth. As shown in Table 4, we
conducted a comparative analysis of our method against baselines on the odometry task.
Our method exhibits superior performance compared to most of baselines, especially when
compared to DeepLO [29] and Au et al. [30] on the training set (Sequence 00, 01, 02, 04,
05, 06, 07, 08). Notably, sequence 01 includes more dynamic objects than other sequences
since it was recorded on a busy highway. Consequently, DeepLO [29], DeepLIO [33]
and LOAM [34] display higher translation errors in Sequence 01 due to interference from
dynamic objects. In contrast, our method demonstrates remarkable robustness in Sequence
01, attributed to the adoption of multisensory inputs, particularly inertial data, proving to
be immune to dynamic objects’ interference. On the testing sets, our method outperforms
both DeepVO [28] and DeepLO [29], both of which rely on a single sensor. While our
method excels in translational accuracy compared to multisensory methods, it does show
higher rotational errors in Sequence 10. It is worth noting that both Au et al. [30] and
Chen et al. [31] utilized RGB images as inputs, which contain more features but require
more memory during training. Additionally, some inertial data are missing for certain
timesteps in the KITTI raw data, resulting in errors during normalized interpolation of
inertial data. DeepLIO [33] performs better than other methods in rotational accuracy,
proving that the combination of point clouds and inertial data can extract more accurate
information to predict rotation. Although there is still a performance gap between our
method and LOAM [34], it is important to highlight that our method does not require
precise calibration matrices.

Table 4. Comparison with other works. trel is the translational error (%) and rrel is the rotational error
(deg/100 m). V denotes taking visual images as input. L denotes taking 3D point clouds as input. I
denotes taking inertial data as input. V+L denotes taking both visual images and 3D point clouds
as input. V+I denotes taking both visual images and inertial data as input. L+I denotes taking both
3D point clouds and inertial data as input. V+L+I denotes taking visual images, 3D point clouds,
and inertial data as input. The best model’s number will be bolded in the table.

Seq.

Our Method DeepVO [28] DeepLO [29] Au et al. [30] Chen et al. [31] Ema-Vio [32] DeepLIO [33] LOAM [34]

V+L+I V L V+L V+L V+I L+I L

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

00 1.02 0.46 - - 1.90 0.80 2.77 1.78 - - - - 1.6 0.38 0.78 -
01 0.55 0.24 - - 37.83 0.86 3.76 0.80 - - - - 5.9 0.19 1.43 -
02 1.76 0.95 - - 2.05 0.81 4.82 2.26 - - - - 1.96 0.23 0.92 -
03 - - 8.49 6.89 2.85 1.43 2.75 1.39 - - - - - - 0.86 -
04 1.05 0.71 7.19 6.97 1.54 0.87 1.81 1.48 - - - - 3.7 0.12 0.71 -
05 1.93 1.05 2.62 3.61 1.72 0.92 3.81 1.43 4.25 1.67 - - 1.24 0.21 0.57 -
06 0.89 0.32 5.42 5.82 0.84 0.47 4.03 1.22 - - - - 1.97 0.14 0.65 -
07 0.77 0.42 3.91 4.60 0.70 0.67 3.61 1.41 4.46 2.17 - - 1.92 0.32 0.63 -
08 0.99 0.39 - - 1.81 1.02 2.75 1.61 - - - - 2.34 0.34 1.12 -
09 3.32 1.58 - - 6.55 2.19 3.76 1.92 - - 8.68 1.54 4.4 0.21 0.77 -
10 4.28 2.24 8.11 8.83 7.74 2.84 4.65 0.51 5.81 1.55 7.46 2.26 4.0 0.51 0.79 -



Drones 2023, 7, 699 10 of 15

(a) Sequence 00 (b) Sequence 01

(c) Sequence 02 (d) Sequence 04

(e) Sequence 05 (f) Sequence 06

(g) Sequence 07 (h) Sequence 08

Figure 5. Motion trails of training set.

4.5. Ablation Studies

We conduct several experiments to investigate the effectiveness of our feature fusion
network by generating variants of our framework. For this purpose, we test the following
variants: (1) VLIO1: this framework concatenates feature vectors directly; (2) VLIO2: this
framework uses the function 8 to fuse feature vectors but do not concatenate the reorganized
feature vector with six independent vectors respectively; (3) VLIO3: the full framework.
To prove the necessity of feature fusion, we also test three other variants: (1) VLO: this
framework takes grayscale images and 3D point clouds as input; (2) VIO: this framework
takes grayscale images and inertial data as input; (3) LIO: this framework takes 3D point
clouds and inertial data as input. The above three frameworks use full fusion network.
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Table 5 shows the relative pose estimations. When comparing VLIO with VLO, VIO,
and LIO, we observe that the fusion of different sensors enhances the estimation perfor-
mance. When compared to VLIO1, the performance of VLIO2 validates the effectiveness
of our fusion network. Similarly, when compared to VLIO2, the performance of VLIO3
validates the effectiveness of the remapping. Figure 6 shows the motion trails of Sequence
09 and Sequence 10 in the x-z plane. It is apparent that the motion trail generated by
VLIO3 closely aligns with the ground truth in comparison to the trails of other variants.
Additionally, Figure 7 presents the translational and rotational errors of Sequence 09 and
Sequence 10, averaged over sub-sequences with a length of (100, 200, . . . , 800) meters and
different speeds of measurement platform. We can see more clearly that our method’s
performance is superior to other variants. In addition, our method has a flatter curve and is
insensitive to the change of speed, indicating that our proposed fusion module effectively
enhances the robustness of the system.

Table 5. Comparison of our framework and its variants. trel is the translational error (%) and rrel is
the rotational error (deg/100 m).

Models
Seq. 09 Seq. 10 Mean

trel rrel trel rrel trel rrel

VLIO1 6.86 3.76 6.85 3.87 6.86 3.82
VLIO2 5.42 2.39 6.12 3.75 5.77 3.07
VLIO3 3.32 1.58 4.28 2.24 3.80 1.91
VLO 8.02 4.39 7.85 4.40 7.94 4.40
VIO 9.73 5.11 7.76 5.04 8.75 5.08
LIO 9.10 4.92 7.84 3.94 8.47 4.43

(a) Sequence 09 (b) Sequence 10

Figure 6. Motion trails of Sequence 09 and 10.
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5. Conclusions

In this paper, we present a novel attention-based odometry framework for multi-
sensory UGV. Our method fully leverages the complementary properties of monocular
cameras, lidar, and IMU by taking grayscale images, 3D point clouds, and inertial data
as inputs. To enhance the robustness and prediction accuracy of the system, we employ
neural networks as encoders and carefully tune the network parameters to optimize overall
performance. CNN excels at processing image information, enabling us to extract feature
vectors from grayscale and depth images. Notably, the depth images are generated from
3D point clouds, simplifying point cloud data processing for neural networks. We uti-
lize RNN to extract feature vectors from inertial data, modeling the temporal correlation
within consecutive inertial data sequences. After extracting these three feature vectors, we
introduce a novel feature fusion method inspired by the attention mechanism. Initially,
we employ a fully connected network to adjust the weights of the three feature vectors,
enhancing the granularity of the resulting features. Subsequently, we remap the reorga-
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nized feature vector into six different outputs, thereby achieving greater accuracy. For our
experiments, we select the KITTI dataset, which contains data from various sensors and
diverse environmental conditions. The results of our experiments demonstrate that our
method outperforms other deep learning methods with similar encoder structures. This
comparison emphasizes that multisensory odometry offers higher accuracy and robustness
in challenging scenarios compared to single-sensor odometry. Ablation studies further
confirm that our proposed feature fusion module significantly enhances the performance
of deep learning methods. Nevertheless, we have employed a simple CNN structure as an
encoder and fine-tuned neural network parameters.

In this paper, our method has been exclusively tested on the KITTI dataset, encompass-
ing urban, highway, and country scenes. However, it does not cover diverse environments
like indoor or wooded areas. To adapt our method for alternative datasets, it is crucial to
synchronize timestamps across different sensors. Additionally, each sensor’s data undergo
preprocessing to attain a format suitable for CNN and RNN processing.

Despite the promising results, our method faces several challenges. The neural net-
work structure proposed exhibits limited generalization ability, performing less optimally
on testing sets compared to training sets. To address this, we plan to explore more ad-
vanced encoders and broaden training to encompass diverse datasets, thereby enhancing
generalization capabilities. Furthermore, we observed an accumulation of errors over time,
resulting in a significant final error between the predicted trails and the ground truth.
Introducing closed-loop optimization is imperative to continuously correct deviations.
Lastly, our method currently relies on ground truth, limiting its applicability in scenarios
where ground truth is unavailable. Consequently, we aim to incorporate unsupervised
learning to mitigate dependence on ground truth.
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