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Abstract: Drone images contain a large number of small, dense targets. And they are vital for
agriculture, security, monitoring, and more. However, detecting small objects remains an unsolved
challenge, as they occupy a small proportion of the image and have less distinct features. Conven-
tional object detection algorithms fail to produce satisfactory results for small objects. To address
this issue, an improved algorithm for small object detection is proposed by modifying the YOLOv7
network structure. Firstly, redundant detection head for large objects is removed, and the feature
extraction for small object detection advances. Secondly, the number of anchor boxes is increased to
improve the recall rate for small objects. And, considering the limitations of the CIoU loss function
in optimization, the EIoU loss function is employed as the bounding box loss function, to achieve
more stable and effective regression. Lastly, an attention-based feature fusion module is introduced
to replace the Concat module in FPN. This module considers both global and local information,
effectively addressing the challenges in multiscale and small object fusion. Experimental results on
the VisDrone2019 dataset demonstrate that the proposed algorithm achieves an mAP50 of 54.03% and
an mAP50:90 of 32.06%, outperforming the latest similar research papers and significantly enhancing
the model’s capability for small object detection in dense scenes.

Keywords: small object detection; feature extraction; attention mechanism; feature fusion

1. Introduction

Small object detection finds ubiquitous applications in the real world across various
domains. In the realm of intelligent transportation, accurate detection of small objects or
distant entities such as traffic signs, vehicles, and pedestrians is imperative for ensuring
safe autonomous driving [1]. In the field of aerial remote sensing, precise localization
and classification of objects of interest are paramount for critical response and urban
monitoring [2–4]. In the medical domain, small object detection contributes to the iden-
tification of imperceptible early-stage pathological tissue [5]. As the demand for small
object detection continues to grow across diverse domains, it presents concurrent chal-
lenges. Therefore, investigating methods to enhance small object detection performance
and extend its practical applications holds vital significance and value.

The rapid advancement of deep learning has propelled the widespread adoption of
Convolutional Neural Networks (CNN) as efficient object detectors. These detectors can
be categorized into two-stage and one-stage methods based on their distinct detection
paradigms. Two-stage detectors, such as Fast R-CNN [6], Faster R-CNN [7], Cascade
R-CNN [8], and VFNet [9], involve region proposal generation followed by subsequent
classification and localization. Conversely, one-stage detectors like SSD [10], You Only Look
Once (YOLO) [11], and RetinaNet [12] directly predict object class and position without
the need for candidate boxes. One-stage algorithms exhibit faster detection speeds at the
expense of sacrificing a marginal degree of accuracy compared to their two-stage counter-
parts. More recently, anchor-free detectors, including CenterNet [13], YOLOX [14], and
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RepPoints [15], have gained popularity by eliminating the design and matching of anchor
boxes. Evaluation of these detectors is predominantly performed on well-known datasets
such as MSCOCO [16] and PascalVOC [17], which primarily comprise low-resolution
images containing relatively large objects. Consequently, existing detection algorithms
have achieved commendable results in detecting large objects.

Most detection algorithms are designed for natural scenes, but there are significant
differences between drone aerial images and images of natural scenes. First, drones are
generally far from the ground, resulting in a large number of small targets in the images.
Limited pixel information leads to less distinct features and inadequate shape and texture
cues for effective discrimination from the surrounding background. Moreover, during
the convolution and downsampling processes, vital features are prone to loss, while the
IoU metric exhibits heightened sensitivity to position deviations, thereby exacerbating the
difficulty in accurate localization of small objects compared to their larger counterparts.
Second, aerial images have a large number of targets, and the density of the targets re-
sults in severe occlusions. Finally, drone aerial images have high resolution and complex
background factors. These challenges prevent standard object detectors from producing
satisfactory results [18,19], thereby impeding their suitability for real-world applications.
Furthermore, most research in the field tends to overlook the more challenging task of
dense small object detection, consequently hindering overall performance enhancement of
object detection algorithms.

In order to adapt the algorithm to the characteristics of drone aerial images, this
study introduces the SODCNN network based on YOLOv7 [20]. The network’s detection
heads are redesigned to accommodate the characteristics of small objects. Furthermore, the
anchor box parameters and bounding box loss function are optimized to enhance object
localization. Lastly, the inherent feature fusion is modified.

This paper’s primary contributions are as follows:

1. Considering the progressive decline in small object information across the feature
extraction network, we eliminate redundant detection head for large objects and
prioritize feature extraction for small object detection, enabling the acquisition of a
more comprehensive set of small object information;

2. To strike a balance between computational complexity and small object recall rate,
we judiciously increase the number of anchor boxes, thereby reducing the network’s
tendency to miss densely distributed small objects. Then, addressing the limitations
of the CIoU loss, which solely accounts for aspect ratio differences while disregarding
length value disparities, we employ the EIoU loss as the model’s bounding box loss,
thereby improving target localization accuracy;

3. In the context of feature map fusion, the fixed allocation of fusion weights in the
original network may not be conducive to small object detection. Thus, we propose
the attention-based fusion module ECF, which reinforces the network’s focus on small
objects through attention mechanisms and dynamically generates fusion weights,
facilitating comprehensive feature fusion.

2. Related Work

Along with the proposal of excellent algorithms for deep learning such as CNN,
more and more research has introduced CNN into target recognition and extraction in
high-resolution images. Akyon et al. [21] present a versatile framework for fine-tuning,
employing sliced inputs wherein the input image is partitioned into overlapping regions
for detection. This method demonstrates favorable outcomes on high-resolution aerial
image datasets. Cira et al. [22] propose a road classifier in high-resolution aerial images
by integrating different CNN models to construct a new model, which makes full use
of the advantages and minimizes the disadvantages of the basic models by combining
a low-error classifier. The performance of object detection in aerial images is improved
compared to the basic model. Manso-Callejo et al. [23] use semantic segmentation for the
recognition and extraction of wind turbines in high-resolution images. Target extraction at
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image boundaries suffers due to lack of contextual information; to address this problem,
this paper discards pixels far from the center in the original tile by using four auxiliary tiles
of the same size. This strategy largely solves the problem of inaccurate target extraction at
the edges.

Given the subpar performance of general object detection models in small object
detection scenarios, several algorithms specifically designed for this purpose have been
proposed. For instance, Zhang et al. [24] introduce a precise and expeditious approach for
small object detection in remote sensing images. The proposed method integrates multi-
modal data and leverages auxiliary super-resolution learning to facilitate discriminative
modeling of small objects amidst complex and expansive backgrounds. However, the
incorporation of an auxiliary super-resolution branch in the model substantially increases
the parameter count during training, thereby adversely affecting real-time detection ca-
pabilities. Chen et al. [25] amplify the target region to capture richer feature information,
albeit at the expense of increased computational complexity. Furthermore, Zhu et al. [26]
tackle the challenges associated with multiscale and motion blur issues in drone aerial
images by incorporating Transformer [27] and CBAM [28] into YOLOv5 [29]. Nevertheless,
the proposed model overlooks the high cost of training while pursuing enhanced detection
performance. Xianbao et al. [30] propose an improved algorithm based on YOLOv3. Three
improvements are proposed: image segmentation and upsampling, bilateral scaling, and in-
creasing the residual network element to reduce the feature loss and avoid gradient fading.
The improved algorithm improves the performance of small target detection, but increases
the network depth, which affects the detection speed. Additionally, Sunkara et al. [31]
introduce a novel CNN architecture called SPD-Conv, which downsamples feature maps
without sacrificing information. This approach replaces stride convolutions and pool-
ing layers, thereby circumventing the loss of fine-grained information for small objects.
However, its applicability is limited to specific CNN networks.

For multiscale fusion techniques, there are several studies on Graph Convolution
Neural networks (GCN) and CNN. Ding et al. [32] propose a graph convolution with
adaptive filters and aggregator fusion mechanism. They combine different filters by intro-
ducing linear functions and training different weight matrices, and propose a degree-scalars
to fuse multiple aggregators. The method effectively extracts the features of the graph.
Zhang et al. [33] propose an adaptive receptive path aggregation mechanism in order to
prevent the influence of noisy nodes for classification and to find the most suitable re-
ceptive field to represent the target node. Aggregation of neighbor nodes is achieved by
learning the importance level of 1-hop neighbors, and LSTM is used to update the nodes
and preserve the local features of the nodes. Ding et al. [34] propose a multi-feature fusion
network by combining multiscale GCN with multiscale CNN, i.e., GCN is used to extract
spectral spatial features of the graph and CNN, with convolutional kernels of 3 × 3 and
5 × 5 used to extract spectral spatial features . Finally, these features are concatenated.
This network efficiently extracts multiscale superpixel-based graph features and local pixel
features. Ding et al. [35] design multiscale receptive fields to extract local and global
neighboring node features and edge features, and then use an attention strategy to fuse
these features. Similarly, when clustering features of different levels, inspired by graph
attention networks, Ding et al. [36] first retain the multiscale locality layerwise information
contained in each level through a kind of concatenation approach, and then use attention
coefficients to fuse the features. Within CNN, Liu et al. [37] propose a fusion module based
on channel attention, adaptively merging features from multiple scales using attention
weights. Nevertheless, this approach solely considers global information in the feature
maps, disregarding local details.

In the field of target detection, most of the feature fusion methods use a fixed fusion
pattern, ignoring the importance of the features. In addition, when analyzing the features,
more attention is paid to the global information and local details are ignored, which are
unfavorable for small target detection. For this, this paper proposes an adaptive feature
fusion module.
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3. Proposed Methods
3.1. Theoretical Background
3.1.1. YOLOv7

The YOLO model, a classic one-stage detection network, has been widely applied in
the field of object detection due to its superior performance. YOLOv7, an advancement
over its previous iterations, exhibits improved speed and accuracy. It adheres to the core
principles of the YOLO series, which involve dividing the output feature map into grids and
assigning each grid the responsibility of predicting objects whose centers fall within it [38].

YOLOv7 consists of four main components: the input stage, backbone network, neck,
and output stage. The input stage primarily preprocesses the data to enhance diversity,
reduce redundant information, and accelerate training. The backbone network is respon-
sible for feature extraction, during which fine-grained details such as texture gradually
diminish while semantic information progressively strengthens. The neck, comprising
the Feature Pyramid Network (FPN) and the Path Aggregation Network (PAN), conducts
feature fusion through both top-down and bottom-up approaches, enabling the acquisition
of rich feature information. The output stage utilizes the processed features from the neck
to classify and locate objects, yielding precise detection results. Each grid outputs the
final predictions, including coordinate positions, confidence scores, and class labels. For
instance, when considering input images of size 640 × 640, the dimensions of the three
output feature maps are 20 × 20 × 45, 40 × 40 × 45, and 80 × 80 × 45, respectively. The
receptive field gradually decreases from large to small, thereby facilitating the detection of
large, medium, and small objects.

3.1.2. CIoU Loss Function

YOLOv7 utilizes the CIoU loss function [39] for bounding box regression, which
considers three factors: overlap area, center point distance, and aspect ratio. The formula
for computing the CIoU loss is as follows:

LCIoU = 1− IOU +
ρ2(b, bgt)

c2 + αν (1)

Here, ρ2(b, bgt) represents the Euclidean distance between the predicted box and the
ground truth box’s center points, while c denotes the length of the diagonal of the minimum
bounding rectangle for the two boxes.

The parameter ν is employed to measure the similarity of aspect ratios, and its calcula-
tion formula is as follows:

ν =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 (2)

wgt and hgt represent the width and height of the ground truth box, while w and h represent
the width and height of the predicted box.

The parameter α represents a weight parameter, and its calculation formula is
as follows:

α =
ν

(1− IOU) + ν
(3)

The gradient calculation formula for ν with respect to w and h is as follows:

∂ν

∂w
=

8
π2 (arctan

wgt

hgt − arctan
w
h
)× h

w2 + h2 (4)

∂ν

∂h
= − 8

π2 (arctan
wgt

hgt − arctan
w
h
)× w

w2 + h2 (5)

Compared to the GIoU and DIoU loss functions, the CIoU loss exhibits significant
improvements in both model convergence speed and detection accuracy. However, ν only
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reflects the difference in aspect ratios, which to some extent slows down the convergence
speed of CIoU [40].

3.2. Framework Overview

Figure 1 illustrates the holistic structure of SODCNN, which is introduced in this
study. The CBS, MP, and Efficient layer aggregation network (ELAN) basic components
from YOLOv7 are retained, while the network’s output end, loss function, anchor boxes,
and fusion module are systematically redesigned for enhanced performance.

Figure 1. SODCNN network architecture.

3.3. The Optimization of Multiscale Detection Heads

To enhance the detection performance of models, it is often necessary to leverage
deeper-level features to expand the receptive field. A larger receptive field allows for
a more comprehensive understanding of the attended information. However, as the
network depth increases, the intricate details and positional information of small objects
gradually diminish. Consequently, the notion of improving small object detection accuracy
by enlarging the receptive field becomes unfeasible.

In the context of YOLOv7, the model employs three feature maps of varying scales
to predict objects of different sizes. These feature maps correspond to downsampling
factors of 8, 16, and 32. Notably, the feature map derived from an 8-fold downsampling
possesses the smallest receptive field, wherein each grid represents an 8 × 8 region in
the original input image. Consequently, objects with dimensions smaller than 8 × 8 are
susceptible to being overlooked by the network. It is crucial to recognize that the overall
loss in the network is determined collectively by the output layers at the three distinct
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scales. Consequently, suboptimal training outcomes from any of the output layers can lead
to an escalated model loss, adversely affecting the training efficacy of the network.

To adapt the network for small object detection tasks, we introduce a modification
that involves advancing the feature extraction process associated with the output layer
possessing the smallest receptive field. This advancement results in a downsampling factor
reduction from 8 to 4. Furthermore, we eliminate the redundant detection head with
a downsampling factor of 32, thereby retaining only two detection heads. A graphical
representation of the revised network structure can be found in Figure 2.

Figure 2. The optimized detection heads.

In the original YOLOv7 architecture, feature extraction occurs at the second ELAN
layer in the backbone and is subsequently horizontally fused into the neck. Compared to
the feature maps at the first ELAN, the feature map size of the second ELAN is halved.
However, the downsampling operation applied to the feature map derived from the first
ELAN can lead to the loss of crucial features pertaining to small objects. To address
this limitation, we advance the feature extraction process to the first ELAN layer. In the
YOLOv7 framework, upsampling is performed using the nearest-neighbor interpolation
method with an upsampling factor of 2. The advancement of the feature extraction process
results in a corresponding feature scale that is twice the original, expanding from 80 × 80
to 160 × 160. To facilitate feature fusion with the same scale as the neck layer without
compromising the receptive field of other object detection layers, the upsampling factor of
the second UPSample in FPN is increased from 2 to 4. Similarly, the downsampling factor
of the first MP-2 in PAN is also increased from 2 to 4. The revised structure of the improved
MP-2 module is depicted in Figure 3.

A careful analysis reveals a considerable disparity between the receptive field of the
detection head, with a downsampling factor of 32 and the target object scales observed in
the dataset. This discrepancy has resulted in a certain degree of redundancy in the detection
head. With the aim of expediting model training and reducing the complexity of the model,
we opt to eliminate this detection head. Remarkably, this adjustment simultaneously
reduces the computational complexity of the model while maintaining the accuracy of
object detection.
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Figure 3. The optimized MP-2.

3.4. Anchor Box Parameters

In YOLOv7, each grid of the output layers is equipped with three anchor boxes of
varying aspect ratios, and the sizes of these anchors differ across the output layers. The
VisDrone [41] dateset used in this study contains a substantial number of small objects, with
an average of 53 objects per image. Moreover, these small objects often appear in clusters.
For instance, as shown in Figure 4a, the crowd of people occupies a small portion of the
image, making it challenging even for human observers to identify them. The same applies
to the densely packed vehicles and pedestrians depicted in Figure 4b. The original anchor
box parameters of the network were tailored for the COCO dataset, which has an average
of only 7 objects per image. The choice of anchor settings significantly influences the speed
and accuracy of object detection, necessitating the establishment of reasonable anchor box
parameters specific to different dataset types to enhance network detection performance.

Given the relatively large number of objects per image in the VisDrone dataset, there
exist substantial differences in scale among the target boxes. By appropriately increasing
the number of anchor boxes, it becomes possible to generate a greater number of prior
bounding boxs (predefined boxes of different sizes and different aspect ratios, i.e., anchor
boxes) to match objects of different scales and improve the recall rate for small objects.
However, this approach also introduces a considerable computational burden. In our study,
we set the number of anchors per grid to 4. It is important to note that the number of
anchors is not as large as possible. During the matching process, only the anchors closely
related to the ground truth boxes are retained. Setting a specific number of anchors allows
for effective matching of objects, so increasing the number of anchors will not only cause
redundancy of anchor frames, but also increase the computation. Through subsequent
experimental analysis, we determined that setting the anchor box count to 4 achieves a
good balance between recall rate and computational complexity.

To obtain the prior boxes that match the characteristics of the dataset, we employed the
K-means clustering algorithm. Specifically, for the detection head at a scale of 160 × 160,
the assigned anchor sizes are 3 × 4, 4 × 9, 8 × 7, and 8 × 15. For the detection head at a
scale of 40 × 40, the assigned anchor sizes are 17 × 10, 16 × 23, 32 × 17, and 43 × 40. The
increase in the number of anchor boxes enhances the network’s ability to perceive densely
packed small objects.
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(a) (b)

Figure 4. VisDrone dataset. (a) Example image on the street. (b) Example image on the square.

3.5. Loss Function of Bounding Box

The formulation of the bounding box loss function is a crucial determinant of object
localization accuracy. While the CIoU loss function addresses a wider range of influencing
factors compared to its predecessors, it still exhibits certain limitations. The CIoU loss
incorporates penalties based on the distance between the center points of predicted and
ground truth boxes, as well as their aspect ratios. However, a critical issue arises when the
aspect ratios satisfy the condition w = kwgt and h = khgt, indicating a linear proportionality
between the predicted and ground truth box aspect ratios, while their actual lengths may
significantly differ. As illustrated in Figure 5, where the black box represents the predicted
box and the red box represents the ground truth box, both boxes possess identical aspect
ratios, yet the predicted box is substantially smaller than the ground truth box, which means
ν = 0 and the penalty term associated with the aspect ratio becomes ineffective, diverging
from the desired regression objective. Furthermore, based on Equations (4) and (5), the
gradients of w and h exhibit opposite signs, implying that, during the regression process, the
predicted box’s width and height cannot increase or decrease simultaneously. Whenever
one value increases, the other value must decrease. These issues give rise to potential
challenges in model optimization, particularly when the initialization of anchor boxes
yields larger width and height values than those of the ground truth boxes. In such
scenarios, throughout the iterative optimization process, one of the values will invariably
be magnified, resulting in a larger discrepancy from the ground truth box’s length. This
optimization strategy primarily emphasizes aspect ratio similarity while neglecting the
actual differences between w and wgt, as well as h and hgt .

To enhance the accuracy of object box localization, we replace the CIoU loss with the
EIoU loss [40]. The EIoU loss is defined as

LEIoU = LIoU + Ldis + Lasp = 1− IOU +
ρ2(b, bgt)

(wc)2 + (hc)2 +
ρ2(w, wgt)

(wc)2 +
ρ2(h, hgt)

(hc)2 (6)

where wc and hc represent the width and height of the minimum enclosing rectangle of the
predicted box and the ground truth box, respectively.

The EIoU loss considers three factors: overlap area, center point distance, and edge
length differences. It is a modification of the CIoU loss that no longer considers the
similarity of aspect ratios between the two boxes. Instead, it minimizes the differences in
width and height. During the optimization process, the width and height of the predicted
box can increase or decrease simultaneously, accelerating the convergence speed of the
model and further improving the accuracy of object box localization.
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Figure 5. The situation of ν = 0.

3.6. Attention Adaptive Fusion Mechanism

The FPN employs a simple cascaded fusion method to integrate deep-level and
shallow-level features, aiming to capture both strong detailed information and seman-
tic knowledge. However, this fusion strategy assigns fixed weights to the features and
only performs linear fusion, which may not be optimal for handling small objects. To
address this limitation and achieve effective fusion of features with varying scales and
semantics, we propose an Attention Adaptive Fusion module termed ECF, which replaces
the conventional feature fusion in FPN. ECF leverages attention mechanisms to generate
adaptive fusion weights, facilitating non-linear aggregation of features. Notably, our ECF
module takes into account the characteristics of small objects and multiscale contexts. It not
only encompasses global contextual information, but also captures local contextual cues,
enabling robust representation of both extensively distributed large objects and compactly
distributed small objects.

Figure 6 illustrates the architecture of our proposed ECF module. Given two feature
maps, X and Y, wherein X represents low-level semantic information and Y represents high-
level semantic information, the fusion process commences with an element-wise addition
operation between the two feature maps. The fused feature map is subsequently fed into
the multiscale attention module A, which leverages a sigmoid function to produce attention
weight W. Additionally, the dashed arrow signifies 1−W, and the two sets of weights are
element-wise multiplied with the corresponding elements of the X and Y feature maps.
Eventually, the fused feature map is obtained through a cascaded operation. This fusion
procedure can be mathematically expressed using the following formula:

Z = Cat(A(X + Y)⊗ X, (1− A(X + Y))⊗Y) (7)
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Figure 6. ECF module.

Furthermore, the upper and lower branches of the attention module are dedicated to
extracting global and local contextual information, respectively. The global information
extraction branch draws inspiration from the Efficient Channel Attention (ECA) mecha-
nism [42]. By employing parallel global max pooling and global average pooling, spatial
dimensions are effectively compressed to extract crucial information from the feature map.
This approach mitigates information loss compared to relying solely on max pooling. The
mathematical formulas for the two pooling operations are presented as follows:

GAP(X + Y) =
1

H ×W

H

∑
i=1

W

∑
j=1

(Xi,j + Yi,j) (8)

GMP(X + Y) = max
H

∑
i=1

W

∑
j=1

(Xi,j + Yi,j) (9)

Subsequently, the feature map undergoes shared one-dimensional convolutions and
normalization operations to avoid dimensional reduction while capturing cross-channel in-
teraction information. Finally, the global information feature map M1 is generated through
element-wise summation. This can be formally denoted using the following equation:

M1 = BN(C12(BN(C11(GAP(X + Y))))) + BN(C12(BN(C11(GMP(X + Y))))) (10)

where C11 represents the first one-dimensional convolution operation, while C12 represents
the second one-dimensional convolution operation. The acronym BN denotes batch nor-
malization, a technique widely used for normalizing activations in deep neural networks.

The sizes of the two one-dimensional convolution kernels are denoted as k, which play
a crucial role in determining the extent of channel interactions. These sizes are determined
adaptively, maintaining a direct proportionality to the number of channels present in the
feature map. More precisely, when denoting the number of channels as C, the calculation
formula for k is expressed as follows:

k = ψ(C) =
∣∣∣∣ log2 C

γ
+

b
γ

∣∣∣∣
odd

(11)

where |t|odd represents the closest odd integer to t. Specifically, when t is an even number,
|t|odd = t + 1, while, for odd values of t, |t|odd = t. The constants γ and b are assigned
specific values of 2 and 1, respectively.

In order to address the limitations of global context in overlooking intricate details
and to mitigate the challenges posed by multiscale variations and small target objects, we
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integrated local context information within the attention module. This was achieved by
employing two two-dimensional convolutional kernels of size 1 to extract the local context
information, denoted as M2. Notably, the channel dimension underwent a reduction from
C to C

r , where C represents the original number of channels and r denotes the channel
reduction factor, empirically set to 4. Following this, the second convolutional kernel
restored the channel dimension back to its original value of C. The holistic procedure can
be succinctly outlined as follows:

M2 = BN(C22(SL(BN(C21(X + Y))))) (12)

where C21 refers to the first two-dimensional convolutional operation, while C22 corre-
sponds to the second two-dimensional convolutional operation. Furthermore, the term “SL”
denotes the SiLU activation function, which is applied within the network architecture.

After obtaining the global context information M1 and local context information M2,
the attention weight W is computed using Equation (13). The dimension of M1 is C × 1 × 1
and the dimension of M2 is C × H ×W. The summing operation of these two feature maps
utilizes the broadcast mechanism, i.e., the values on the dimension of the M1 channel are
copied in the width and height dimensions, and expanded into feature map with the size of
C × H ×W to be summed with M2. This weight assignment mechanism allows the model
to allocate larger weights to crucial information, thereby focusing more attention on these
informative regions.

W = Sigmoid(M1 + M2) (13)

The ECF module is employed to replace the Concat module in FPN, as illustrated in
Figure 7. During the downsampling process, the scale of the feature maps gradually de-
creases, while during the upsampling process, the feature maps are scaled up to match the
size of the backbone feature maps. By horizontally integrating deep-level high-semantic fea-
tures with shallow-level high-resolution features, the model’s classification and localization
capabilities are simultaneously enhanced. The adaptive fusion using attention mechanisms
addresses the limitations of fixed weight allocation in the original network. By dynam-
ically assigning weights, the fused features can capture more information about small
targets, thereby improving the network’s feature extraction capacity in densely packed
small target scenarios.

Figure 7. The optimized FPN structure which replaces ECF.
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4. Experiments and Results
4.1. Datasets

In this study, we utilized the VisDrone2019 dataset as our small object dataset. Vis-
Drone2019 is a large-scale dataset comprising aerial images captured by unmanned aerial
vehicles. The dataset contains 10,209 static images from 14 different cities, including
6471 training images, 548 validation images, 1610 test images, and 1580 unlabeled test
images for the VisDrone challenge. Except for the images used for the challenge, the other
8629 images are used as the dataset for our experiments. The images have a maximum
resolution of 2000 × 1500 and encompass various weather and lighting conditions, rep-
resenting diverse real-life scenarios. The dataset defines 10 object categories, including
humans and various types of vehicles, as depicted in Figure 8a, along with their corre-
sponding object counts. Notably, the car category has several hundred thousand instances,
while the awning–tricycle category only has a few thousand instances, indicating a severe
class imbalance issue. Furthermore, due to variations in shooting heights and angles, the
objects exhibit significant scale changes. Figure 8b illustrates the size distribution of object
bounding boxes in the dataset, where the horizontal and vertical coordinates indicate the
aspect ratio of the target to the image, respectively. It is predominant that the target size
distribution is mainly concentrated in the lower-left corner, indicating that the majority
of objects in the dataset are small. About 60% of the targets in the dataset have an area
of no more than 1000 pixels, and about 75% of the targets have an area of no more than
2000 pixels. In addition to the absolute scale being relatively small, the vast majority of the
targets are also very small in relative scale, with about 97% of the targets accounting for less
than 1% of the image area, so it can be seen that the core task of the VisDrone dataset lies in
the detection of small targets. The dataset exhibits a high density of objects, with individual
images containing even hundreds of objects, leading to significant object occlusion and
presenting a highly challenging detection task.

(a) (b)

Figure 8. Dataset situation. (a) Object categories and numbers. (b) Aspect ratio distribution of the
target bounding box to the image.

4.2. Experimental Setup

The experimental setup and training parameter configurations are presented in Tables 1
and 2, respectively. The experiments were conducted on a computational environment
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based on the Ubuntu 20.04 operating system, utilizing the powerful NVIDIA GeForce
RTX 3090 graphics card. The Python programming language version 3.8 was employed,
along with the PyTorch deep learning framework. To expedite the training process, GPU
acceleration was utilized. It is important to note that all experiments were conducted
under identical environmental conditions to ensure consistency and reproducibility. For
the setting of hyperparameters, in order to save the computational resources and adapt the
video memory size, we set the bach size to 4. Other hyperparameters are not specifically
set. The image size is scaled to the default 640 × 640 as the network input. We chose the
default settings of YOLOv7 to facilitate the comparison with the original network and to
reflect the effectiveness of the proposed method.

Table 1. Experimental environment.

Item Configuration

Operation system Ubuntu20.04
GPU RTX 3090
CPU Intel Core i9-10900K

Memory 62 G
Video memory 24 G
Program IDE Pycharm

Pytorch 1.8
cuda 11.4

Table 2. Training parameters.

Parameters Configuration

Training image size 640 × 640
Batch size 4
Optimizer SGD

Learning rate 0.01
Momentum 0.93

Warmup epoch 3
Total epoch 250

4.3. Results and Discussion
4.3.1. Comparative Experiments on Anchor Box Parameter Settings

To validate the effectiveness of increasing the number of anchor boxes for small object
detection, we conducted comparative experiments using a network with only two pre-
diction layers. The anchor box numbers were set to 3, 4, 5, 6, and 7, respectively. The
experiments were performed on the VisDrone training dataset, with subsequent evaluation
on the validation set. The experimental results are shown in Table 3.

Table 3. Impact of the number of anchor box settings on model performance.

Number of Anchor Recall (%) GFLOPs

3 50.86 128.9
4 53.74 129.1
5 53.65 129.3
6 53.14 129.5
7 50.92 129.8

In the table, we record the corresponding recall and GFLOPs values for different
numbers of anchor boxes. GFLOPs is the number of floating-point operations, which can
be interpreted as the computational cost, and is used to measure the complexity of an
algorithm. It can be observed that, when the number of anchor boxes was set to 4, the
network achieved a noticeable improvement in recall rate. However, when the number
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of anchor boxes was increased to 5 and 6, the recalls did not increase and did not differ
much compared to 4 anchor boxes, indicating a certain degree of redundancy in the anchor
boxes. Furthermore, when the number of anchor boxes was increased to 7, the recall
rate decreased dramatically, suggesting that an excessive number of anchor boxes could
negatively impact the network’s performance. Thus, the most reasonable number of anchor
boxes was determined to be 4. At this setting, the network’s GFLOPs increased from
128.9 to 129.1, with no significant increase in computational complexity. Additionally, the
matching success rate between the dataset’s targets and the prior boxes improved. Further
increasing the number of anchor boxes not only failed to significantly improve the network’s
performance but also increased the computational workload. The experimental results
indicate that, when the number of anchor boxes is set to 4, the model’s computational
complexity remains within a reasonable range while improving the detection of small
objects to some extent. Thus, more small objects can be correctly detected.

4.3.2. The Effect of Convolutional Kernel Size k in ECF

According to Equation (11), the size of the ECF convolution kernel is adaptively
determined, and, in order to verify the validity of adaptively changing the kernel size k, we
set k to a fixed value ranging from 3 to 9 for the comparison experiments. The experimental
results are shown in Figure 9.

In the figure, the red dashed line shows the detection accuracy of the SODCNN when
k is determined adaptively, with an mAP50 value of 54.03%. The blue line shows the
experimental results when k is set to a fixed value. The detection accuracy is best when
k = 3, but mAP50 is only 53.49%. It is clear that adaptively determining k is effective in
improving the performance of the network.

Figure 9. Comparison of adaptive k and fixed k.

4.3.3. Ablation Experiment

In this study, we conducted a series of ablation experiments to assess the individual
contributions of the proposed enhancements towards improving the performance of the
model. These enhancements included early feature extraction and the removal of the
large object detection head (referred to as YOLOv7-T), the incorporation of an additional
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anchor box (YOLOv7-TA), the replacement of the CIoU loss function with EIoU (YOLOv7-
TAE), and the substitution of the feature fusion module in FPN with the attention-based
self-adaptive fusion module introduced in this paper (known as SODCNN).

Experiments are evaluated on a validation set. Evaluation metrics such as parameters,
mAP50, mAP50:90, AP on small, medium and large targets, GFLOPs, FPS, and training time
are employed to compare the performance of each model. The experimental results are
presented in Figure 10 and Table 4.

(a) (b)

Figure 10. mAP50 and mAP50:90 using different optimized algorithms. (a) mAP50. (b) mAP50:90.

Table 4. Ablation experiment.

Algorithm Params (M) mAP50 (%) mAP50:95 (%) APs (%) APm (%) APl (%) GFLOPs FPS Training
Time (h)

YOLOv7 37.25 49.57 28.41 18.71 39.50 45.73 105.3 105 13.89
YOLOv7-T 32.04 52.57 30.93 22.01 42.43 56.13 128.9 119 14.71

YOLOv7-TA 32.06 53.00 31.28 22.31 42.96 55.38 129.1 119 14.77
YOLOv7-TAE 32.06 53.59 32.01 22.95 43.31 55.56 129.1 102 14.73

SODCNN 32.10 54.03 32.06 23.12 43.91 56.18 129.7 105 14.81

The results clearly demonstrate the efficacy of each enhancement. Notably, the large
increase in GFLOPs for YOLOv7-T compared to the YOLOv7 indicates a boost in model
computation. But its mAP50 significantly improved from 49.57% to 52.57%. And AP values
on small, medium, and large targets and the speed of network detection during the test
were also substantially improved. For the training time, advancing the feature extraction
improved the training time from 13.89 h to 15.84 for 250 epochs. Then, removing the large
target detection head reduced the training time of the network to 14.71 without affecting
the large target detection. Compared to the original YOLOv7, no great improvement in
training time on the YOLOv7-T. The increase in overall network performance suggests that
this improvement highlights the importance of early feature extraction, as it effectively
mitigated the loss of valuable information related to small objects in the deep layers.

Moreover, the addition of an extra anchor box in YOLOv7-TA resulted in a modest but
noticeable 0.43% improvement in mAP compared to YOLOv7-T, and the AP values on the
three size targets were also further improved. Meanwhile, the GFLOPs and training time
were not significantly improved, indicating the positive impact of increasing the number
of anchor boxes on the detection performance, particularly for densely populated small
objects. Furthermore, the analysis of convergence speed revealed that setting the anchor
box number to 4 expedited the model’s convergence process to a certain extent.

Additionally, YOLOv7-TAE demonstrated an enhanced detection accuracy while
maintaining parameter number and computational complexity comparable to YOLOv7-TA.
The replacement of CIoU loss with EIoU loss led the model to optimize its parameters in a
more reasonable direction, contributing to the improved performance.
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Lastly, SODCNN exhibited further optimization compared to YOLOv7-TAE, and the
introduction of the ECF structure brought optimization to the network while introducing a
small number of parameters and computational complexity, emphasizing the superiority
of the proposed dynamic allocation of fusion weights over simple linear fusion. This
adaptive fusion mechanism enables the model to flexibly and comprehensively leverage the
information captured in the fused feature maps, leading to enhanced detection capabilities.

Overall, these ablation experiments provide valuable insights into the effectiveness
and significance of each improvement point, highlighting the potential of the proposed
enhancements for enhancing small object detection performance.

In order to validate the effectiveness of the proposed algorithm in practical applica-
tions, we conducted visual analysis on the test set. We show the visualization results of
YOLOv7 and SODCNN in three different scenes: daytime, nighttime, and motion blur,
shown in Figures 11–13, respectively. We also compared the number of targets detected by
the two models in these detection scenarios in Table 5. Figure 11 shows the visualization
results in a daytime scene, Figure 11a is the original input image, and Figure 11b is the real
labeled image with the number of labeled targets counted in Table 5. Figure 11c,d show the
detection results of YOLOv7 and SODCNN, respectively. According to the visualization
results and Table 5, SODCNN can correctly detect 16 targets, which has higher detection
accuracy compared to YOLOv7. Figure 12 shows the results of the visualization of the night
scene. Comparing Figure 12c,d, our proposed algorithm demonstrates the ability to detect
more small objects in the nighttime scene and accurately identify partially overlapping
and occluded targets, improving the number of detected targets from 83 to 107. Figure 13
shows the algorithm detection performance in a motion blur scenario, where the texture
details of small objects are lost and the features are distorted, resulting in a significant
number of missed detections. However, as observed in Figure 13d, the improved model can
still accurately identify pedestrians in the motion blur scene. Number of targets correctly
detected increased from 4 to 10, indicating enhanced robustness. By performing feature
extraction in the shallow layers and adaptively fusing them into the neck module, our
model retains and effectively utilizes the features of small objects, allowing it to learn
comprehensive information about small objects in complex scenes. Furthermore, the incor-
poration of additional anchor boxes addresses the issue of missed detections in crowded
and overlapping scenarios. Overall, our proposed model exhibits superior adaptability for
small object detection in complex scenes.

To verify the applicability of our algorithm to other detection tasks, we applied the
algorithm to the CARPK dataset. This dataset, proposed by Hsieh et al. [43] in 2017, is a
collection of nearly 90,000 cars from 4 different parking lots collected by drones, containing
989 images for the training set and 459 images for the validation set. The original YOLOv7
and the SODCNN proposed in this paper are compared under the same experimental
conditions. The experimental results are shown in Table 6, where our proposed algorithm
improves mAP50 from 98.41% to 99.18% and mAP50:90 from 71.63% to 74.26% with respect
to the original YOLOv7. The experimental results show that our model is able to show its
superiority in different detection tasks and can be applied in different detection scenarios.
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(a) (b)

(c) (d)

Figure 11. Detection results of YOLOv7 and SODCNN in daytime scene. (a) Original input image.
(b) Ground truth image. (c) Detection performance of the original YOLOv7. (d) Detection performance
of SODCNN.

(a) (b)

(c) (d)

Figure 12. Detection results of YOLOv7 and SODCNN in night scene. (a) Original input image.
(b) Ground truth image. (c) Detection performance of the original YOLOv7. (d) Detection performance
of SODCNN.
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(a) (b)

(c) (d)

Figure 13. Detection results of YOLOv7 and SODCNN in motion blur scene. (a) Original input
image. (b) Ground truth image. (c) Detection performance of the original YOLOv7. (d) Detection
performance of SODCNN.

Table 5. Comparison of the number of detected targets between YOLOv7 and SODCNN.

Algorithm Daytime Scenario Nighttime Scenario Blur Scenario

Ground Truth 24 218 13
YOLOv7 11 83 4

SODCNN 16 107 10

Table 6. Experimental results on the CARPK dataset.

Algorithm mAP50 (%) mAP50:95 (%)

YOLOv7 98.41 71.63
SODCNN 99.18 74.26

4.3.4. Comparison with Other Methods

According to Figure 8a, the number of labels varies greatly from class to class, where
bus, tricycle, and truck have a relatively small number of labels, with 251, 532, and 750 la-
bels, respectively. Car and pedestrian have a larger number, with 14,064 and 8844 labels,
respectively. In order to verify the effectiveness of our algorithm on classes with different
numbers of training labels, we compared the mAP50 of YOLOv7, TPH-YOLOv5, and our
proposed algorithm on different classes of targets. The experimental results are shown
in Table 7, for different classes, our proposed algorithm achieves the best performance,
and it is still effective in improving its detection accuracy for classes with few training
labels. Compared to YOLOv7, our algorithm improves by 6.8%, 5.6%, and 7.7% for the
small targets of pedestrian, people, and bicycle, respectively, and 2.4%, 1.3%, and 3.3%
for the relatively large targets of car, van, and truck, respectively. It can be seen that the
performance of our algorithm improves more significantly on small targets.
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Table 7. mAP50 of the algorithms on classes with different numbers of targets.

Algorithm Pedestrian People Bicycle Car Van Truck Tricycle Awn-Tri Bus Motor

YOLOv7 57.4 48.7 24.0 85.3 52.3 45.4 37.8 20.3 65.3 59.7
TPH-YOLOv5 52.3 42.0 20.3 82.7 44.2 41.1 30.3 18.2 59.7 49.6

Ours 64.2 54.3 31.7 87.7 53.6 48.7 41.9 20.7 71.3 63.9

We conducted comparative experiments involving prominent object detection al-
gorithms on the VisDrone dataset, including YOLOv3 [44], YOLOv4 [45], YOLOv5l,
YOLOv6s [46], YOLOv8s [47], Cascade R-CNN, RetinaNet, TPH-YOLOv5, PicoDet [48],
PP-YOLOE [49], and EL-YOLOv5s [50]. By referring to the data presented in Table 8, it
is evident that our proposed algorithm surpasses these models in terms of performance.
Specifically, our model achieves a remarkable improvement in mAP50, surpassing the
YOLOv8s by 11.9%. And the mAP50:90 is boosted by 6.65%. YOLOv8 is the latest study of
the YOLO series of target detection algorithms. In addition to this, our proposed algorithm
outperforms the mAP50 of the two-stage algorithm Cascade R-CNN by 31.92%, and outper-
forms the anchor-free detectors PicoDet and PP-YOLOE by 19.92% and 14.43%, respectively.
The TPH-YOLOv5 and EL-YOLOv5s algorithms are proposed on the VisDrone dataset,
and the detection accuracy of our algorithm outperforms both models. These findings
unequivocally establish the superior capabilities of our model in effectively detecting small
objects in complex scenes.

Table 8. Comparison experiments.

Algorithm mAP50 (%) mAP50:95 (%)

YOLOv3 39.28 22.07
YOLOv4 30.91 18.42
YOLOv5l 41.41 24.36
YOLOv6s 35.11 20.25
YOLOv8s 42.13 25.41

Cascade R-CNN 22.12 14.41
RetinaNet 11.12 6.71

TPH-YOLOv5 44.05 26.08
PicoDet 34.11 20.89

PP-YOLOE 39.60 24.64
EL-YOLOv5s 25.23 18.40

Ours 54.03 32.06

Our network has been designed with efficiency in mind, making it well-suited for
edge computing environments. On our laboratory equipment, we conducted recognition
tests on images with a resolution of 640 × 640, achieving a recognition rate of 105 frames
per second. However, we acknowledge that, in resource-constrained environments such as
drones, performance can pose a challenge.

We have undertaken extensive optimization efforts to maximize performance in
drones; we still suggest that the available computational resources on the drones should
be upgraded to ensure the loading and computation of our network models. We aim to
achieve a minimum performance level of 3–5 frames per second, which we believe will
effectively meet real-world application demands in the resource-constrained devices.

5. Conclusions

There are a large number of small targets in large resolution aerial images, and general
target detection algorithms are unable to accurately extract the information of the small
targets. To address this issue, this paper focuses on the research of small object detection
techniques based on YOLOv7. We redesigned the detection head, the number of anchor
frames, the loss function, and the feature fusion module of the model. In detail, we address
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the issue of feature loss that occurs as network depth increases by removing the redundant
large object detection head and advancing the feature extraction corresponding to small
object detection. Moreover, we enhance the recall rate of small objects by increasing the
number of anchor boxes and improve the localization accuracy of the model by utilizing
the EIoU loss function as the bounding box loss. Additionally, we introduce an adaptive
fusion module based on attention mechanisms to fully leverage the high-level semantic
information and low-level texture, color, and shape information. We performed ablation
experiments to analyze the contribution of each improvement strategy to the model, and
we also compared the model with other state-of-the-art target detection algorithms. Experi-
mental results on the VisDrone2019 dataset demonstrate that the proposed optimization
strategies effectively improve the detection accuracy of YOLOv7 for small objects. Our
model has superior performance compared to other algorithms. In addition, visualization
analysis shows that our model still improves the accuracy of small target detection in
complex scenarios such as motion blur, darkness, and dense and overlapping targets.

The algorithm proposed in this paper has some limitations—the large target detection
head only produces some redundancy for the VisDrone dataset, so removing it does not
affect the detection accuracy of the network, but, when the network detects data with a
slightly larger target, it may lead to a degradation of the detection performance. To address
this issue, multiple datasets will be used in the future to investigate how to improve the
network’s relocatability so that it can be applied to a variety of target detection scenarios.
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