drones

Article

Design and Implementation of UAVs for Bird’s Nest Inspection
on Transmission Lines Based on Deep Learning

Han Li, Yiqun Dong *, Yunxiao Liu and Jianliang Ai

check for
updates

Citation: Li, H.; Dong, Y.; Liu, Y.; Ai,
J. Design and Implementation of
UAVs for Bird’s Nest Inspection on
Transmission Lines Based on Deep
Learning. Drones 2022, 6, 252.
https://doi.org/10.3390/
drones6090252

Academic Editor: Bo Cheng

Received: 1 September 2022
Accepted: 8 September 2022
Published: 13 September 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
* Correspondence: yiqundong@fudan.edu.cn

Abstract: In recent years, unmanned aerial vehicles (UAV) have been increasingly used in power
line inspections. Birds often nest on transmission line towers, which threatens safe power line
operation. The existing research on bird’s nest inspection using UAVs mainly stays at the level of
image postprocessing detection, which has poor real-time performance and cannot obtain timely
bird’s nest detection results. Considering the above shortcomings, we designed a power inspection
UAV system based on deep learning technology for autonomous flight, positioning and photography,
real-time bird nest detection, and result export. In this research, 2000 bird’s nest images in the
actual power inspection environment were shot and collected to create the dataset. The parameter
optimization and test comparison for bird’s nest detection are based on the three target detection
models of YOLOv3, YOLOv5-s, and YOLOX-s. A YOLOV5-s bird’s nest detection model optimized
for bird’s nest real-time detection is proposed, and it is deployed to the onboard computer for real-
time detection and verification during flight. The DJI M300 RTK UAV was used to conduct a test
flight in a natural power inspection environment. The test results show that the mAP of the UAV
system designed in this paper for bird’s nest detection is 92.1%, and the real-time detection frame
rate is 33.9 FPS. Compared with the previous research results, this paper proposes a new practice of
using drones for bird’s nest detection, dramatically improving the real-time accuracy of bird’s nest
detection. The UAV system can efficiently complete the task of bird’s nest detection in the process
of electric power inspection, which can significantly reduce manpower consumption in the power
inspection process.
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1. Introduction

Power line inspection effectively ensures safe transmission network operation, and
transmission line tower inspection is an important part of the power line inspection work.
In recent years, birds have frequently nested on transmission line towers, which seriously
threatens safe power line operation. At present, the area of high-voltage overhead trans-
mission lines is constantly expanding, and many lines are located in mountainous areas
with complex terrain. In this environment, birds often build their nests on transmission
line towers or insulators [1].

In the past, inspecting transmission lines was mainly performed manually. In en-
vironments with complex terrain, the efficiency of manual inspection was low. With the
rapid development of UAV technology, the application of UAV power inspection technology
can greatly improve transmission line inspection work efficiency. Traditional UAV power
inspection mainly relies on manual UAV flight control, and the transmission line towers are
photographed in the form of aerial photography. A large number of generated photos need
to be manually checked and recorded after the flight. With the development of artificial
intelligence technology, an increasing number of scholars are paying attention to UAV
autonomous power inspection technology [2-6].
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The core of realizing autonomous UAV power inspection is to perform automatic target
detection on images. In recent years, target detection based on deep learning has become
a popular research direction in the computer vision field. Many new target detection
algorithms have been proposed and applied in the autonomous UAV power inspection
field. From 2014 to the present, starting with the R-CNN algorithm proposed in [7], these
algorithms have used deep learning technology to automatically extract hidden features in
input images to classify and predict samples with a higher accuracy. With the continuous
breakthroughs in deep learning and computer vision, many deep learning-based image
target detection algorithms have emerged after R-CNN, such as Fast R-CNN [8], Faster
R-CNN [9], and YOLO.

Deep learning is a class of multilayer neural network algorithms that can automatically
learn the internal structure of the data hidden in the training data through supervised,
semi-supervised, or unsupervised training methods. According to whether there is an
explicit region proposal, the target detection algorithm can be divided into a two-stage
target detection algorithm and a one-stage target detection algorithm. The two-stage
target detection algorithm is also called the target detection algorithm based on the region
proposal or the target detection algorithm based on the region of interest. This type of
algorithm transforms the detection problem into a classification problem with pictures
in the generated proposed region through explicit region proposals. Representative two-
stage object detection algorithms include R-CNN and Fast R-CNN. The one-stage target
detection algorithm is also called the regression-based target detection algorithm. This
type of algorithm does not directly generate the region of interest but regards the target
detection task as a regression task for the entire image. Representative one-stage target
detection algorithms include YOLO and SSD. Figure 1 shows the general framework of
these two classes of object detection algorithms.
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Figure 1. An overview of object detection models. (a) Two-stage object detection; (b) One-stage
object detection.

At present, the application of deep learning in UAV power inspection is mainly for
detecting insulators and U-bolt groups, and there are few studies on the automatic detection
of bird’s nests on transmission lines. Based on an enhanced Faster R-CNN for aerial images,
Reference [10] proposed a detection example of a tower insulator and U-bolt group, which
proved the detection effectiveness of deep learning on aerial images of overhead lines.
Based on the YOLOV2 deep learning model, Reference [11] proposed an insulator detection
and evaluation method. Based on aerial images captured by UAVs, it can detect insulators
in clean backgrounds, with different object resolutions and lighting conditions. Experiments
showed that the method can accurately locate the insulators in real-time UAV-based image
data. The detected insulator images were then successfully evaluated for the insulator
surface condition using different classifiers to assess the presence of ice, snow, and water.
Reference [12] proposed a detection method for UAV electrical components based on the
YOLOV3 algorithm. On this basis, the super-resolution convolutional neural network
(SRCNN) was used to realize the super-resolution reconstruction of the blurred image,
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and the dataset was realized. The experiment proved that the technology improves the
UAV recognition robustness of UAV power inspection systems. At present, there are
few related studies on the use of drones to detect bird nests on transmission lines. a
method for bird’s nest detection on transmission lines using drone images was proposed
by Reference [13]. This paper proposes a deep learning-based bird’s nest detection method.
For the automatic detection framework, the prior dimension of anchors is obtained by using
K-means clustering to improve the coordinate frame generation accuracy. The bird’s nest
automatic detection framework proposed in this work achieves high detection accuracy.

The above work studies the postdetection of the pictures taken by UAV power in-
spection based on deep learning. However, there are still many problems with how to
perform the real-time detection of airborne images during the real-time UAV flight. On this
basis, how to superimpose the detection results into the real-time video stream captured
by the drone so that staff can view and process it in time still needs to be further studied
and solved.

2. Materials and Methods

To improve the efficiency of UAV bird’s nest inspection of transmission lines and to
consider future practical applications, a complete workflow is formulated according to the
functions to be realized by this system. The workflow of the system is shown in Figure 2.
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Figure 2. Workflow diagram.

Before the UAV performs an inspection mission, it is necessary to set the waypoints
and photo task points of the inspection line. This process relies on the generated power
line laser point cloud model or manually setting the waypoints. According to the power
inspection personnel’s experience and actual situation, the drone’s bird’s nest usually exists
in the tower body and the power cable part of the transmission line tower. Therefore, when
setting the shooting angle of the drone, the method shown in Figure 3 is usually used. The
waypoint planning software can simulate and debug the expected photographing effect.
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Figure 3. Schematic diagram of the location where the drone takes pictures and the
camera angle setting.

After the UAV and the onboard computer are turned on, the inspectors first preset
the waypoint information of the line to be inspected and upload it to the UAV, where the
waypoint information includes the photos that the UAV needs to perform at each waypoint.
According to the task and camera angle, the drone takes off autonomously according to the
waypoint information of the inspection route obtained and automatically takes pictures
after arriving at the waypoint.

During this process, the onboard computer pulls the video stream of the drone’s
camera gimbal in real time, obtains the photos taken, and performs bird’s nest detection
and identification for the video stream and photo synchronization. The map interface of the
recognition software is displayed. After the drone completes a single inspection mission
according to the waypoint and lands, the bird’s nest detection software will automatically
generate a KML location record file and a photo of the bird’s nest detected to the U
disk inserted into the onboard computer, which can then be viewed in the map software
on the PC.

2.1. Hardware Design

This system uses the DJI M300 RTK UAV as the development test and flight test
platform and the Nvidia Jetson Xavier NX as the onboard computer for developing and
testing deep learning algorithms. The M300 RTK UAV provides the Onboard SDK for
development, and using the SDK greatly improves the software development efficiency.
To ensure the good operation of the entire hardware system, a 1080P video transmission
module is also configured, which is used to transmit the software running picture of the
airborne computer back to the ground for real-time monitoring.

The hardware schematic of the UAV system we designed for bird’s nest detection is
shown in Figure 4.
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DJIM300 RTK UAV

Figure 4. Hardware schematic of the UAV system for bird’s nest inspection.

The DJI M300 RTK UAV integrates a flight control system, binocular vision, and an
FPV camera, with functions, such as six-direction positioning, obstacle avoidance, and
precise reshooting. It not only ensures flight safety but also provides necessary functions
suitable for power inspection applications [14]. H20T was selected as the airborne gimbal
during the development and implementation of this project. The functional parameters of
the DJI M300 RTK UAV and H20T RGB camera are shown in Table 1.

Table 1. UAV Specifications.

Specifications Value
Dimensions 810 x 670 x 430 mm
Max Takeoff Weight 9kg
Max Speed 23 m/s
Max Ascent Speed 6m/s
Max Descent Speed 5m/s
Vertical:
Hovering Accuracy 40.1 m (RTK enabled)
DJI M300 RTK UAV Horizontal:
40.1 m (RTK enabled)
Max Flight Time 55 min
Max Transmitting Distance 8 km
Forward/Backward/Left/Right:
Obstacle Sensing Range 0.7-40 m
Upward/Downward: 0.6-30 m
Operating Temperature —20°Cto50°C
Photo Size 5184 x 3888
Sensor 1/1.7” CMOS, 20 MP
H20T DFOV: 66.6-4°
RGB Camera Lens Focal length: 6.83-119.94 mm
ISO Range 100-25,600
Photo Format JPEG

In the design process of the UAV system, we also fully consider the influence of the
magnetic field existing in the overhead transmission line on the navigation of the UAV.
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According to the research results of several works of literature and national standard
inquiries [15-17], it is found that for the operation of 500 kV and 750 kV AC transmission
lines, the safety distance between the UAV and the transmission line should generally
not be less than 5 m. In our implementation process, in order to ensure the safety of the
experiment, Increase the safety distance to 20 m. The use of the H20T optical zoom camera
can ensure the shooting effect of photos, while satisfying the need for drones to eliminate
magnetic field interference.

To ensure that the deep learning algorithm can be applied on the airborne end of the
UAYV, the Jetson Xavier NX artificial intelligence development kit is used as the hardware
terminal of the image recognition calculation, and on this basis, the development of the
bird’s nest positioning and recognition algorithm software is carried out. Nvidia Jetson
devices are embedded Al computing platforms that provide high-performance, low-power
computing support for deep learning and computer vision [18-20]. The specifications of
the onboard computer are shown in Table 2.

Table 2. Onboard computer specifications.

Specifications Value
GPU 384-core Volta GPU with Tensor Cores
CPU 6-core ARM v8.2 64-bit CPU, 6 MB 12 + 4 MB L3

16 GB 128-Bit LPDDR4x |
Jetson Xavier NX Memory 59.7 GB/s
Storage 16 GB eMMC 5.1

DL Accelerator (2x) NVDLA Engines

Size 103 mm x 90.5 mm X 34 mm

2.2. Software Design

The software implementation process of this system is based on the Nvidia Jetpack de-
velopment environment, using Qt as the application development framework, integrating
the DJI Onboard SDK and the PaddlePaddle deep learning framework, and completing the
software development on this basis.

Nvidia JetPack SDK contains TensorRT, OpenCV, CUDA toolkit, cuDNN, and L4T
with LTS Linux kernel [21].

The DJI Onboard SDK is an open-source software library that allows a computer to
communicate directly with the DJI M300 RTK drone through the serial port. The Onboard
SDK provides access to aircraft telemetry, flight control, and other drone functions, and
developers can use the Onboard SDK to connect external controllers to the drone and use
it to control the flight. The SDK contains an open-source C++ library, which can be used
to control the M300 RTK drone through the serial interface, support Linux, ARM, and
STM32, and it has a drone simulator and visualization tools that can be used for real-time
simulation tests, while satisfying program debugging. This is convenient for developers to
start quickly and to carry out secondary development [22,23].

During the implementation of this project, the DJI Onboard SDK was used to obtain
the real-time UAV flight position, flight waypoint information, video stream, and cap-
tured photos. Based on the above information as software input, the software processing
architecture is shown in Figure 5.
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Figure 5. Software architecture.

2.2.1. Navigation and Localization Module

The autonomous inspection process of this system relies on the accurate reshooting
function of the UAV. Since the M300 RTK UAYV has an RTK GPS module, it can achieve
high-precision and accurate positioning.

Before the task starts, the operator plans the route based on the point cloud of the line
to be inspected or the information of past inspection waypoints; the specific position target
can be set in flight and saved as a route task, which is imported into the unmanned aerial
vehicle. After the aircraft tasks are completed, the drone conducts a fully autonomous
waypoint flight for the route. For each mission of the same line, the UAV can automatically
capture the latest image of the same position, which is used as the image input source of
the bird’s nest recognition module.

The bird’s nest recognition software module is based on the above image and performs
real-time bird’s nest detection on the image during the flight of the drone. If a bird’s nest is
found, it further extracts the photo point location data in the EXIF information of the image,
marks it on the software interface, and detects the bird’s nest. The pictures and location
information of the bird’s nest are written to the output folder.

2.2.2. Bird’s Nest Detection Module

The bird’s nest detection software module proposed in this paper is implemented by
three different YOLO detection algorithms, including the MobileNetv3-Large improved
YOLOV3 algorithm, YOLOVS5 algorithm, and YOLOX algorithm, and the experimental
results of the three algorithms are compared.

1. Improved YOLOv3 detection algorithm based on MobileNetv3-Large

YOLOV3 is an improved version of the YOLO series algorithm proposed by Redmon et al.
in 2018 [24]. YOLOvV3 uses a deep residual network to extract image features and achieves
multiscale prediction, achieving a better balance between detection accuracy and speed.
The YOLOvV3 algorithm is divided into two parts: the backbone network and the prediction
network from the network architecture. The backbone network of the traditional YOLOv3
algorithm is Darknet-53, which can be divided into 5 stages according to the size of the
feature map. In the third, fourth, and fifth stages, the output feature map of the stage is fed
into the prediction network.

The prediction network fuses multiple scale feature maps for multiscale prediction,
assuming that the input image size is 608 x 608 pixels, and the feature sizes output by the
prediction network are 19 x 19, 38 x 38, and 76 x 76.

This paper improves the YOLOvV3 network structure. As shown in Figure 6, the
lightweight backbone network MobileNetV3-Large [25] is used to replace Darknet-53 as
the backbone network to improve the YOLOv3 network. MobileNetV3-Large is the third
version of MobileNet. Based on MobileNetv2, it adds network structure search, compressed
excitation module (SE), and activation functions hard-swish and hard-sigmoid.
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Figure 6. YOLOV3 structure diagram.

The MobileNetV3-Large network structure is shown in Table 3. The units in the table
number the input data according to the processing order. In Table 3, each row lists the
specification configuration of each layer in the model network. The first row in the table
corresponds to the first network layer. The data transmission in the network is top-down,
that is, the upper layer is processed. The feature map output is used as the input to the next
layer, Conv2d is the normal convolution layer, Pool is the pooling layer, and bneck is the
basic building block. SE indicates whether to add a compressed excitation module (SE) in
the basic building block, and 1/ indicates that a compressed excitation module (SE) is added
to the basic building block of this layer. NL represents the nonlinear activation function
in the network, including HS and RE, where HS represents the hard-swish function and
RE represents the ReLU function. NBN indicates that the batch normalization layer is
not added after the convolutional layer. As seen in the table, the number of filters of the
previous convolutional layer is the same as the number of channels of the input feature
map of the next layer. When the step size is 2, the size of the output feature map is halved.
It is worth noting that the MobileNetV3-Large model in Table 3 is used for the k-class
image classification task, which replaces the fully connected layer with a pooling layer and
two 1 x 1 convolutional layers in the last 3 layers. The layer outputs a feature map of size
12 x k, which is used to represent the 1 x k classification result vector.

Table 3. Specification for MobileNetV3-Large.

Input Operator Exp Size # Out SE NL s
6082 x 3 cov2d - 16 - HS 2
3042 x 16 bneck, 3 x 3 16 16 - RE 1
304% x 16 bneck, 3 x 3 64 24 - RE 2
1522 x 24 bneck, 3 x 3 72 24 - RE 1
1522 x 24 bneck, 5 x 5 72 40 i RE 2
76% x 40 bneck, 5 x 5 120 40 Vv RE 1
767 x 40 bneck, 5 x 5 120 40 v RE 1
762 x 40 bneck, 3 x 3 240 80 - HS 2
382 x 80 bneck, 3 x 3 200 80 - HS 1
382 x 80 bneck, 3 x 3 184 80 - HS 1
382 x 80 bneck, 3 x 3 184 80 - HS 1
382 x 80 bneck, 3 x 3 480 112 Vv HS 1
382 x 112 bneck, 3 x 3 672 112 Vv HS 1
382 x 112 bneck, 5 x 5 672 160 i HS 2
192 x 160 bneck, 5 x 5 960 160 v HS 1
192 x 160 bneck, 5 x 5 960 160 Vv HS 1
192 x 160 cov2d, 1 x 1 - 960 - HS 1
192 x 960 pool, 7 x 7 - - - - 1
12 x 960 cov2d 1 x 1, NBN - 1280 - HS 1
12 x 1280 cov2d 1 x 1, NBN - k - - 1
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2. YOLOvb5-s detection algorithm

YOLOV5 is the fifth-generation model of the YOLO series. It is a target detection model
based on the PyTorch framework. It is improved from the YOLOv3 model. Its structure
and process are shown in Figure 7.
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Figure 7. YOLOvV5-s structure diagram.

Structurally, YOLOVS can be divided into three parts. The focus + CSPDarknet
structure is used on the backbone feature extraction network, the neck is the enhanced
feature pyramid network PAN, and the final prediction is the YOLO head. Currently, there
are four versions of YOLOV5, namely, YOLOv5-s, YOLOv5-m, YOLOvV5-1, and YOLOv5-x.
The weights of the four versions and the width and depth of the model are sequentially
increased. In this paper, YOLOV5-s is selected. Although its AP accuracy is lower than
those of the other three models, its depth is the smallest, and it is more suitable for the
lightweight deployment of UAV airborne Al computing platforms [26,27].

Compared with YOLOV3, the convolution block structure DarkNetConv of YOLOv5
has changed, and its activation function uses SiLU improved from Sigmoid and ReLU,
which is better than ReLU on the deep neural network model; in addition, YOLOvV5 will
also replace the YOLOv3 backbone network The first three layers are replaced by the focus
network, as shown in Figure 8. The network structure performs a slicing operation similar
to downsampling on the input image, takes a value of every other pixel in the image to
obtain four independent feature layers, and then stacks these four independent feature
layers to concentrate the width and height information into the channel. The input channel
is expanded four times, and the newly spliced feature layer is equivalent to the original
3-channel RGB and becomes 12 channels. After using the focus network, the number of
network parameters and computations can be reduced, thereby improving the training
speed [28].

Figure 8. Focus network structure diagram.

3. YOLOX-s detection algorithm

YOLOX was released by Megvii Technology in July 2021. When choosing the bench-
mark model of YOLOX, the author did not choose the YOLOv4 and YOLOVS5 series but
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based on the anchor frame algorithm, YOLOv3, which is currently widely used in the
industrial field, was selected. SPP differs from YOLOvV3 in that YOLOv3-SPP adds SPP
components behind the backbone network of YOLOv3 [29,30].

To facilitate analysis, the YOLOX network structure can also be divided into three
modules: backbone, neck, and prediction layers.

The input uses two powerful data enhancement technologies: mixup and mosaic.
Mosaic enhancement, which can effectively improve the detection effect of small targets,
is also widely used in the YOLOv4 and YOLOVS5 algorithms. Mixup is an addition to
mosaic. The backbone network is consistent with the original YOLOv3 backbone network
and adopts the DarkNet53 network. The neck is also fused using the FPN structure. The
prediction layer consists of the following parts: decoupling head, anchor-free detector, label
assignment strategy and loss computation. The author made the network structure into
an optional configuration. According to the width and height of the network, it is divided
into YOLOX-s, YOLOX-m, YOLOX-1, YOLOX-x, and other versions. This paper uses the
standard network structure YOLOX-s model [31,32], and its network structure is shown in
Figure 9.
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Figure 9. YOLOX-s structure diagram.

3. Results

In the development and implementation process of this project, the test is divided into
two stages. First, the aerial photo dataset of power towers containing the bird’s nest targets
is collected and the bird’s nest marking, training, and testing are performed based on the
detection model proposed in this paper. Then, after deploying the software and onboard
computer to the UAV, field flight tests are carried out to evaluate the bird’s nest detection
and positioning effect of the whole system in the actual operating environment.

During the bird’s nest detection dataset labelling process, a total of 600 images con-
taining the bird’s nest targets were collected, including aerial pylon images of the drone
and bird’s nest images from the network. These images were used to mark the bird’s nest
data for training and testing. In addition, by randomly cropping, flipping, and stretching
the training dataset, a total of approximately 2000 images were obtained for training. The
above datasets were randomly divided into 10 nonoverlapping subdatasets, 9 subdatasets
were selected as the training set, and 1 subdataset was used as the validation set.

Figure 10 shows a schematic diagram of image annotation for the training set. Figure 10a
is the original image, and the rest of the images are based on the expanded image data
obtained after image processing.



Drones 2022, 6, 252

110f18

(d)

Figure 10. Schematic diagram of bird’s nest samples after data augmentation. (a) Original image;

(b) Horizonal flip image; (c) Vertical flip image; (d) Random rotate image; (e) Gaussian blur image.

3.1. Bird’s Nest Detection Module Test

For target detection algorithms, it is usually necessary to use certain evaluation criteria
to measure the algorithm model performance. For deep learning algorithms, a variety
of evaluation indicators need to be considered to evaluate the model algorithm. In this
experiment, in the process of training the model, by visualizing the change in the loss curve
of the training output parameters, we set different parameters to obtain multiple training
models. The precision rate (Precision), the recall rate (Recall), the average precision (AP),
and the mean average precision (mAP) were calculated as the indicators to measure the
model. In addition, since this project needs to realize real-time bird’s nest target detection
on UAVs, it is very important to meet the real-time detection requirements, so the indicator
of detection speed also needs to be considered.

In order to calculate the above evaluation indicators, Table 4 defines positive and
negative samples.

Table 4. Definition of TP, TN, FP, FN.

Statistical Classification Definition
True Positive(TP) A test result that cgr.rectly 1nd1cates.th.e presence of a
condition or characteristic
True Negative(TN) A test result that c.o.rrectly indicates. the absence of a
condition or characteristic
False Positive(FP) A te§t result tha.t .mdlrectly 'mdlcsf\tes thata
particular condition or attribute is present
. A test 1t that indirectly indicates that
False Negative(FN) est result that indirectly indicates that a

particular condition or attribute is absent

3.1.1. Loss Function

In statistics, loss functions are often used for parameter estimation, expressing the
difference between the estimated and true values of a data instance. Deep learning relies
on statistical theory as support, so in deep learning, the loss function is used to estimate
the degree of inconsistency between the training model and the test f(x) and the true value
Y, usually L(Y, f(x)) is expressed. It is generally believed that the smaller the loss function,
the better the robustness of the model.

The loss function of the YOLO algorithm consists of three parts: coordinate error, IOU
error, and classification error. Through calculating network output S x S x (B x 5+ C)
dimension vector and real target input S x S x (B x 5 + C) dimensional vector and the
mean square and error to optimize the model parameters. Its loss function is as follows:

loss = Acoorals fioﬂfzolgw[(xi — &)+ (yi— 1))
oL E o (T — Vi) + (Vi — ) |
HEZ T L0157 (Ci— ) + Mooy T 0 B 177 (Ci =€)
FEZ011E cectasses (Pi(€) — Pi(€))?

, M
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The first two parts of Formula 1 calculate the coordinate error, the middle two parts

calculate the IOU error, and the last part calculates the classification error, where 12.17]

indicates that if the target appears in cell i, it is marked as 1; otherwise, it is 0, and 1;}17] and

1700}7 indicate that the target appears or does not appear, respectively, in the j-th border of

the i-th cell [33].

3.1.2. Precision

In the field of object detection, the accuracy rate is the ratio of the number of correct
objects detected to the sum of the number of detected objects, which measures the precision
of the detection model [34]. The formula for calculating the accuracy rate is:

TP

P =151 Fp

2

3.1.3. Recall

Recall refers to the ratio of the number of correct objects detected to the sum of
the number of true objects annotated manually and measures the recall of the detection
model [35]. The formula for calculating recall is:

TP

R=7p7EN ®)

3.1.4. Mean Average Precision

The precision—recall (PR) curve is drawn based on the corresponding precision and
recall curves. The QP is the area under the PR curve, which can be obtained by calculating
the function integral of the precision rate and the recall rate. Average precision refers to
averaging the correct objects detected over multiple test sets.

The average precision AP calculation formula is:

AP = /01 P(R)dR 4)

It can be seen from the above that AP calculates the average precision of a certain
target category. To evaluate the overall model performance, it is necessary to average the
APs of all targets to obtain the mAP.

The mAP calculation formula is shown in the following formula, where N is the
number of target categories to be detected.

mAP = % ()

3.1.5. Detection Speed

The task of bird’s nest target detection requires real-time detection of the bird’s nest
targets. Therefore, for the detection algorithm model, the detection speed is a particularly
important indicator. In this experiment, the detection speed of the model is calculated by
recording the time used for detection on the test set in units of frames per second (FPS).

3.1.6. Bird Nest Detection Module Test Results

This experiment builds the experimental models of three algorithms based on the
PaddlePaddle framework [36], and the training configuration parameters are shown in
Table 5.
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Table 5. Parameter settings for model training.

Batch Learning

Model Epoch Size Rate Input Shape Trainset/Validation
YOLOvV3 500 32 0.005 608 x 608 9:1
YOLOvV5-s 500 32 0.005 640 x 640 9:1
YOLOX-s 500 32 0.005 640 x 640 9:1

Figure 11 shows the relationship between loss and epoch obtained from the training
of the three models. The changes in the loss curves all show a downwards trend. This is
due to the backpropagation of the deep neural network. In the repeated training process,
the error continues to decrease, so the loss value continues to decrease. In the training
process of the three models, YOLOv3, YOLOv5-s, and YOLOX-s, it can be seen in the figure
that when the epoch reaches approximately 450, 160, and 280, respectively, the loss value
achieves a better convergence effect.

Loss
& 2
Loss

Loss

S0 100 10 200 250 300 00 450

Epoch

(a) YOLOV3

0 4 0 80

Epoch

00 120 40 160

(b) YOLOVS-s

100 150 200 250 300

Epoch

(¢) YOLOX-s

Figure 11. The comparison of loss curves for YOLOv3, YOLOv5-s, and YOLOX-s. (a) YOLOv3;
(b) YOLOV5-s; (¢) YOLOX-s.

According to the training results, the following statistical results of the three models
can be obtained, as shown in Table 6. Among them, the mAP of YOLOvV5-s is 92.1%, which
is better than that of YOLOX-s and YOLOV3.

Table 6. Accuracy comparison of YOLOv3, YOLOv5-s and YOLOX-s.

Model mAP/%
YOLOvV3 90.1%
YOLOvV5-s 92.1%
YOLOX-s 90.8%

Then, the three models were deployed to Jetson Xavier NX to test the frame rate of
bird’s nest detection, and the following experimental results were obtained, as shown in
Table 7. Among them, YOLOv5-s has the highest detection frame rate, which is better than
YOLOv3 and YOLOX-s.

Table 7. Detection speed comparison of YOLOv3, YOLOvV5-s and YOLOX-s.

Model FPS
YOLOv3 23.2
YOLOvV5-s 33.9
YOLOX-s 31.1

As shown in Figure 12, the bird’s nest detection results after the three detection models
are deployed to Jetson Xavier NX are, respectively, shown. Among them, for the same test
images, YOLOV5-s has the highest detection accuracy.
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Figure 12. Comparison of the detection results of the three models. (a) YOLOvV3; (b) YOLOV5-s;
(c) YOLOX-s.

According to the experimental results, to ensure the real-time detection frame rate and
accuracy of the bird’s nest of the airborne computer, YOLOv5-s was finally selected as the
bird’s nest detection model deployed by the airborne computer and then the test flight in
the real field environment was carried out.

3.2. Flight Test

To test the performance of the system in the real power inspection scene, the onboard
computer was mounted on the UAV and carried out the field flight test. The test selected a
continuous transmission line with 6 towers and set up a total of 18 aerial photos. According
to the naked eye observation results, there are bird nests on three of the tower structures.

The following is the field test data. The UAV flight speed is set to 5 m/s. After the
UAV takes off autonomously, it takes fixed photos of the photo waypoints one by one. The
onboard computer processes the photos in real time. The entire inspection flight process
consumes time. The flight status display and processing results during the flight are shown
in Figure 13.
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Figure 13. Display of flight status and bird’s nest detection results.

Figure 14 shows the results of exporting the KML file generated by the onboard
computer containing the bird’s nest picture and position coordinates after the drone lands.

Vaypoint4

Waypoint3

Figure 14. Display of flight status and bird’s nest detection results.

In addition, in the actual application process of the UAV system, a target with a
detection accuracy rate exceeding 80% can be set as required to prompt and export the
results, and the power inspection staff can view the detection results during the flight. After
the drone flight mission is over, when the photos and location information of the bird’s nest
are checked later through the software, the bird’s nest detection result can be re-checked to
further ensure the accuracy of the bird’s nest detection result.

According to the field test results, it can be proven that the system has a certain
application value in the actual environment. Its operational robustness and the accuracy of
bird’s nest data detection still need to be optimized through a large number of flight tests
in the real environment. After the dataset is further expanded, the accuracy of bird’s nest
detection will improve.

4. Conclusions

In this paper, a UAV system for automatic inspection of bird’s nest transmission lines is
designed to improve the efficiency of bird’s nest inspection. In the implementation process,
based on technologies, such as autonomous navigation and deep learning, a UAV system



Drones 2022, 6, 252 16 of 18

with functions, such as autonomous flight inspection, real-time automatic detection of the
bird’s nest, and position export for transmission lines, is realized.

In order to improve the detection accuracy of the bird’s nest detection model, we
took and collected 2000 bird’s nest images in the actual power inspection environment to
create a dataset. The parameters optimization and test comparison for bird’s nest detection
are based on the three target detection models of YOLOv3, YOLOv5-s, and YOLOX-s.
According to the test results, the YOLOv5-s bird’s nest detection model optimized for bird’s
nest real-time detection has a higher mAP and detection frame rate than the other two
models. It was deployed to the onboard computer for real-time detection and verification
during flight. The optimized YOLOV5-s bird’s nest detection model can meet the daily
inspection needs of transmission lines. Its mAP for bird’s nest detection is 92.1%, and
the real-time detection frame rate is 33.9 FPS, which will significantly shorten the time
for exporting transmission line inspection results. The test results proved that the UAV
system could efficiently complete the power inspection bird’s nest detection task. The
system has reasonable practicability and can greatly reduce labor consumption in the
power inspection process.

In the future, we plan to test the system in more complex power inspection scenarios.
We will iterate the robustness of the bird’s nest detection model by expanding the bird’s nest
image dataset. We will also consider how to use lower-cost artificial intelligence onboard
computers to achieve high-accuracy and high-speed real-time detection of bird nests so
that this system can be more widely used.
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