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Abstract: Over the last few years, unmanned aerial vehicles (UAV), also called drones, have attracted
considerable interest in the academic field and exploration in the research field of wireless sensor
networks (WSN). Furthermore, the application of drones aided operations related to the agriculture
industry, smart Internet of things (IoT), and military support. Now, the usage of drone-based IoT,
also called Internet of drones (IoD), and their techniques and design challenges are being investigated
by researchers globally. Clustering and routing aid to maximize the throughput, reducing routing,
and overhead, and making the network more scalable. Since the cluster network used in a UAV
adopts an open transmission method, it exposes a large surface to adversaries that pose considerable
network security problems to drone technology. This study develops a new dwarf mongoose
optimization-based secure clustering with a multi-hop routing scheme (DMOSC-MHRS) in the IoD
environment. The goal of the DMOSC-MHRS technique involves the selection of cluster heads (CH)
and optimal routes to a destination. In the presented DMOSC-MHRS technique, a new DMOSC
technique is utilized to choose CHs and create clusters. A fitness function involving trust as a major
factor is included to accomplish security. Besides, the DMOSC-MHRS technique designs a wild horse
optimization-based multi-hop routing (WHOMHR) scheme for the optimal route selection process. To
demonstrate the enhanced performance of the DMOSC-MHRS model, a comprehensive experimental
assessment is made. An extensive comparison study demonstrates the better performance of the
DMOSC-MHRS model over other approaches.

Keywords: drone communication; energy efficiency; security; clustering; multi-hop routing; Internet
of drones

1. Introduction

With the growth of modern wireless communication technology, the Internet of things
(IoT) is becoming a broadly utilized technology in the domain of several intellectual
applications and services [1]. Eventually, the rise in interconnectivity between numerous
things or objects has produced massive data. But, such IoT applications were not as much
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as effective for making decisions, and data perception lacked the participation of human
cognition processing. Currently, cognitive computing has grabbed the attention of IoT
authors [2]. The IoT with the cognitive capability called cognitive IoT (CIoT) allows an
object or things to study several data from devices or gadgets which is connected, i.e.,
sensors, UAVs, etc. Drones or unmanned aerial vehicles (UAV) are becoming a developing
technology that has communication, sensing, storage, and processing abilities [3]. It is
employed in diverse industries such as the Internet of things (IoT) scenarios, intelligent
transportation systems, and smart cities. The placement of a swarm of UAVs for IoT
services is a reality for numerous applications namely tracking and surveillance, package
delivery, search and rescue, and public safety [4]. Such IoT-assisted applications facilitate
the new pattern called the Internet of drones (IoD). It could offer a capability to a UAV
drone network for accessing drones and users through the Internet. The features of drones
are easy mobility and deployment, which makes UAVs helpful for transmission. Since
drones are movable, it is utilized as information carriers i.e., sending the data to remote
destinations [5]. When the destination does not in direct interaction range of the UAV, the
transmission happens through multiple hops. The swarm of UAVs cooperates to constitute
a network for sending the data to the destinations. Though reliability, survivability, and
scalability were the distinctive traits of IoD; however, it put forward many complexities in
transmissions and drones networking [6]. The UAV’s higher mobility makes the topologies
very rapid, leading to communication issues.

The self-organizing UAV network constitutes a plurality of clusters by a clustering
technique, with every cluster made up of some cluster members (CM) and a cluster head
(CH) [7]. Such CHs form the high-layer virtual backbone network and present two critical
operations they are direct interactions between CHs and a medium for cross-cluster trans-
mission. The CMs in the same cluster interact directly via a single hop; however, the data
sent between clusters were initially forwarded to the CH, and then forwarded to the CH of
the cluster in which the destiny node was positioned via the virtual backbone networks [8].
The CH after sends to the destiny nodes for achieving cross-cluster transmission. In a clus-
tered IoD, when a compromised node was chosen as a CH, this node not just illegitimately
acquired information from the normal node but even forge data distributed to the sink [9].
In addition, attackers could grab control of the entire network by compromising tiny CHs;
compromising every CHs becomes a very alluring target for them. As a drone-related
network suffers from the same susceptibilities, secure CH choosing for the IoD becomes
vital for its successful operations [10].

1.1. Existing Works on Cluster-Based Routing in IoD

In [11], the operation of drones in ad hoc mode and their cooperation with vehicles
in vehicular ad hoc networks (VANET) were learned to aid the detection and routing
procedure of malicious vehicles. A routing protocol termed vehicular routing unit (VRU)
can be devised that involves two different ways they are routing packets of data between
UAVs using a protocol termed VRU_u and supplying packets of data between vehicles by
using drones utilizing a protocol called VRU_vu. In [12], a novel systematic structure can
be presented for solving the issue of multi-drone collaborative task allotment. It can be
developed as a combinatorial optimizing issue and resolved by the enhanced clustering
technique. The main goal was to enable multi-drone for completing tasks has less energy
utilization. Since the drone count increased, it appears that flight safety problems such as
collisions between the drones, and an enhanced multi-UAV collision-resistant approach
related to the enhanced artificial potential domain were devised. Namdev et al. [13]
modeled a whale optimization algorithm-related optimized link state routing (WOA-OLSR)
over a flying ad hoc network (FANET) for providing optimum routing for secure and
energy-efficient FANET. The efficacy of OLSR can be improvised with the help of WOA
and assessed performance displays superior efficacy of WOA-OLSR.
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In [14], the optimal CH selection depends upon blockchain (BC) transactions, residual
energy (RE), mobility, online duration, connectivity, and reputation by utilizing improved
artificial bee colony optimization (IABC). The presented IABC uses two distinct search
equations for onlooker bee and employee bee for enhancing exploitation abilities and
convergence rate. In addition, a lightweight BC consensus technique, the AI-proof of
witness consensus algorithm (AI-PoWCA) can be projected that employs the optimal CH
for mining. In [15], drones that can act as mobile sinks were taken into account and
prevailing work on wireless sensor network (WSN)-UAV atmosphere authentication was
protracted. A secure authentication structure utilizing an elliptic-curve crypto-system was
provided. The projected structure can be assessed to assure it is resilient to renowned
potential assaults relevant to password guessing, data confidentiality, key impersonation,
and mutual authentication.

In [16], a secure and reliable routing protocol (SecRIP) for the FANET can be devised
for reliable and efficient data communication. This script operates toward the improvement
of the quality of experience (QoE) metrics and quality of service (QoS). The script operates
on two methods: the dragonfly technique and the chaotic algae technique; such methods
serve the functionalities of cluster management, selection, and data communication in
intercluster. Khan et al. [17] project a new routing approach as the extension of AntHocNet
because of mobile features; it is called a flying nature-inspired method. Moreover, a case
study was performed for improving the signal power with the help of modeled learning
technique named decision tree (DT).

1.2. Paper Contributions

This study develops a new dwarf mongoose optimization-based secure clustering
with a multi-hop routing scheme (DMOSC-MHRS) in the IoD environment. The goal
of the DMOSC-MHRS technique involves the selection of CHs and optimal routes to a
destination. In the presented DMOSC-MHRS technique, a new DMOSC technique is
utilized to choose CHs and create clusters. A fitness function (FF) involving trust as a major
factor is included to accomplish security. Besides, the DMOSC-MHRS technique designs
a wild horse optimization-based multi-hop routing (WHOMHR) scheme for the optimal
route selection process. To demonstrate the enhanced performance of the DMOSC-MHRS
model, a comprehensive experimental assessment is made.

1.3. Paper Organization

The organization of the paper is given as follows. Section 2 introduces the proposed
DMOSC-MHRS model and the experimental analysis of the DMOSC-MHRS model is
provided in Section 3. Lastly, Section 4 concludes the study with major findings and
possible future enhancements.

2. The Proposed Secure Clustering with Routing Protocol

In this study, a new DMOSC-MHRS technique has been developed for secure cluster-
based communication in the IoD environment. The DMOSC-MHRS technique proficiently
chooses CHs and optimal routes to a destination. The major intention of the proposed model
is to accomplish security, energy efficiency, and improved lifetime. Figure 1 showcases the
overall procedure of the DMOSC-MHRS algorithm.
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2.1. Overview of DMO Algorithm

The DMO technique inspires the performance of dwarf mongooses when determining
their food [18]. Generally, the DMO starts with setting the primary value to a group of
solutions utilizing the subsequent equation:

xi,j = lj + rand×
(
uj − lj

)
(1)

whereas rand refers to the arbitrary number created in zero and one. uj and lj implies the
restrictions of the searching area. The swarm of DMO has three groups such as babysitters,
alpha group, and scouts. All the groups have their individual performance for capturing
the food, and the particulars of these groups are provided as:

2.1.1. Alpha Group

The fitness of all the solutions is calculated if the population was established. Equation (2)
computes the possible value for all the fitness populations, and alpha female (α) is selective
and dependent on this probability.

α =
f iti

Σn
i=1 f iti

(2)

n relates to the number of mongooses from the alpha group. The number of babysitters
was represented by bs. Peep is the vocalization of the dominant female which keeps the
family on track.

All the mongooses sleep from the primary sleeping mound that is fixed ∅. The DMO
utilized for generating a candidate food place.

Xi+1 = Xi + phi× peep (3)

The sleeping mound was offered in Equation (4) then all the repetitions, whereas phi
signifies the uniformly distributed arbitrary value in −1 and 1.

smi =
f iti+1 − f iti

max {| f iti+1, f iti|}
(4)

Equation (5) comprises the average value of sleeping mounds.

ϕ =
Σn

i=1smi

n
(5)

If the babysitting alters condition is met, this technology advances to the scouting
phase, in which the next sleeping mound or food source is assumed.
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2.1.2. Scout Group

As mongooses are identified to not go back to past sleep mounds, the scout’s appear-
ance is for the next sleeping mounds, making sure to search. In this method, scout and for-
age were carried out concurrently. This drive was exhibited then a successful/unsuccessful
search for a novel sleeping mound. Specifically, the migration of mongooses is contingent
on their entire efficiency. The scout mongoose is defined in Equation (12).

Xi+1 =


Xi − CF ∗ phi ∗ rand ∗

[
Xi −

→
M
]

i f ϕi+1 > ϕi

Xi + CF ∗ phi ∗ rand ∗
[

Xi −
→
M
] (6)

In which rand demonstrates a random number from the range of zero and one,

CF = (1− iter
Maxiter

)
(2 iter

Maxiter
)

whereas the parameter which regulates the mongoose group, the
collective-volitive movement was reduced linearly as the iterations developed.
→
M = Σn

i=1
Xi×smi

Xi
in which the mongoose’s movement to the novel sleeping mound was

defined by this vector.

2.1.3. Babysitters Group

The babysitters were commonly inferior group members which continue with the
young and cycle on a regular basis allowing the alpha female (mother) for leading the rest
of the group on daily forage expeditions. The number of babysitters was proportional
to the size of the population; it can be a stimulus for the technique by decreasing the
entire population size dependent upon the percentage set. The scout and food source data
earlier indicated by the family members replaces them by resetting the use of the babysitter
interchange parameter.

2.2. Design of DMOSC Technique

In the presented DMOSC-MHRS technique, a new DMOSC technique is utilized to
choose CHs and create clusters. The FF in this MOTAHO is used for choosing the topical
CH derived. Now, the FF is expressed by the four dissimilar parameters namely number of
hops, trust, distance, and residual energy (RE) [19].

Trust: In CH selection, trust is regarded as a key parameter in the FF to improve secu-
rity. The mutual trust made in a specific period is used for accomplishing the transmission.

Direct trust (DT) is predicated on the approximate period of communication among ith

node and dth destination n. DT is measured as the gap on the list of actual and the projected
period of ith node for authenticating the public key expressed by the dth destination. Hence,
DT including ith node and dth the destination is given by,

DTd
i (τ) =

1
3

[
DTd

i (τ − 1)−
(

τappx − τest

τappx

)
+ ω

]
(7)

In Equation (7), τappx defines the approximate period and τest determines the estimated
period to authenticate the public keys. In other words, τappx and τest are the expected period
for sending and receiving the public keys via the destination and also the node. ω implies
the opinion parameter of this node.

The node with the opinion parameter is plotted based on DT. However, the node
without a witness parameter is authenticated by the indirect trust (IDT) as follows that is
given by,

IDTd
i (τ) =

1
r

r

∑
i=1

DTd
i (d) (8)

In Equation (8), r denotes the total neighbors of node i.
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Recent trust (RT) is measured by the DT and IDT along with the crucial validity and
admits the destination or sink that is given in part of the moment.

RTd
i (τ) = α∗DTd

i (τ) + (1− α)∗ IDTd
i (τ) (9)

where α = 0.3.
g1 = DTd

i (τ) + IDTd
i (τ) + RTd

i (τ) (10)

Distance: It determines the distance (g2) amongst the CH to the BS and the next-hop
node. Since the energy usage of nodes is proportionate to the distance of the communication
path. Consequently, it is essential to determine the communication path with a lesser
distance for diminishing energy utilization.

Residual energy: The candidate CH with higher RE (g3) formulated in Equation (11)
is greatly desirable at the time of CH selection. Since the CH has to perform different
operations namely data transmission, collection, and aggregation.

g3 =
a

∑
i=1

ECHi (11)

In the above equation, ECHi illustrates the RE of CH.
Some hops: Some standard nodes belonging to the specific CH are described by

some hops. The energy utilization of CH is lesser when it has a lesser number of hops.
Therefore, the CH with lesser hops is regarded in the number of hops (g4) and CH selection
is formulated as follows.

g4 =
a

∑
i=1

Ii (12)

In Equation (12), the number of standard nodes for the specific CH can be represented
as Ii. The mentioned objective values were converted into one objective related to the
weighted sum technique as presented below in Equation (13).

f = δ1 × g1 + δ2 × g2 + δ3 × g3 + δ4 × g4 (13)

where the δ1, δ2, δ3, and δ4 represents the weights allotted to every FF value. The devised
FF was utilized from the DMOSC approach to choose an optimum CH.

2.3. Process Involved in WHOMHR Technique

In this study, the DMOSC-MHRS technique designs a WHOMHR scheme for optimal
route selection process. The WHO algorithm is a metaheuristic algorithm dependent
upon the social life of wild horses [20]. During this technique, distinct performances are
demonstrated by wild horses namely leading, chasing, grazing, hunting, and mating. The
horses were categorized into two social groups such as territorial and non-territorial. But,
the WHO technique concentrates on the non-territorial group that comprises group leaders
named stallions, several mares, and their offspring. The part of stallion is to lead the group
and connect with mares, as the foals start their lives with grazing performance. In addition,
if the foals exceed the age of puberty, they can leave their group and integrate into other
groups. The process of the WHO technique was outlined in the subsequent steps:

2.3.1. Population Initialization

During this stage, the parameter needed for the WHO technique was established for
evaluating the primary solution, afterward upgraded based on the technique process. The
horses were separated into many groups and all the groups have one stallion. This division
was estimated employing in Equation (14) as follows:

H = Q× SR (14)
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where H denotes the entire amount of groups, Q refers to the population size, and SR
signifies the number of stallions from the population.

2.3.2. Grazing Behavior

This step presents the grazing performance of foals before they can obtain puberty.
The stallion was considered at the center of the grazing region, whereas the residual group
members were adjacent to the center of the region. This performance is demonstrated
employing in Equation (15):

X j
i+1,H = 2A× cos(2πRA)×

(
Sj − X j

i,H

)
+ Sj (15)

In which i signifies the number of group members, j denotes the number of stallions,
X j

ι+1,H , X j
i,H stands for the place of group members from the next and present iteration

correspondingly, A has an arbitrarily selective adaptive process, R represents the arbitrary
number in −2 and 2, and Sj denotes the stallion place.

2.3.3. Horse Mating Behavior

This phase offers the performance of foals afterward obtaining puberty age. As
previously noted, foals leave their groups and combine with another group for mating and
for preventing fathers from marrying their daughters and sisters. Besides, this performance
was demonstrated in employing Equation (16):

Xt
H,l = Mean

(
Xu

H,i, Xw
H,j

)
and i 6= j 6= l (16)

where Xt
H,l signifies the place of horse t of group l, Xu

H,i refers to the place of foals u of
group i, and Xw

H,j signifies the place of foal w of group j, in which the foal u mate with
foal w from the group l. Therefore, an essential state to mate was obtained. Algorithm 1
demonstrates the working of the WHO algorithm.

2.3.4. Group Leadership

During this stage, the group stallion leads the members of the group to the waterhole
for food. Likewise, the stallion fights with another stallion for dominating the waterhole.
This performance is defined utilizing Equation (17):

Sι+1,G =

{
2A× cos(2πRA)× (WP− Si,G) + WP i f r1 > 0.5
2A× cos(2πRA)× (WP− Si,G)−WP i f r1 ≤ 0.5

(17)

In which Sι+1,G, Sι,G demonstrates the next and present place of leaders correspond-
ingly, WP implies the place of waterholes and r1 is a random vector among zero and one.

2.3.5. Leaders’ Exchange and Selection

At last, the group leader was chosen for obtaining an optimum fitness value. During
all the iterations, the group leader was selected, whereas an optimum leader is obtained
amongst the entire leaders from the iterations. This step is demonstrated by Equation (18):

Si,G =

{
Xi,Gi f cos t(Xi,G) < cos t(Si,G)
Si,Gi f cos t(Xi,G) > cos t(Si,G)

(18)

During this work, the ending condition is for performing the optimized procedure
up to the maximal count of iterations (Max. It). The optimized approach was computed
employing 100 iterations, with a population size of 30.
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Algorithm 1: Pseudocode of WHO algorithm

Arbitrary initiation of the primary horse population
Parameter initiatin
Determine fitness of Horses
Produce Foal groups and elect Stallions
Determine optimum horse
While the stopping criteria were unsatisfied
Determine TDR
For the number of Stallions

Find Z
For the number of Foals under various groups

If rand > PC
Update foal position

End
End
If rand > 0.5

Update StallionG position
Else

Update StallionGi b position
End

If cost
(

Stallion Gi

)
< cost(Stallion)

Stallion = StallionGi
End
Arrange Foals of the group by cost
Elect Foal with the least cost
If the cost (Foa1) < cos (Stallion)

Swap Foal and Stallion position
End

End
Upgrade optimal
End

An important objective of the WHOMHR approach is maximizing network lifespan
and minimizing energy consumption of all drones [21]. Assuming that h1 is a most main
function such that CHs select next-hop CHs with superior RE to route the data such that for
maximizing the network lifespan viz., h1 is maximized. Consider h2 to be another objective
function that is minimal distance amongst CHs to next-hop CHs and next-hop CHs to BS.
Decreasing the energy consumption of networks requires minimizing the h2. Assume that
h3 is the 3rd objective function such that CHs are select as the next-hop CHs with lesser
node degree. To enhance the network, lifespan requires minimizing h3. Let bij be a Boolean
variable determined as:

b ij =

{
1 i f next− hop(CHi) = CHj, ∀i,j1 ≤ i, j ≤ m
0 Otherwise

(19)

Minimize F = 1/h1 × β1 + h2 × β2 + h2 × β3 (20)

subject to,
dis
(
CHi, CHj

)
× ≤ d max CHj ∈ {C + BS} (21)

m

∑
j=1

bij = 1 and 1 6= j (22)

0 < β1, β2, β3 < 1 (23)
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3. Results and Discussion

In this section, the secure communication performance of the DMOSC-MHRS model
is investigated in detail. The proposed model is simulated using MATLAB under three
different scenarios based on grid size.

• Scenario-1: Grid size of 1000 × 1000 m2

• Scenario-2: Grid size of 2000 × 2000 m2

• Scenario-3: Grid size of 3000 × 3000 m2

Table 1 and Figure 2 highlight the cluster building time (CBT) of the DMOSC-MHRS
approach under varying drones with existing methods such as the hybrid self-organized
clustering scheme (HSCS), bio-inspired clustering scheme for FANET (BICSF), and SCA-
ITV [22]. The experimental values indicated that the DMOSC-MHRS algorithm has demon-
strated enhanced results under all drones. For example, with 15 drones, the DMOSC-MHRS
model offered a lower CBT of 0.33 s whereas the SCA-ITV, BICSF, and HSCS algorithms
obtained higher CBT of 0.61 s, 0.44 s, and 0.44 s, correspondingly. In line, with 20 drones,
the DMOSC-MHRS approach presented a lower CBT of 0.47 s whereas the SCA-ITV, BICSF,
and HSCS methods acquired higher CBT of 0.84 s, 0.70 s, and 0.59 s, correspondingly. Along
with 25 drones, the DMOSC-MHRS technique has presented a lower CBT of 0.62 s whereas
the SCA-ITV, BICSF, and HSCS algorithms gained higher CBT of 1.05 s, 0.86 s, and 0.79 s,
correspondingly.

Table 1. CBT analysis of DMOSC-MHRS approach with existing algorithms under distinct drones.

Cluster Building Time (s)

No. of Drones SCA-ITV BICSF HSCS DOC-MHRS

15 0.61 0.44 0.44 0.33

20 0.84 0.70 0.59 0.47

25 1.05 0.86 0.79 0.62

30 1.19 1.06 0.92 0.73

35 1.25 1.14 1.11 0.89
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Table 2 presents an overall energy consumption (ECM) inspection of the DMOSC-
MHRS algorithm with recent models on different scenarios. Figure 3 reports a comparative
ECM assessment of the DMOSC-MHRS technique with existing models on Scenario-1.
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Table 2. ECM analysis of DMOSC-MHRS approach with existing algorithms under distinct scenarios.

Energy Consumption (J)

No. of Drones SCA-ITV BICSF HSCS DMOSC-MHRS

Scenario-1

15 0.61 0.44 0.44 0.33

20 0.84 0.70 0.59 0.47

25 1.05 0.86 0.79 0.62

30 1.19 1.06 0.92 0.73

35 1.25 1.14 1.11 0.89

Scenario-2

15 1.73 1.66 1.39 1.07

20 2.81 2.49 2.25 1.47

25 3.57 3.30 2.91 2.11

30 4.37 3.90 3.20 2.76

35 4.66 4.14 3.77 3.02

Scenario-3

15 2.78 2.03 1.77 1.23

20 3.38 2.74 2.58 1.95

25 3.95 3.52 3.18 2.55

30 4.52 4.04 3.66 2.91

35 4.66 4.46 3.95 3.45
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The figure indicates that the DMOSC-MHRS approach shows enhanced results with
minimal ECM values. For instance, with 15 drones, the DMOSC-MHRS model gained the
least ECM of 0.33 J whereas the SCA-ITV, BICSF, and HSCS models obtained higher ECM
of 0.61 J, 0.44 J, and 0.44 J, respectively. In the meantime, with 20 drones, the DMOSC-
MHRS approach has achieved the least ECM of 0.47 J whereas the SCA-ITV, BICSF, and
HSCS methodologies obtained higher ECM of 0.84 J, 0.70 J, and 0.59 J, correspondingly. In
due course, with 25 drones, the DMOSC-MHRS method acquired the least ECM of 0.62 J



Drones 2022, 6, 247 11 of 16

whereas the SCA-ITV, BICSF, and HSCS algorithms reached higher ECM of 1.05 J, 0.86 J,
and 0.79 J, correspondingly.

Figure 4 reports a brief ECM assessment of the DMOSC-MHRS methodology with
existing models in Scenario-2. The figure denoting the DMOSC-MHRS approach shows
enhanced results with minimum ECM values. For example, with 15 drones, the DMOSC-
MHRS approach gained least ECM of 1.07 J whereas the SCA-ITV, BICSF, and HSCS models
obtained higher ECM of 1.73 J, 1.66 J, and 1.39 J, correspondingly. Simultaneously with
20 drones, the DMOSC-MHRS approach attained the least ECM of 1.47 J whereas the
SCA-ITV, BICSF, and HSCS techniques obtained higher ECM of 2.81 J, 2.49 J, and 2.25 J,
correspondingly. Eventually, with 25 drones, the DMOSC-MHRS method acquired the least
ECM of 2.11 J whereas the SCA-ITV, BICSF, and HSCS algorithms reached higher ECM of
3.57 J, 3.30 J, and 2.91 J, correspondingly.
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Figure 5 reports a comprehensive ECM assessment of the DMOSC-MHRS approach
with existing models on Scenario-3. The figure representing the DMOSC-MHRS technique
exhibits enhanced results with minimal ECM values. For example, with 15 drones, the
DMOSC-MHRS model gained the least ECM of 1.23 J whereas the SCA-ITV, BICSF, and
HSCS approaches reached higher ECM of 2.78 J, 2.03 J, and 1.77 J, correspondingly. Con-
currently, with 20 drones, the DMOSC-MHRS approach attained the least ECM of 1.95 J
whereas the SCA-ITV, BICSF, and HSCS methodologies obtained higher ECM of 3.38 J,
2.74 J, and 2.58 J, correspondingly. Similarly, with 25 drones, the DMOSC-MHRS model
gained the least ECM of 2.55 J whereas the SCA-ITV, BICSF, and HSCS approaches reached
higher ECM of 3.95 J, 3.52 J, and 23.18 J, correspondingly.

A comprehensive cluster lifetime (CLT) inspection of the DMOSC-MHRS model
with other models is performed on different scenarios in Table 3. Figure 6 performs a
comparative analysis of the DMOSC-MHRS technique with recent models in Scenario-1.
The figure highlights that the DMOSC-MHRS algorithm displays enhanced performance
with maximal CLT values under all drones. For example, with 15 drones, the DMOSC-
MHRS methodology attained enhanced results with improved CLT of 52.34 s whereas the
SCA-ITV, BICSF, and HSCS models obtained reduced CLT of 36.73 s, 46.37 s, and 48.67 s,
respectively. Also, with 25 drones, the DMOSC-MHRS approach reached enhanced results
with improved CLT of 50.35 s whereas the SCA-ITV, BICSF, and HSCS approaches gained
reduced CLT of 32.60 s, 40.41 s, and 44.54 s, correspondingly. Along with 35 drones, the
DMOSC-MHRS technique reached enhanced results with improved CLT of 48.36 s whereas
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the SCA-ITV, BICSF, and HSCS models obtained reduced CLT of 28.78 s, 34.74 s, and 37.65
s, correspondingly.
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Table 3. CLT analysis of DMOSC-MHRS approach with existing algorithms under distinct scenarios.

Cluster Life Time (s)

No. of Drones SCA-ITV BICSF HSCS DMOSC-MHRS

Scenario-1

15 36.73 46.37 48.67 52.34

20 34.90 44.08 47.75 52.49

25 32.60 40.41 44.54 50.35

30 30.31 38.72 41.78 49.13

35 28.78 34.74 37.65 48.36

Scenario-2

15 43.85 50.78 52.78 55.71

20 40.78 48.63 51.09 54.78

25 37.70 44.78 47.86 53.24

30 36.00 42.62 46.16 50.32

35 32.77 38.77 41.39 49.70

Scenario-3

15 48.78 55.01 56.26 58.59

20 43.48 50.65 54.08 57.50

25 38.81 45.51 50.49 56.26

30 35.85 44.88 46.75 52.83

35 35.69 40.83 43.79 52.83
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Figure 7 portrays a comparative analysis of the DMOSC-MHRS algorithm with recent
models in Scenario-2. The figure highlights that the DMOSC-MHRS methodology shows
enhanced performance with maximal CLT values under all drones. For example, with
15 drones, the DMOSC-MHRS approach attained enhanced results with an improved CLT
of 55.71 s whereas the SCA-ITV, BICSF, and HSCS methodologies reached reduced CLT of
43.85 s, 50.78 s, and 52.78 correspondingly. Besides, with 25 drones, the DMOSC-MHRS
model attained enhanced results with improved CLT of 53.24 s whereas the SCA-ITV, BICSF,
and HSCS models obtained reduced CLT of 37.70 s, 44.78 s, and 47.86 s, correspondingly.
Further, with 35 drones, the DMOSC-MHRS approach achieved enhanced results with
improved CLT of 49.70 s whereas the SCA-ITV, BICSF, and HSCS models obtained reduced
CLT of 32.77 s, 38.77 s, and 41.39 s, correspondingly.
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Figure 7. CLT analysis of DMOSC-MHRS approach under Scenario-2.

Figure 8 depicts a detailed study of the DMOSC-MHRS technique with recent models
in Scenario-3. The figure points out that the DMOSC-MHRS approach displays enhanced
performance with maximum CLT values under all drones. For example, with 15 drones,
the DMOSC-MHRS approach attained enhanced results with an improved CLT of 58.59 s
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whereas the SCA-ITV, BICSF, and HSCS algorithms reached reduced CLT of 48.78 s, 55.01 s,
and 56.26 s, correspondingly. Besides, with 25 drones, the DMOSC-MHRS technique gained
enhanced results with improved CLT of 56.26 s whereas the SCA-ITV, BICSF, and HSCS
techniques achieved reduced CLT of 38.81 s, 45.51 s, and 50.49 s, correspondingly. Along
with 35 drones, the DMOSC-MHRS approach gained enhanced results with improved CLT
of 52.83 s whereas the SCA-ITV, BICSF, and HSCS models obtained reduced CLT of 35.69 s,
40.83 s, and 43.79 s, correspondingly.
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Table 4 and Figure 9 highlight the reliability (REL) of the DMOSC-MHRS model under
varying drones. The experimental values indicate that the DMOSC-MHRS model has
demonstrated enhanced results under all drones. For instance, with 15 drones, the DMOSC-
MHRS model offered a higher REL of 94.29% whereas the SCA-ITV, BICSF, and HSCS
techniques obtained lower REL of 87.36%, 89.13%, and 90.43%, respectively. Concurrently,
with 20 drones, the DMOSC-MHRS approach presented a higher REL of 94.90% whereas the
SCA-ITV, BICSF, and HSCS algorithms attained lower REL of 88.05%, 89.60%, and 91.06%,
correspondingly. Concurrently, with 25 drones, the DMOSC-MHRS method rendered
a higher REL of 94.98% whereas the SCA-ITV, BICSF, and HSCS approaches attained
lower REL of 89.56%, 90.91%, and 92.52%, correspondingly. Finally, the experimental
values demonstrated the enhanced performance of the DMOSC-MHRS model compared to
recent models.

Table 4. Reliability analysis of DMOSC-MHRS approach with existing algorithms under dis-
tinct drones.

Reliability (%)

No. of Drones SCA-ITV BICSF HSCS DMOSC-MHRS

15 87.36 89.13 90.43 94.29

20 88.05 89.60 91.06 94.90

25 89.56 90.91 92.52 94.98

30 90.63 92.05 93.77 95.56

35 91.90 93.66 95.11 96.99



Drones 2022, 6, 247 15 of 16

Drones 2022, 6, x FOR PEER REVIEW 15 of 16 
 

Table 4. Reliability analysis of DMOSC-MHRS approach with existing algorithms under distinct 
drones. 

Reliability (%) 
No. of Drones SCA-ITV BICSF HSCS DMOSC-MHRS 

15 87.36 89.13 90.43 94.29 
20 88.05 89.60 91.06 94.90 
25 89.56 90.91 92.52 94.98 
30 90.63 92.05 93.77 95.56 
35 91.90 93.66 95.11 96.99 

 
Figure 9. Reliability analysis of DMOSC-MHRS approach under distinct drones. 

4. Conclusions 
In this study, a new DMOSC-MHRS algorithm was devised for secure cluster-based 

communication in the IoD environment. The DMOSC-MHRS technique proficiently 
chooses CHs and optimal routes to a destination. In the presented DMOSC-MHRS ap-
proach, a new DMOSC technique is utilized to choose CHs and create clusters. A FF in-
volving trust as a major factor is included to accomplish security. Besides, the DMOSC-
MHRS technique designs a WHOMHR scheme for the optimal route selection process. To 
demonstrate the enhanced performance of the DMOSC-MHRS model, a comprehensive 
experimental assessment is made. Extensive comparison studies illustrate the better per-
formance of the DMOSC-MHRS model over other approaches, with maximum reliability 
of 96.99%. Therefore, the proposed model can be employed in future real-time applica-
tions such as environmental monitoring, forest fire detection, disaster management, 
search and rescue, and smart cities. In the future, the performance of the DMOSC-MHRS 
algorithm can be enhanced by the utilization of data aggregation approaches, thereby en-
hancing overall network efficiency. In addition, the overall network performance can be 
improved by the use of unequal clustering techniques to mitigate hot spot problems. 

Author Contributions: Conceptualization, F.S.A. and J.S.A.; methodology, K.A.A.; software, 
A.M.H.; validation, H.A., M.A.E. and A.Y.; formal analysis, A.Y.; investigation, A.M.; resources, 
A.M.; data curation, A.M.H.; writing—original draft preparation, F.S.A., A.A., J.S.A. and H.A.; writ-
ing—review and editing, K.A.A. and A.A.; visualization, A.M.; supervision, A.M.H.; project admin-
istration, J.S.A.; funding acquisition, F.S.A. and A.A. All authors have read and agreed to the pub-
lished version of the manuscript. 

Figure 9. Reliability analysis of DMOSC-MHRS approach under distinct drones.

4. Conclusions

In this study, a new DMOSC-MHRS algorithm was devised for secure cluster-based
communication in the IoD environment. The DMOSC-MHRS technique proficiently chooses
CHs and optimal routes to a destination. In the presented DMOSC-MHRS approach, a new
DMOSC technique is utilized to choose CHs and create clusters. A FF involving trust as
a major factor is included to accomplish security. Besides, the DMOSC-MHRS technique
designs a WHOMHR scheme for the optimal route selection process. To demonstrate
the enhanced performance of the DMOSC-MHRS model, a comprehensive experimental
assessment is made. Extensive comparison studies illustrate the better performance of
the DMOSC-MHRS model over other approaches, with maximum reliability of 96.99%.
Therefore, the proposed model can be employed in future real-time applications such as
environmental monitoring, forest fire detection, disaster management, search and rescue,
and smart cities. In the future, the performance of the DMOSC-MHRS algorithm can be
enhanced by the utilization of data aggregation approaches, thereby enhancing overall
network efficiency. In addition, the overall network performance can be improved by the
use of unequal clustering techniques to mitigate hot spot problems.
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