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Abstract: Due to its structural simplicity and its strong anti-electromagnetic ability, landing guidance
based on airborne monocular vision has gained more and more attention. Monocular 6D pose tracking
of the aircraft carrier is one of the key technologies in visual landing guidance. However, owing to the
large range span in the process of carrier landing, the scale of the carrier target in the image variates
greatly. There is still a lack of robust monocular pose tracking methods suitable for this scenario.
To tackle this problem, a new aircraft carrier pose tracking algorithm based on scale-adaptive local
region is proposed in this paper. Firstly, the projected contour of the carrier target is uniformly
sampled to establish local circular regions. Then, the local area radius is adjusted according to the
pixel scale of the projected contour to build the optimal segmentation energy function. Finally, the 6D
pose tracking of the carrier target is realized by iterative optimization. Experimental results on both
synthetic and real image sequences show that the proposed method achieves robust and efficient
6D pose tracking of the carrier target under the condition of large distance span, which meets the
application requirements of carrier landing guidance.

Keywords: landing guidance; airborne monocular vision; large distance span; scale adaptive;
pose tracking

1. Introduction

As a necessary means to guarantee the onboard performance of carrier-borne aircrafts,
automatic landing technology plays a crucial role in promoting the development of the
carrier-borne aircraft [1]. Traditional landing guidance systems mainly rely on inertial navi-
gation, radar navigation, satellite navigation, and photoelectric navigation. These methods
require the support of carrier-borne equipment and aircraft–carrier communication link,
which are easy to be interfered with, leading to guidance delay or even failure in complex
electromagnetic environment.

Thanks to the rapid development of machine vision in recent years, visual landing
has gradually emerged and has become one of the important means of automatic carrier
landing [2]. According to different installation positions of the camera, visual guidance
methods can be divided into carrier-borne visual guidance method and airborne visual
guidance method [3]. The airborne visual landing guidance method mainly relies on
the image acquisition and processing equipment carried on the carrier-borne aircraft to
complete the calculation of the relative pose parameters between the carrier deck and the
aircraft. Then, the guidance information is transmitted to the aircraft control system, so as
to realize the autonomous navigation of the aircraft. Independent from the support of the
radar, photoelectric, and other external equipment, the landing guidance method based on
airborne vision has the advantages of simple structure, strong autonomy, high precision,
and electromagnetic interference resistance.
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Due to the large distance span of landing process, airborne monocular vision is gener-
ally adopted in airborne visual landing guidance schemes. Many researchers have carried
out relevant work, which can be summarized into two categories: the cooperative mode
and the non-cooperative mode. In the cooperative mode, cooperative signs are arranged
on the carrier deck, such as corner reflex mirror cross array [4], infrared cooperative sign
lamp array [5,6], infrared cooperative sign circle array [7], T-shaped infrared thermal ra-
diation sign [8], and other asymmetric cooperative signs [9,10]. By extracting point and
line features of cooperative signs, the relative pose between the aircraft and the carrier
are calculated according to the geometric characteristics and imaging relationship of the
cooperative sign so as to guide the aircraft. The guidance methods based on the cooperative
sign require the installation of additional signs such as light array on the carrier deck, which
will introduce modification to the original design of the carrier deck with poor concealment.
When the fixed-wing carrier-borne aircraft is landing, the angle between the optical axis of
the airborne camera and the deck surface is small. As the light array arranged in the carrier
deck area is narrow, the distribution of cooperative sign lights arranged on the deck is
extremely compact in the image, which makes it difficult to solve the pose. Therefore, this
paper focuses on the non-cooperative guidance mode based on airborne monocular vision.

The existing research work using non-cooperative mode mainly relies on the carrier’s
own characteristics to solve the pose, such as carrier deck runway line features [11–13],
structural point/line features in the carrier’s interior [14,15], etc. However, the carrier-
borne aircraft landing process can be started from as far as more than 5 kilometers. For
precise guidance, the runway line or internal structure features in images need to be clearly
visible, making these methods [11–15] unable to adapt to the large distance span. In robotic
operation, which is a similar application scenario involving large-span visual guidance, a
monocular pose tracking method based on the target’s own 3D model information is often
used to guide the manipulator to grasp objects [16]. The non-cooperative carrier-guiding
process based on airborne monocular vision mainly includes the carrier target detection,
the carrier pose detection, and the carrier pose tracking. This paper focuses on the pose
tracking part, aiming to propose a monocular pose tracking method merely based on the 3D
model of the carrier to track carrier target pose parameters with high precision and stability.

According to the different image information used, the existing 3D-model-based
monocular pose tracking methods can be classified into four categories [17]: direct method,
feature-based method, edge-based method, and region-based method. In the direct
method [18], the photometric consistency of continuous frames is the basis, and the pose
change of the target is estimated through direct image alignment. Therefore, this method is
extremely sensitive to dynamic light, noise, etc. For feature-based pose tracking methods,
sufficient and clear textures are needed to provide robust feature points or feature lines [19].
However, when the carrier-borne aircraft is far away from the carrier, the carrier target
in the airborne camera image is too small for this method to be applied. The edge-based
method [20,21] generally samples a group of control points along the projected edge of a
3D model. Then, a 1D search is conducted on each sampling point along the normal direc-
tion to determine the corresponding relationship. The pose is tracked by minimizing the
distance between the sampling edge point and its corresponding point. The region-based
method [22–24] combines pose tracking with image segmentation. The pose parameters
are optimized iteratively to maximize the segmentation energy. The region-based method
performs well in dealing with clutter background, dynamic illumination, motion blur, and
defocus. In the process of automatic landing guidance of carrier-borne aircraft, the aircraft
gradually approaches the carrier target from a far end. Affected by the change of visual
range, the carrier target in airborne imaging varies greatly in the whole process, as shown
in Figure 1. Both the edge-based GOS algorithm [21] and the traditional region-based RBOT
algorithm [24] fail to track the carrier in the scenario of large visual range changes in the
landing application.
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Figure 1. Pose tracking of aircraft carrier target during airborne monocular vision-guided landing. 
Top: Schematic diagram of carrier landing based on airborne monocular vision guidance. First row: 
Aircraft carrier targets in images captured by airborne camera. Second row: Pose tracking results of 
the GOS method [21]. Third row: Pose tracking results of the RBOT method [24]. Forth row: Pose 
tracking results of the proposed method. 

Aiming at the problems illustrated above, this paper proposes a pose tracking algo-
rithm based on scale-adaptive local region to stably track the pose of carrier target with 
large scale changes in the process of landing with large range span. The proposed method 
adopts the non-cooperative mode only using the 3D model of the carrier target, relying 
on the information of the local regions on the peripheral contour of the carrier, which is 
most stable in the landing process. The proposed method gives full consideration to the 
scale change of the carrier target, adaptively updating local region model parameters to 
realize robust pose tracking of the carrier target under the interference of wave back-
ground, sea reflection, and imaging blur. 

Figure 1. Pose tracking of aircraft carrier target during airborne monocular vision-guided landing.
Top: Schematic diagram of carrier landing based on airborne monocular vision guidance. First row:
Aircraft carrier targets in images captured by airborne camera. Second row: Pose tracking results of
the GOS method [21]. Third row: Pose tracking results of the RBOT method [24]. Forth row: Pose
tracking results of the proposed method.

Aiming at the problems illustrated above, this paper proposes a pose tracking algo-
rithm based on scale-adaptive local region to stably track the pose of carrier target with
large scale changes in the process of landing with large range span. The proposed method
adopts the non-cooperative mode only using the 3D model of the carrier target, relying on
the information of the local regions on the peripheral contour of the carrier, which is most
stable in the landing process. The proposed method gives full consideration to the scale
change of the carrier target, adaptively updating local region model parameters to realize
robust pose tracking of the carrier target under the interference of wave background, sea
reflection, and imaging blur.
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The contributions of this paper are as follows: (1) A new monocular pose tracking
method based on scale-adaptive local region is proposed, which achieves robust pose
tracking for the carrier target with large scale variation in landing application scenarios,
and achieves better performance than existing algorithms. (2) An innovative updating
mechanism of local region model parameters, considering the target scale change in the
image, is established to better maintain the continuity of color histogram distribution of
the sampled local region near the target contour in continuous frames.

2. Scale-Adaptive Local Region-Based Monocular Pose Tracking Method

Focusing on the application of visual guidance for carrier-borne aircraft landing, this
paper proposes a scale-adaptive local region-based pose tracking method to solve the
problem of robust 6D pose tracking of the carrier target in the large range span scenario.
As shown in Figure 2, on the premise that initial pose is given, firstly, the 2D contour of
the carrier is rendered based on its 3D model with the initial pose. Then, a number of
circular local regions are established from the uniformly sampled 2D image points on the
projected contour. Meanwhile, the local region radius parameters are adjusted according to
the pixel scale of the projected contour. Thus, a scale-adaptive local region pose tracking
model constrained by pose parameters is constructed. Finally, the pose parameters are
solved by iterative optimization so as to optimize the segmentation of the carrier target
by maximizing the energy function and the 6D pose tracking of the carrier target in the
consecutive frames with the cycle repeating.
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Figure 2. Flow chart of monocular pose tracking based on scale-adaptive local region.

In this section, the 6D pose tracking problem of the carrier is described in detail first.
Then, the proposed pose tracking model based on scale-adaptive local region is introduced.
Finally, the pose optimization solution process is deduced for the energy function.

2.1. Monocular Pose Tracking Problem

In the monocular pose tracking problem, the initial pose of the carrier is considered
to be given. With the 3D CAD model of the carrier target, the problem is to continuously
estimate and update the 6D pose of the target in the subsequent video frames. Monocular
pose tracking is shown in Figure 3. The carrier’s 3D CAD model used in this paper is a
dense surface model (triangular mesh) composed of 3D vertices, which can be expressed as
Xm =

(
xm, ym, zm

)T ∈ R3, m = 1, . . . , n.



Drones 2022, 6, 182 5 of 17Drones 2022, 6, x FOR PEER REVIEW 5 of 18 
 

 
Figure 3. Coordinate system transformation in monocular pose tracking problem. 

In Figure 3, I stands for the input image. T is the rigid body transformation matrix 

from model coordinate W W W WO X Y Z− to the camera coordinate C C C CO X Y Z− , which is 

defined by rotation matrix (3)∈R and translation vector 
3∈t . 

(3)
1

 = ∈ 
 

R t
T

0  
(1)

In the continuous image sequence, the rigid body transformation matrix changes con-
stantly with the movement of the model relative to the camera, and pose tracking is actu-
ally an iterative update of the transformation matrix. If the pose of the k-th frame is 

1k k−= ΔT TT , 1

1
kk −

−Δ =T T T  is the pose update from the previous frame to the k-th frame. 
During pose tracking, the pose of each frame can be obtained merely by calculating the 
pose update between frames. In order to facilitate the nonlinear optimization of the trans-
formation matrix solution in continuous frames, the transformation matrix is represented 
by 6D pose vector p , represented by Lie algebra [25]. 

T 6
1 2 3 1 2 3( , , , , , )v v vω ω ω = = ∈ 

 


w
p

v  (2)

The pose update of Lie algebra pose vector p̂  is mapped to the transformation ma-
trix ΔT as follows: 

ˆexp( ) (3)Δ = ∈T p
， 

3(ˆ 3
ˆ

) ˆ (3), ,
0

sose= ∈∈ ∈ 
 


w v

v
0

p w
 

(3)

where 

3 2

3 1

2 1

0
ˆ 0

- 0

w w
w w
w w

− 
 = − 
  

w

 is the corresponding antisymmetric matrix of w . 
Assume that the camera has been pre-calibrated and its intrinsic parameters are fixed. 

The intrinsic parameter matrix K  is shown below: 

3 3
0

0
0 0 1

x x

y y

f c
f c ×

 
 = ∈ 
 
 

K

 

(4)

After nonlinear distortion correction, the input image is considered undistorted. Per-
spective projection from 3D vertices to 2D image points can be described as 

( )( )3 1
π

×
= x K TX

 
(5)

Figure 3. Coordinate system transformation in monocular pose tracking problem.

In Figure 3, I stands for the input image. T is the rigid body transformation matrix
from model coordinate OW −XWYWZW to the camera coordinate OC −XCYCZC, which is
defined by rotation matrix R ∈ SO(3) and translation vector t ∈ R3.

T =

[
R t
0 1

]
∈ SE(3) (1)

In the continuous image sequence, the rigid body transformation matrix changes
constantly with the movement of the model relative to the camera, and pose tracking is
actually an iterative update of the transformation matrix. If the pose of the k-th frame
is Tk = ∆TTk−1, ∆T = TkT−1

k−1
is the pose update from the previous frame to the k-th

frame. During pose tracking, the pose of each frame can be obtained merely by calculating
the pose update between frames. In order to facilitate the nonlinear optimization of
the transformation matrix solution in continuous frames, the transformation matrix is
represented by 6D pose vector p, represented by Lie algebra [25].

p =

[
w
v

]
= (ω1, ω2, ω3, v1, v2, v3)

T ∈ R6 (2)

The pose update of Lie algebra pose vector p̂ is mapped to the transformation matrix
∆T as follows:

∆T = exp(p̂) ∈ SE(3), p̂ =

[
ŵ v
0 0

]
∈ se(3), ŵ ∈ so(3), v ∈ R3 (3)

where ŵ =

 0 −w3 w2
w3 0 −w1
−w2 w1 0

 is the corresponding antisymmetric matrix of w.

Assume that the camera has been pre-calibrated and its intrinsic parameters are fixed.
The intrinsic parameter matrix K is shown below:

K =

fx 0 Cx
0 fy Cy
0 0 1

 ∈ R3×3 (4)

After nonlinear distortion correction, the input image is considered undistorted. Per-
spective projection from 3D vertices to 2D image points can be described as

x = π

(
K
(

TX̃
)

3×1

)
(5)
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where x is the 2D projected point of the 3D model vertex X. X̃ = (x, y, z, 1)T is the homoge-
neous extension of X = (x, y, z)T = (X̃)3×1, and π(X) = (x/z, y/z)T. Based on the initial
pose, the projection mask Is is generated by rendering the 3D model. Then, the whole image
can be divided into foreground region and background region by extracting the contour on
the projection mask. Constrained by the 3D model of the carrier target, when the 6D pose
parameters are correct, the projected contour C can perfectly segment the carrier target in
the image.

2.2. Pose Tracking Model based on Scale-Adaptive Local Region

In the case of a given initial pose, region-based monocular pose tracking updates
the transformation matrix Tk by continuously solving the pose change ∆T in successive
frames. Existing region-based methods adopt a fixed local region model parameter, which
is difficult to adapt to the application concerned in this paper. In view of this, a new pose
tracking model based on scale-adaptive local region is proposed. The specific structure
of the proposed model is shown in Figure 4. For the local region-based method, the
target in the image is represented by the level set embedding function (or signed distance
function), as shown in Equation (6). The signed distance function Φ(x) computes the
(signed) Euclidean distance between a pixel x in an image and its nearest contour point.
Then, the projected contour C is defined as a set of zero elevation points C = {x|Φ(x) = 0}.

Φ(x) =
{
−d(x, C), ∀x ∈ Ω f
d(x, C), ∀x ∈ Ωb

(6)

where, d(x, C) = min
c∈C
‖c− x‖2.
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We define the region of Φ(x) < 0 in the image as the foreground region Ω f , while the
region of Φ(x) > 0 is the background region Ωb, and the foreground and the background
regions are divided by the projected contour C, as shown in the left graph of “Local Region
Establishing” in Figure 4. In order to ensure the correspondence of local regions in the image
sequence, we screen the region centers xCi in the 3D vertices Xm of the target model near the
projected contour C. The regional centers are selected to be as evenly distributed as possible
on the contour, so as to determine the local circular regions Ωi. Local circular regions
Ωi are then divided into the foreground part Ω fi

and the background part Ωbi
= Ωi\Ω fi

.
For each local region Ωi, the foreground and background statistical characteristics in the
region are usually represented by foreground color appearance model P

(
y | M fi

)
and

background color appearance model P
(
y | Mbi

)
, where y = I(x) is the RGB value of a

pixel x in the image. The color appearance models describe the probability that the pixel
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color y meets the color distribution of the foreground local region and the background local
region, respectively, which are represented by the region RGB color histogram, as shown in
the right graph of "Local Region Establishing" in Figure 4.

For each local region, counting the foreground/background color appearance model of
the region, the posterior probability of local area pixels can be obtained, which is calculated
as follows:

Pfi(x) = P
(

Mfi | y
)
=

P
(

y | Mfi

)
ηfiP

(
y | Mfi

)
+ ηbi

P
(
y | Mbi

) (7)

Pbi
(x) = P

(
Mbi
| y
)
=

P
(
y | Mbi

)
ηfiP

(
y | Mfi

)
+ ηbi

P
(
y | Mbi

) (8)

where

η fi
= ∑

x∈Ωi

He(Φ(x)), ηbi
= ∑

x∈Ωi

(1− He(Φ(x))) (9)

He(Φ(x)) =
1
π

(
−atan(s ·Φ(x)) +

π

2

)
(10)

Pfi
(x) and Pbi

(x) are the foreground pixelwise posterior probability and the back-
ground pixelwise posterior probability of the pixel x in the i-th local region Ωi, respectively.
He is a smoothed Heaviside step function. s is the slope index; here, s = 1.2.

In the iteration of pose parameters in the consecutive frame sequence, the color his-
togram of the foreground and background corresponding to the local region of the same
center xCi possesses continuity in the adjacent frames. Based on this, we refer to the
recursive updating strategy of region appearance model in [13,15] in the practical imple-
mentation. After the (k-1)-th frame is successfully tracked, the color appearance models
PK
(

y | M fi

)
and PK(y | Mbi

)
of the local background in the k-th frame are established

as partial inheritance of the color appearance model of the corresponding region in the
previous frame, and the update strategy is as follows:

Pk
(

y | M fi

)
=
(

1− α f

)
Pk−1

(
y | M fi

)
+ α f Pk

(
y | M fi

)
(11)

Pk(y | Mbi

)
= (1− αb)Pk−1(y | Mbi

)
+ αbPk(y | Mbi

)
(12)

α f and αb are the learning rate of the foreground region and background region. To
effectively cope with imaging jitter and avoid the jump of pose parameters to improve the
tracking result, we set α f = 0.1, αb = 0.2.

In the fusion of statistical models of all local regions, pixels near the target contour
will belong to several local regions at the same time due to the overlap between different
local regions. Similar to [15], we choose to calculate the average posterior probability of
pixels in all local regions to which they belong. In the k-th frame, for each pixel x in the
image, the mean posterior probability of foreground and mean posterior probability of
background are calculated as follows:

Pk
f (x) =

1

∑n
i=1 Bk

i (x, xCi )

n

∑
i=1

Pk
fi
(x)Bk

i (x, xCi ) (13)

Pk
b(x) =

1

∑n
i=1 Bk

i (x, xCi )

n

∑
i=1

Pk
bi
(x)Bk

i (x, xCi ) (14)

where

Bk
i (x, xCi ) =

{
1,
∣∣x− xCi

∣∣ < rk

0, else
(15)
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rk is the radius of the local region Ωk
i in the k-th frame. xCi is the corresponding

region center.
In order to adapt to the change of carrier target scale caused by the variation of

visual distance between carrier target and airborne camera, the size of the local region is
set to increase with the increase of target scale to maintain the continuity of foreground
background sampling in the image sequence within the regions. Too-small region radius
will not be able to cope with large target pose changes, while too-large area radius will lead
to poor pose convergence accuracy. Therefore, the adjustment of the region radius needs
to be within a certain range. Considering the complexity of the 3D structure of the carrier
target, the target scale is defined as the pixel length of the shorter side of the minimum
enclosing rectangle of the target’s projected contour. Assuming that the carrier target is
successfully tracked, the target scales in adjacent frames can be regarded as approximately
unvaried. First, the target scales of the carrier target in the previous frame are detected,
as shown in the “Region Radius Updating” part in Figure 4. Then, according to the
detected target scale, the region parameters are updated in the pose optimization of the
current frame.

Sigmoid function is utilized to design the updating mechanism of radius parameters,
which can not only limit the variation range of region radius, but also ensure the approxi-
mate linear relationship between local region radius and the change of target scale within a
certain range. The specific form is as follows:

rk =
c

1 + e−a[min(wk−1,hk−1)−b]
+ d (16)

wk−1 and hk−1 are the width and height of the minimum enclosing rectangle of the
projected contour of the target 3D model in the (k-1)-th frame. a is the sensitivity coefficient.
b is the scale offset. The higher the sensitivity coefficient is, the more drastic the radius
changes with the target scale. The sensitivity coefficient is normally set between 0.02 to 0.2.
Here, a = 0.04, b = 150. c is the length of radius variation interval, and d is the minimum
radius parameter. Here, according to the specific application scenario, the radius change
interval is set at [10, 70].

Then, the local region-based energy function for pose tracking can be expressed as

E(p) = − ∑
x∈Ω

log
[

He(Φ(x(p)))P f (x) + (1− He(Φ(x(p))))Pb(x)
]

(17)

This energy function takes the target pose parameters p as independent variables and
quantitatively describes the target segmentation performance under the constraints of the
3D model, that is, the degree of coincidence between the rendered 2D template and the
target region in the image. When the energy is maximum, the segmentation result of the
target region is best.

2.3. Pose Optimization

According to the construction of energy function given in Section 2.2, in order
to solve the optimal pose, this paper adopts the Gauss–Newton pose optimization
method to solve this complex nonlinear optimization problem by referring to [24]. First,
Equation (17) is reconstructed into a nonlinear iterative reweighted least squares problem
of the following form:

E(p) =
1
2 ∑

x∈Ω
ψ(x)F2(x, p) (18)

where

F(x, p) = − log
[

He(Φ(x(p)))P f (x) +(1− He(Φ(x(p))))Pb(x)
]
, ψ(x) =

1
F(x, p)

(19)
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In order to optimize the energy function, we first consider the weight coefficient ψ(x)
as the fixed weight and use the Gauss–Newton method to solve the pose parameters p,
then use the optimized pose parameters p to calculate the weight coefficient ψ(x) to update
the weight value and enter the next iterative solution.

Under the assumption of fixed weights, the derivative of the energy function with
respect to the pose p is obtained, and the gradient function is as follows:

δE(p)
δp = 1

2 ∑
x∈Ω

ψ(x) δF2(x,p)
δp

= ∑
x∈Ω

ψ(x)F(x, p) δF(x,p)
δp

(20)

Since ψ(x)F(x, p) = 1, the Jacobian is computed as follows:

J(x) = ∂F(x,p)
∂p

= −
p f−pb

He(Φ(x))p f +(1−He(Φ(x)))pb
× ∂He(Φ(x))

∂p
(21)

∂He(Φ(x))
∂p

=
∂He

∂Φ
∂Φ
∂x

∂x
∂p

(22)

in which, ∂He
∂Φ = δe(Φ) is the smoothed Dirac function. According to Equation (10),

δe(Φ(x)) =
∂He(Φ(x))

∂Φ
= − s

π
(
1 + s2Φ2(x)

) (23)

For the derivative of the level set embedding function with respect to pixel position
∂Φ
∂x , the central difference method is used:

∂Φ
∂x

=

[
∂Φ
∂x

,
∂Φ
∂y

]
=

[
Φ(x+1,y)−Φ(x−1,y)

2
Φ(x,y+1)−Φ(x,y−1)

2

]T

(24)

Since x(p) = π

(
K
(

exp(p̂)TX̃
)

3×1

)
, ∂x

∂p can be deduced. Suppose that after tiny

motion, we perform piecewise linearization of the matrix exponential in each iteration, and
obtain exp(p̂) ≈ I4×4 + p̂:

∂x
∂p = ∂π

∂K(exp( p̂)TX̃)3×1

∂K(exp(p̂)TX̃)3×1
∂p

=

 fx
z′ 0 − x′ fx

(z′)2

0 fy
z′ −

y′ fy

(z′)2

 ·
 0 z′ −y′ 1 0 0
−z′ 0 x′ 0 1 0
y′ −x′ 0 0 0 1

 (25)

where X′ = (x′, y′, z′)T = (TX̃)3×1.
Through the derivation of the partial derivatives of the items in the Jacobian matrix

above, the Hessian matrix and the pose change can be obtained as follows,

H(x) = ψ(x)J(x)TJ(x) (26)

∆p = −
(

∑
x∈Ω

H(x)

)−1

∑
x∈Ω

J(x)T (27)

By iteratively solving the pose update ∆p for each input frame of the image sequence,
the pose tracking of the target is realized.
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3. Experimental Evaluation
3.1. Experiment Setting

To validate the pose tracking performance of the proposed method in this paper on the
carrier target, this section simulates the imaging of the carrier target by the airborne camera
in the process of carrier landing. During landing, the flight attitude of the carrier-borne
aircraft needs to be controlled with high precision. In order to ensure a smooth landing
and a successful rope hanging, the aircraft flies at a fixed angle of descent, which is around
3–5◦, to maintain the angle of attack. Based on this, this section uses a synthetic simulation
image sequence generated by a simulation rendering software 3Ds max and a real image
sequence captured through a scale physical simulation system to verify the effectiveness of
the proposed algorithm in this paper.

We compared the proposed algorithm with the existing representative region-based
pose tracking method RBOT algorithm [24] and the edge-based pose tracking method GOS
algorithm [21] on the two image sequences, respectively. For the comparison algorithms,
we adopted the default parameter settings suggested in their papers. All experiments were
carried out on a laptop equipped with an AMD Ryzen 7 4800H processor (8-core) @ 2.9 GHz,
NVIDIA GeForce GTX1650 GPU and 16 GB RAM. The GPU was only used for the rendering
of the 3D model. The rest of the algorithm runs on the CPU. The proposed algorithm is
implemented in C++. For the synthetic image sequence with a resolution of 800 × 600
and the real image sequence with a resolution of 800 × 800, the proposed algorithm can
reach the processing speed of 30 fps, which can basically meet the requirements of high
efficiency of real-time pose tracking for the carrier target in the process of carrier-borne
aircraft landing.

3.2. Experiment on Synthetic Image Sequence

This section uses simulation rendering software to generate a synthetic image sequence
to simulate the imaging of the carrier target by airborne camera during the landing process.
To quantitatively measure the pose tracking accuracy, the metrics and corresponding results
and analysis are given in this section.

3.2.1. Synthetic Sequence Settings

The simulation software used in this section is Autodesk 3Ds Max, which is often used
in 3D modeling, animation, and scene rendering. In the simulation rendering of carrier-
borne aircraft landing, the carrier’s 3D model is the “Varyag” model downloaded on the
internet. Table 1 shows the 3D model size parameters and 3Ds Max simulation parameters.

Table 1. Parameter settings in 3Ds Max simulation.

3D Model Size Focal Length Field Angle Frame Size

94.36 m × 66.01 m × 304.51 m 12 mm 24◦ × 18◦ 800 × 600

Through the settings of the virtual camera parameter and its trajectory, as well as the
rendering of the of dynamic sea surface scene including dynamic light, sea waves, and
sea horizon simulation, we generated an image sequence consisting of 350 frames. The
synthetic sequence simulates aircraft approaching the ship deck from about 1120 m. With
the shortening of the distance, the ship target in the image becomes larger and larger, with
the details of the ship target clearer and clearer. The camera intrinsic parameters K, initial
pose T0, and the ship 3D model were used as input to initialize the pose tracking algorithm.
The proposed algorithm optimizes the pose variation of the ship target between successive
frames by establishing local region models on the projected contour of the 3D model to
maximize the energy function for the optimal segmentation, so that the pose parameters of
the ship target can be continuously solved in the image sequence to achieve pose tracking.
Examples of the synthetic images (the 2nd, 147th, 208th, 290th, and 335th frames) are shown
in the first row of the upper half in Figure 5.
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Figure 5. Pose tracking results of carrier target in synthetic image sequence. (a) The reprojected results
(the first row shows the examples of the synthetic images (the 2nd, 63rd, 147th, 208th, 290th, and 335th
frame). The second to the fourth rows show the pose tracking results of GOS method, RBOT method,
and the proposed method). (b–g): Curves of three Euler angles and the translation parameters.

3.2.2. Experimental Results and Analysis

For visualization, the reprojected mask and the pose curves of the pose tracking results
are presented in Figure 5. The second to fourth rows are the reprojected results of GOS
algorithm [21], RBOT algorithm [24], and the proposed algorithm for the ship target pose
tracking. The bottom part of Figure 5 shows the pose curves of the three algorithms. As
can be seen from Figure 5, in the synthetic image sequence, the proposed method achieved
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whole-process stable pose tracking of the ship target. Owing to the ship target’s complex
interior structure, and its low color distinctiveness under the background of dynamic
sea surface, the GOS algorithm [21] failed to track the pose of the ship from the fifth
frame when the ship target is small. With the pose error accumulated in the process of
tracking, although the target increased gradually, the pose tracking result kept becoming
worse. The GOS algorithm [21] searches the corresponding points between frames on
the normal line segment for discrete points at the edge of the ship target. This method
is based on edge features, and strongly relies on the gradient information on the normal
line segment to achieve stable pose tracking for untextured or weakly textured targets.
For the ship target with complex internal textures, the 1D search on the normal lines in
the GOS algorithm [21] is easily disturbed by the maximum value of internal gradient
response, resulting in mismatching and errors in pose solution. The RBOT algorithm [24]
also tended to fail tracking in the first five frames of the image sequence. However,
according to the reprojected results, the problem centered on the segmentation of the stern
part of the ship target, while the segmentation of the bow and tower part behaved well.
Firstly, the interference of the aft waves of the ship weakens the foreground–background
distinctiveness in the stern regions. Secondly, although the RBOT algorithm [24] applies
the region features around the target contour, it adopts the local regions with fixed radius,
which fails to adapt to the scale variation of the ship target in the landing application.

Aiming at the specific scenario for carrier landing, we considered the scale variation
of the ship target caused by drastic changes in visual range. The proposed pose tracking
method adaptively adjusts the local region radius parameter according to the scale of the
ship target in the image, ensuring the continuity of the color histograms of corresponding
local regions between adjacent frames. In this way, the energy function optimization in
image sequence achieves better target segmentation effect by using the continuity infor-
mation between frames more effectively. Figure 6 shows the process of local region radius
adjustment with ship target scale. When the ship target is small, the smaller region radius
segments the ship more accurately in terms of the wave background interference. When
the scale of the ship target gradually largens with the decrease of the visual distance, the
proposed algorithm increases the region radius to better maintain the color distribution
characteristics of the front background in the local regions along the contour. As shown
in Figure 5, the blue reprojected mask corresponds to the ship target in the whole process.
Additionally, pose curves coincide with the ground truth curves. It is indicated that the
proposed algorithm realizes robust pose tracking of the ship target, adapting to the target
scale changes, the sea background, and the light interference.
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To quantify the accuracy of pose tracking results, the pose tracking results of the
algorithm were compared with the pose truth value to calculate the angular error eR and
relative position error et_relative, as shown below:

eR(tk) = cos−1

(
trace(R(tk)

TRGT(tk)− 1
2

)
(28)

et_relative(tk) =
‖t(tk)− tGT(tk)‖2
‖tGT(tk)‖2

(29)

R(tk) and t(tk) are the rotation matrix and translation vector of the pose tracking result
in tk moment.RGT(tk) and tGT(tk) are the ground truth value in tk moment.

Since the landing process is a large span approaching process between carrier-borne
aircraft and carrier target, the absolute displacement error is greatly affected by the distance,
so the relative error is chosen to measure the accuracy. The error of pose tracking results is
shown in Figure 7. In the synthetic image sequence test, the angle error of pose tracking
of the proposed algorithm is no more than 1◦ in the whole process, and the relative
displacement error does not exceed 1%. Synthetic image sequence experiments verify the
effectiveness of the proposed algorithm in pose tracking of the carrier target with high
precision during the landing process.
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3.3. Experiment on Real Image Sequence
3.3.1. Scale Physical Simulation Platform

In the synthetic image sequence, although the dynamic sea surface scene is simulated,
there is still a certain gap between the virtual synthetic images and the practical images
taken by the industrial camera, which includes noise interference, defocus blur, and motion
blur. In order to further test the performance of the algorithm in the actual image sequence,
according to the fixed slide angle setting in real carrier landing, we built the scale simulation
sliding platform of the carrier landing, as shown in Figure 8.
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Figure 8. Scale simulation experiment platform of carrier landing.

The industrial color camera is fixed on the electric slide trolley. One end of the track is
close to the seascape sand table with the carrier scale model. The other end is supported
on the electric lifting platform. The electric lift platform can adjust the angle of descent of
the glide track by changing the height of one end of the track. In this experiment, the track
length is about 4 m, and the gliding angle of the track is set as 3◦. The ratio of actual carrier
size to carrier model is 700:1. The scale simulation parameter settings are shown in Table 2.

Table 2. Experimental settings of scale simulation.

Carrier Model Scale Track Length Focal Length Frame Rate Frame Size

700:1 4 m 12 mm 30 fps 800 × 800

The CAD model of the carrier model was scanned and reconstructed by high-precision
3D scanning equipment, and the intrinsic parameters of the industrial camera were cali-
brated in advance using Zhang’s calibration method [26]. A total of 1190 frames of images
were captured by the industrial camera during the sliding process of the electric trolley
with a constant speed. In order to obtain the initial pose parameters of the carrier target,
a number of 2D feature points are selected in the image, and then the corresponding 3D
coordinates of the feature points are obtained by using the total station and converting
into the carrier model coordinate system. With the 2D–3D points correspondence, the
initial pose is solved by the PnP algorithm [27]. Similar to Section 2.2, initial pose and
camera intrinsic parameters were used as the input to initialize the algorithm. Since the
GOS algorithm [21] performs poorly, we only compare RBOT algorithm with our algorithm
in the real image sequence test in this section. The reprojected results and pose curves are
shown in Figure 9.
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frame). The second and the third rows show the pose tracking results of the RBOT method, and the
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3.3.2. Experimental Results and Analysis

As shown in Figure 9, in the real image sequence of scale physical simulation, the
actual imaging is degraded by defocus blur, motion blur, and environmental interference,
such as “sea surface” illumination reflection and cluttered background. According to
the pose tracking results, the reprojected mask of the proposed algorithm can accurately
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match the carrier target in the whole process of image sequence. However, for the RBOT
algorithm [24], the pose tracking results showed deviation after initialization immediately.
As the carrier target gradually become larger, it failed to timely correct the accumulated
tracking error, and the pose tracking deviation also further expanded. Figure 10 shows
the process of local area radius changing with the carrier target scale. In the real image
sequence, due to the large range span, the scale of the carrier target varies from 50 pixels to
600 pixels. The scale variation of the carrier target is larger than that in the synthetic image
sequence. In terms of the large scale variation, the proposed algorithm updates the local
area radius in real time according to the target scale, and still realizes the whole-process
stable 6D pose tracking of the carrier target. The scale physical simulation experiment
again verifies the effectiveness of the proposed algorithm in achieving robust pose tracking
for the carrier target in carrier landing application.
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4. Conclusions

Aiming at the carrier landing scenario with monocular airborne visual guidance, this
paper proposes a carrier target pose tracking method based on scale-adaptive local region.
By combining the carrier target scale variation characteristics caused by visual distance
change in the landing process, a pose tracking model based on local regions is set up with
the local region radius updating adaptively. Then, using the Gauss–Newton optimization
algorithm, the 6D pose tracking of the carrier target is achieved. Experiments on both
synthetic image sequence and real image sequence verify that the proposed method can
achieve accurate and robust pose tracking for the carrier target in the process of carrier
aircraft approaching and landing from far to near.
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