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Abstract: 3D building models are widely used in many applications. The traditional image-based 3D
reconstruction pipeline without using semantic information is inefficient for building reconstruction
in rural areas. An oblique view selection methodology for efficient and accurate building reconstruc-
tion in rural areas is proposed in this paper. A Mask R-CNN model is trained using satellite datasets
and used to detect building instances in nadir UAV images. Then, the detected building instances
and UAV images are directly georeferenced. The georeferenced building instances are used to select
oblique images that cover buildings by using nearest neighbours search. Finally, precise match pairs
are generated from the selected oblique images and nadir images using their georeferenced principal
points. The proposed methodology is tested on a dataset containing 9775 UAV images. A total of
4441 oblique images covering 99.4% of all the buildings in the survey area are automatically selected.
Experimental results show that the average precision and recall of the oblique view selection are 0.90
and 0.88, respectively. The percentage of robustly matched oblique-oblique and oblique-nadir image
pairs are above 94% and 84.0%, respectively. The proposed methodology is evaluated for sparse and
dense reconstruction. Experimental results show that the sparse reconstruction based on the proposed
methodology reduces 68.9% of the data processing time, and it is comparably accurate and com-
plete. Experimental results also show high consistency between the dense point clouds of buildings
reconstructed by the traditional pipeline and the pipeline based on the proposed methodology.

Keywords: building reconstruction; unmanned aerial vehicle; structure from motion; oblique view
selection; instance segmentation; match pair generation; direct georeferencing

1. Introduction

3D building models have been widely used in many applications including city mod-
elling and simulation [1,2], civil infrastructure monitoring [3], disaster management and
emergency response [4–7], cultural heritage conservation [8], etc. In recent years, oblique
photogrammetry based on aerial images acquired by an Unmanned Aerial Vehicle (UAV)
has become one of the mainstream solutions to 3D reconstruction of photorealistic 3D
building models due to its cost-effectiveness and convenience [9–13]. A commonly used
image-based 3D reconstruction pipeline mainly consists of image matching, image orienta-
tion, dense matching, mesh construction, and texture mapping. Image matching extracts
feature points from images and finds initial tie points between images based on similarity
measures [14–16]. Geometrically consistent tie points are then selected from the initial
tie points based on the fundamental matrix with random sample consensus (RANSAC)
loops [17,18]. Image orientation solves the optimal position and orientation of each image
based on the geometrically consistent tie points. Structure from motion (SfM) is commonly
used for fully automatic image orientation [19–23]. Dense matching finds dense correspon-
dence between images and generates dense depth maps [24–26]. Mesh construction builds
a geometric model of the scene using 3D triangles [27]. Additionally, texture mapping
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maps 2D texture onto the 3D mesh model. In this pipeline, the latter procedures depend on
the former ones. Image matching and SfM reconstruction significantly affect the accuracy,
robustness and efficiency of the pipeline.

Although the abovementioned image-based 3D reconstruction pipeline works well in
modelling buildings in urban areas, problems are encountered when this pipeline is used for
building reconstruction in rural areas. First, image matching and SfM reconstruction using
all the acquired images are inefficient for building reconstruction in rural areas. Building
density is high in urban areas, and each single oblique image covers buildings and provides
valuable observations. Therefore, each image is necessary for building reconstruction. In
contrast, building density in rural areas is usually much lower than that in urban areas,
and a considerable proportion of aerial images acquired in rural areas do not cover any
buildings. The aerial images that do not cover buildings are unnecessary for building
reconstruction. In this situation, reconstruction of buildings using all the acquired images
is inefficient, especially for time-critical applications. Second, aerial images with repetitive
textures are prone to mismatch [28]. Rural areas are commonly covered by farmland,
vegetation and bare earth. Aerial images acquired in these areas have repetitive textures.
Feature points extracted from these images are less distinctive and prone to mismatch,
which undermines the accuracy and robustness of reconstruction.

The problems can be solved by selecting the images that cover buildings and robust
matching the selected images. The semantic information embedded in the images is the
key to the selection of building-covering images. In recent years, deep learning has been
widely used for extracting semantic information from remote sensing imagery [29–31]. The
extraction of building information from aerial and satellite images has been intensively
studied based on deep learning methods. Pixels pertaining to buildings have been extracted
using semantic segmentation based on models like fully convolutional network (FCN),
U-Net and their variants [32–34]. Outlines of buildings have been delineated based on the
extracted pixels pertaining to buildings [35–37]. Building instances have been detected
using instance segmentation based on models like U-Net, Mask R-CNN and their vari-
ants [38]. On the basis of instance segmentation, semantic information about building area,
building change detection and building types has been extracted [39–41]. Although rich
information about buildings can be extracted from imagery using deep learning methods,
the problems posed above cannot be solved by simply using deep learning. Collecting
and labelling the dataset is time-consuming and introduces computational overhead to the
existing 3D reconstruction pipeline, which is impractical for time-critical applications.

Researchers in the photogrammetry community have proposed methodologies for
incorporating semantic information in the photogrammetric pipeline [42–45]. Research
works on improving photogrammetric tasks using semantic information have been reported.
Stathopoulou and Remondino improved feature point matching and dense matching re-
sults based on semantic segmentation [46]. A fully convolutional network was used to
classify pixels of an image to sky, building, window and obstacle. The feature point match-
ing and dense matching were constrained in the image regions pertaining to buildings.
Stathopoulou et al. proposed a novel approach to depth estimation of textureless image ar-
eas by leveraging semantic priors [47]. Semantic labels were used to impose constraints on
image pixels during multi-view stereo, which improved the depth estimation in textureless
areas. Zhou et al. proposed a method for selecting building facade texture images from
abundant oblique images based on building models of an urban area [48]. Experimental
results showed that optimal texture images could be selected using semantic information
embedded in building models and a large amount of computation time and space could be
saved. Yu et al. proposed a fully automatic method for reconstruction of prismatic building
models with flat roofs from multi-view aerial images [49]. The proposed method conducted
building segmentation using the digital surface model and digital orthophoto map. Build-
ing outlines were extracted based on the segmentation map. Building height was estimated
based on the extracted outlines, and individual building models were generated. Yang et al.
proposed a method to remove the influence of moving cars on 3D modelling of an urban
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area using instance segmentation [50]. The proposed method detected cars from oblique
images using Mask R-CNN. Geometric deformation and error texture mapping problems
were solved based on the analysis of image patches corresponding to the detected cars.
Oniga et al. provided an end-to-end pipeline for reconstruction of building models from
oblique UAV images [51]. The proposed method generated a dense cloud of an urban
area based on the traditional SfM-based photogrammetric pipeline. The generated dense
cloud was then used for the extraction of above-ground points using a filtering algorithm.
The above-ground points were classified to vegetation, building, civil infrastructure and
cars using a random forest algorithm, and building models were finally derived from the
building points.

Although the above-mentioned research works made significant progresses in im-
proving photogrammetric tasks using semantic information, most of these works were still
based on the traditional SfM-based photogrammetric pipeline and focused on the 3D recon-
struction of buildings in the urban scenario. In this paper, a methodology is proposed for
efficient and accurate building reconstruction in rural areas. The methodology effectively
selects oblique images that cover buildings by using semantic and spatial information, and
it improves the efficiency of image matching and SfM reconstruction processes. Section 2
details the workflow and procedures of the proposed methodology. Experimental results
are provided in Section 3. Discussions and analysis of the proposed methodology and the
results are made in Section 4. Conclusions are made in Section 5.

2. Methodology

The workflow of the proposed methodology is illustrated in Figure 1. First, a Mask
R-CNN model is trained using satellite datasets. Then, UAV images and POS (Position
and Orientation System) observations are acquired in an aerial survey. Thirdly, building
instances are detected in nadir images using the trained Mask R-CNN model. The de-
tected building instances and the UAV images are directly georeferenced. Fourthly, the
georeferenced building points are used to select oblique images that cover buildings by
using nearest neighbours search. Finally, match pairs are generated from the nadir images
and the selected oblique images using the georeferenced principal points. In a standard
reconstruction pipeline, the generated match pairs are used for pairwise image matching
to find tie points between images. Then a SfM reconstruction is conducted based on the
tie points.
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Figure 1. Workflow of the proposed methodology. The light green color represents the field work for
data acquisition; the light blue color represents the work for data preprocessing and model training.

2.1. Building Detection in Nadir Images Based on Mask R-CNN

A Mask R-CNN model is trained before an aerial survey and then used to detect
buildings in nadir UAV images. The Mask R-CNN is trained using satellite datasets instead
of the acquired UAV images to save data processing time. The satellite datasets used for
the model training consist of an open dataset and a dataset of the survey area. The open
dataset is used to accelerate the model training process based on transfer learning. The
dataset of the survey area is manually labelled and used to improve the performance of
the model.

The trained Mask R-CNN model detects building instances in nadir UAV images
at pixel level and delineates their shapes. It provides three outputs for each building
instance: a bounding box, a confidence score, and a mask. A bounding box represents
the outmost boundary of a building instance. The confidence score of a building instance
represents its quality of classification. And the quality of detected building instances
significantly influences the quality of oblique view selection. A threshold for confidence
score is used to determine valid building instances. To set the value of the threshold, the
relationship between the confidence score and view selection is investigated using the nadir
images. The ground truth for the evaluation of view selection is prepared by a human
operator. The human operator manually selects the images that cover buildings from UAV
images. An image is selected as long as it covers more than a part of a building. The
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precision, recall, accuracy and F1 score are used to evaluate the result of the view selection
(Equations (1)–(4)).

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

F1 score = 2 × (Precision × Recall)/(Precision + Recall) (4)

where TP is defined as the number of selected images that truly cover buildings; FP is the
number of selected images that do not cover any buildings; TN is the number of images
that are not selected and do not cover any buildings; and FN is the number of images that
are not selected but truly cover buildings.

2.2. DEM-aided Direct Georeferencing of Valid Building Instances and UAV Images

Oblique view selection is based on the ground position of the valid building instances
and the UAV images. The ground position of the valid building instances and the UAV
images is solved using the DEM-aided direct georeferencing algorithm proposed in [52].
The DEM-aided direct georeferencing of an image point is based on the inverse form of the
Collinearity Equations as follows.

X = XS + (Z − ZS)× (a1 × x + a2 × y − a3 × f )/c1 × x + c2 × y − c3 × f (5)

Y = YS + (Z − ZS)× (b1 × x + b2 × y − b3 × f )/c1 × x + c2 × y − c3 × f (6)

where (X, Y, Z) is the spatial position of the ground point corresponding to the image
point under the object coordinate system; (x, y) is the position of the image point under the
image plane coordinate system; (XS, YS, ZS) is the spatial position of the projection center
under the object coordinate system; f is the focal length; and a1 to c3 are the elements of
the absolute rotation matrix R from the image coordinate system to the object coordinate
system defined as

R =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 (7)

For DEM-aided direct georeferencing of a valid building instance, the position of
the valid building instance under the image plane coordinate system is required. In this
work, the position of a building instance is represented by the center of the bounding box
predicted by the Mask R-CNN model. As the position of a predicted bounding box is
under the pixel coordinate system of an image tile, the position of a building instance is
transformed from the pixel coordinate system of an image tile, over the pixel coordinate
system of a UAV image to the image plane coordinate system.

In this work, the ground position of an image is represented by the ground position of
its principal point. For DEM-aided direct georeferencing of a principal point, its position
under the image plane coordinate system is required. The principal point of an image is
the origin of the image plane coordinate system. Therefore, (0,0) is used as the position of
the principal point for DEM-aided direct georeferencing of an image.

DEM-aided direct georeferencing of a valid building instance and a UAV image is
dependent on the absolute rotation matrix of the corresponding image. Assume an oblique
imaging system consisting of five cameras facing backward, forward, right, left and nadir;
the absolute rotation matrix of an image is calculated as follows. The absolute rotation
matrix of a nadir image is calculated using the POS observations based on the method
proposed in [53]. The absolute orientation matrix Ro of an oblique image is calculated
according to Equation (8).

Ro = Rno × Rn (8)
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where Rn is the absolute rotation matrix of the simultaneously exposed nadir image and
Rno is the relative rotation matrix from the nadir camera to the corresponding oblique
camera. If the installation angles of all cameras are precisely available, the relative rotation
matrix of each oblique camera can be directly calculated. If the installation angles are
unavailable, the relative rotation matrices can be estimated by camera system calibration
using an image set. In this work, the East-North-Up (ENU) coordinate system is used as
the object coordinate system. The spatial position of a projection center is approximated
using the camera exposure position which is transformed from the geodetic coordinate
system to the ENU coordinate system.

2.3. Oblique View Selection and Match Pair Generation Based on Nearest Neighbours Search

Given the ground position of valid building instances and UAV images, oblique
images are selected based on nearest neighbours search. Figure 2 illustrates the principle of
oblique view selection. In this figure, I1 and I2 are two images that cover an area on the
ground. I1 is an oblique image and I2 is a nadir image. S1 and S2 are the project centers
of I1 and I2, respectively. I2 covers a building and the corresponding building instance
is detected in the image at point b. B is a building point corresponding to b and located
by direct georeferencing. pp is the principal point of I1. PP is a georeferenced principal
point corresponding to pp and located by direct georeferencing. The red line shows the
horizontal view of a search circle centered at PP. The radius of the search circle is R. The
search circle of an oblique image corresponds to a field of view of the image. An oblique
image is selected as long as a georeferenced building point exists within the search circle of
the image, which is implemented using nearest neighbours search. The nearest neighbours
search is based on a k-d tree which is constructed from the georeferenced building points.
For each oblique image, building points are searched within its search circle using the k-d
tree. If a georeferenced building point is searched, the oblique image is selected.

Figure 2. Illustration of oblique view selection.

After the oblique images covering buildings are selected, match pairs are generated
from the selected oblique images and all the nadir images. A satisfactory match pair consists
of two overlapping images that can be robustly matched. For an oblique imaging system
consisting of five cameras facing backward, forward, right, left and nadir, match pairs
are generated in sequence as follows. First, for each oblique image, overlapping images
are searched among images from the same oblique camera, the oblique camera facing the
opposite direction and the nadir camera. Second, for each nadir image, overlapping images
are searched among other nadir images. For example, for an image from the backward-
looking camera, overlapping images are searched among images from the backward-
looking camera, the forward-looking camera and the nadir camera, respectively. Figure 3
illustrates searching overlapping images for an image i from the backward-looking camera.
From left to right overlapping images are searched from among backward-looking images,
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forward-looking images and nadir images, respectively. Small circles in the figure denote
the georeferenced principal points. Solid arrows denote viewing directions of images. In
the first case shown by Figure 3a, all of the images are from the backward-looking camera.
The images in the central strip look in the same direction as image i, and the images in the
neighbouring strips look in the opposite direction. Therefore, neighbouring images in the
same strip as image i are considered as overlapping images of image i in this case. In the
second case shown by Figure 3b, the forward-looking images in the same strip as image i
look in the opposite direction of image i, and the images in the neighbouring strips look in
the same direction as image i. In this case, the overlapping images are searched within a
circle based on nearest neighbours search. The nearest neighbours search is conducted using
the k-d tree constructed from the georeferenced principal points of the forward-looking
images and a given radius r. The searched images that look in the opposite direction of
image i are removed using viewing direction filtering. The viewing direction of an image is
the direction of the vector from its projection center to its georeferenced principal point. A
searched image is removed if the difference between the viewing directions of the image
and image i is larger than a given threshold vt. In the third case shown by Figure 3c, all the
nadir images look vertically down. The overlapping images are searched within a circle
based on nearest neighbours search using the k-d tree constructed from the georeferenced
principal points of the nadir images.

Figure 3. Illustration of searching overlapping images for a backward-looking image from:
(a) backward-looking images; (b) forward-looking images; (c) nadir images.

For a nadir image, overlapping images are searched among other nadir images, which
is similar to the case illustrated by Figure 3c. However, no viewing direction filtering is
done as all the images look vertically down.

The number of match pairs influences the time efficiency of pairwise image match-
ing. To reduce the time cost of pairwise image matching, the number of match pairs is
constrained for an image. Specifically, for an oblique image, the numbers of match pairs in
the first, the second and the third case are k1, k2 and k3, respectively. For a nadir image,
the number of match pairs is k4. Furthermore, to connect nadir images from neighbouring
strips, k4/2 images are selected from the same strip and k4/2 images are selected from
the neighbouring strips. To generate the given number of match pairs for an image, the
searched overlapping images are sorted in ascending order based on the distance between
them and the image. The given number of match pairs are selected from the candidates at
the front of the sorted array.

3. Experimental Results

A large-scale UAV image set acquired over a rural area was used to evaluate the
performance of the proposed methodology. First, the specification of the acquired data is
detailed. Second, the results of model training and building detection in nadir images are
provided. Third, the direct-georeferenced valid building instances and UAV images are
illustrated. Finally, evaluations of the selected oblique images and the generated match
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pairs are provided. Sparse and dense reconstructions based on the proposed methodology
and the traditional pipeline were compared. All of the experiments were performed on a
Dell Precision Tower 7810 workstation. The workstation is equipped with a Windows 10
Professional operating system, an Intel Xeon E5-2630 CPU, a NVIDIA Quadro M4000 GPU
and 128 GB memory.

3.1. Survey Area and Data Specification

Figure 4 shows an orthophoto of the survey area. The survey area is 5.2 km from east
to west and 4.1 km from south to north. The elevation of the survey area is about 65 m
above the sea level and most of the area is flat. The survey area is a typical rural area which
is mainly covered by farmland and vegetation. The buildings in the area are located in
several settlements. Building density in this area is significantly lower than that in a typical
urban area.

Figure 4. Orthophoto of the survey area.

The survey area was surveyed in autumn 2018 with a five-camera oblique imaging
system mounted on a VTOL (Vertical Take-Off and Landing) fixed-wing UAV, and a total
of 9775 images were acquired. Figure 5 illustrates the camera setup of the oblique imaging
system. Specifications for the data acquisition are listed in Table 1.

Table 1. Specifications for data acquisition.

Item Specification

POS observations Longitude, Latitude, Altitude, Omega, Phi,
Kappa

Viewing direction of Camera 1, 2, 3, 4, 5 Backward, Forward, Right, Left, Down
Tilt angle of oblique cameras (degrees) 45

Camera brand and model SONY ILCE-5100
Sensor size (mm) 23.5 by 15.6

Pixel size (micron) 3.9
Image resolution (pixel) 6000 by 4000

Focal length of nadir/oblique cameras (mm) 20/35
Forward/side overlap ratio (%) 80/70

Flight height (m) 460
Ground sample distance (GSD) (cm) 7

Number of images 9775
Area covered (km2) 9.1
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Figure 5. Setup of cameras.

The acquired POS data include absolute position and orientation observations. The
position observations include latitude, longitude and altitude defined under the World
Geodetic System 1984 (WGS84). The orientation observations include Omega, Phi and
Kappa which define sequential rotations of the imaging system about X-Y-Z axes of the
object coordinate system. Figure 6 shows the position of all 1955 exposures in the survey
area. At each exposure point, five images were acquired simultaneously.

Figure 6. Position of exposures.

3.2. Model Training and Building Detection in Nadir Images

The satellite datasets used for model training consisted of the open dataset from the
crowdAI Mapping Challenge [54] and a dataset manually labelled based on Google satellite
imagery of the survey area. The open dataset from the crowdAI Mapping Challenge
contained tiles of satellite imagery, along with corresponding annotations. The dataset
was split into a training set and a validation set. The training set and validation set
contained 280,741 and 60,317 tiles of satellite imagery (as 300 × 300 pixel RGB images),
respectively. The corresponding annotations of the training set and validation set were in
MS-COCO format [55]. Figure 7 shows sample tiles and annotations from the crowdAI
Mapping Challenge.
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Figure 7. Sample tiles and annotations from crowdAI Mapping Challenge.

The model training in this work was based on the implementation of [38]. The Mask
R-CNN model was trained for 160 epochs on the training set. Firstly, the head of the model
was trained for 40 epochs with a 0.001 learning rate. Then, the layers from the fourth to the
head were trained for 80 epochs with a 0.001 learning rate. Finally, all of the layers were
fine-tuned for 40 epochs with a 0.0001 learning rate. It took about 86 h to complete the
160 epochs of model training. Figure 8 shows the loss on the training set and the validation
set during the training process. The loss on the validation set shows that the model begins
to overfit after 60 epochs of training. To reduce the influence of the overfitting, an early
stopping scheme has been adopted and the model trained for 60 epochs was selected for
subsequent training.

Figure 8. Loss on: (a) training set; (b) validation set.

Buildings from the crowdAI Mapping Challenge are quite different from those in the
survey area. As a consequence, the Mask R-CNN model trained on the crowdAI dataset
did not transfer well to UAV images of the survey area. To improve the performance of
the model, a dataset of the survey area was manually labelled and used for the subsequent
training. A total of 98 image tiles covering typical ground objects including buildings,
farmland and vegetation were manually labelled based on Google satellite imagery of the
survey area. The tiles were labelled using the VGG Image Annotator (VIA) toolkit [56].
Figure 9 shows sample tiles and corresponding annotations. The model was trained for two
epochs on this training set. Firstly, the head of the model was trained for one epoch. Then,
the layers from the fourth to the head were trained for another one epoch. The preparation
of the satellite dataset of the survey area took less than half an hour and the model training
on this dataset took about several minutes.
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Figure 9. Sample tiles and corresponding annotations of the survey area.

The generated model was used to detect buildings in the nadir UAV images. To speed
up the building detection process, the nadir images were firstly downsampled to 900 by
600 pixels and then cropped to tiles. The downsampling was conducted using the free
and open-source software ImageMagick 7.0.9–25. A total of 11,730 tiles were generated.
Figure 10 shows examples of building detection in the tiles. The left column of the figure
shows two sample image tiles. The central column shows buildings detected using the
model trained only on the crowdAI dataset, and the right column shows buildings detected
using the model trained on both the crowdAI dataset and the dataset of the survey area.
The detected buildings are indicated with bounding boxes. The confidence score of each
detected building is also labelled. It can be seen from the figure that many false positives
and false negatives exist in the buildings detected using the model trained only on the
crowdAI dataset. The false positives and false negatives are significantly reduced by
subsequent training on the dataset of the survey area. It is also worth noting that the
confidence scores of the true positives are also increased. The results show that the trained
Mask R-CNN model works well in detecting buildings in the nadir images.

Figure 10. Examples of building detection: (a) sample image tile1; (b) buildings detected in tile1 using
model trained on crowdAI dataset; (c) buildings detected in tile1 using model trained on datasets of
crowdAI and survey area; (d) sample image tile2; (e) buildings detected in tile2 using model trained
on crowdAI dataset; (f) buildings detected in tile2 using model trained on datasets of crowdAI and
survey area.

Although most false positives can be removed by training on the dataset of the survey
area, a few still exist in the building detection results. These false positives were removed
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using the threshold for confidence score. To set the threshold value, the influence of the
confidence score on view selection was evaluated using the nadir images. A total of 1290
out of 1955 nadir images were manually classified as building-covering images and used as
the ground truth. Figure 11 illustrates the evaluation result. It can be seen that the precision
of view selection consistently increases with the confidence score, and it reaches 0.982 when
the score is 0.999. The accuracy and F1 score increase with the confidence score until the
score reaches 0.999. The recall of the view selection slightly decreases with the confidence
score, and it drops to 0.898 when the score reaches 0.999. By investigating the false negatives,
it was found that they were mainly images that covered either a single atypical building
or only parts of buildings. In consideration of the fact that most buildings were located
in several settlements and each building was observable in several neighbouring photos,
the threshold for the confidence score was set as 0.999 in this work. A total of 6008 valid
building instances were determined using this threshold.

Figure 11. Influence of score on view selection: (a) precision; (b) recall; (c) accuracy; (d) F1 score.

3.3. Direct Georeferencing of Valid Building Instances and UAV Images

In this work, an ASTER GDEM2 elevation model of the survey area was used for
DEM-aided direct georeferencing of the valid building instances and the UAV images.
The ASTER GDEM2 elevation model of the survey area was downloaded using the USGS
EarthExplorer as a GeoTIFF file. The resolution of the file is 3601 by 3601 pixels, and the
spatial resolution is about 30 m. The direct georeferencing result of the 6008 valid building
instances and the ground truth are shown in Figure 12a. The ground truth containing
4055 building points labelled manually in the orthomosaic generated from the nadir UAV
images is shown in Figure 12b. It can be seen that the directly-georeferenced building
points and the ground truth largely overlap with each other. The number of georeferenced
building points is higher than that of the ground truth. This is because each building was
observable in several neighbouring nadir images. There are several false positives located
in the river. These false positives result from boats, which are similar in shape to a building.
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By comparison of these two figures, it can be found that the number of false negatives
is small. The result demonstrates the effectiveness of the building detection and direct
georeferencing methods.

Figure 12. Building points: (a) direct georeferencing of valid building instances; (b) the ground truth.

The directly-georeferenced principal points of images are shown in Figure 13. Principal
points from different cameras are distinguished by color. Figure 13a shows that the principal
points belonging to the backward-looking camera, the forward-looking camera and the
nadir camera are approximately collinear. Figure 13b shows that the principal points
belonging to the right-looking camera and the left-looking camera are approximately
located in neighbouring lines. The spatial proximity between the principal points reflects
the neighbouring relationship between corresponding images, which visually justifies the
proposed match pair selection method.
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Figure 13. Directly-georeferenced principal points of UAV images from: (a) Camera 1, 2 and 5;
(b) Camera 3, 4 and 5.

3.4. Oblique View Selection and Match Pair Generation

On the basis of georeferencing of the valid building instances and UAV images,
building-covering oblique images were selected by nearest neighbours search. The length
of the search radius R was set as 140 m which corresponded to half the ground length of
the short side of an image. The length of the search radius was calculated using the image
resolution and the ground sample distance listed in Table 1. Figure 14 illustrates the view
selection of an oblique image. Figure 14a shows an image (no. 415) from Camera 1 (the
backward-looking camera). Figure 14b shows the search circle of the image overlaid on the
georeferenced building points. The center of the search circle is the georeferenced principal
point of the image. The red arrow in Figure 14b shows the flight direction of the UAV. The
search circle and the flight direction are also labelled in the image to illustrate the spatial
relationship between these two figures. It can be seen that there are many buildings in
the aerial image. The buildings are mainly located at the central and bottom parts of the
image. Few buildings are located at the top-left and top-right parts of the image. It can be
seen from Figure 14b that the distribution of the georeferenced building points is consistent
with that in the aerial image, which further demonstrates the correctness of the building
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detection and direct georeferencing methods. The image was automatically selected as
many building points were searched within the circle.
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Figure 14. Illustration of view selection based on nearest neighbours search: (a) an oblique image
from Camera 1; (b) the search circle of the image overlaid on the georeferenced building points.

A total of 4441 oblique images were selected by the oblique view selection procedure.
To evaluate the result of oblique view selection, the ground truth was prepared manually
for images from each oblique camera. The evaluation result is listed in Table 2. It can
be seen from the table that the number of selected oblique images is close to the ground
truth for each camera. The precision, recall, accuracy and F1 score of view selection for the
oblique cameras are close, which shows the versatility of the proposed methodology. The
average precision and recall of the view selection are 0.9 and 0.88, respectively. The high F1
score shows a good balance between the precision and recall is achieved.

Table 2. Evaluation of oblique view selection.

Camera
Number of

Selected
Images

Ground
Truth Precision Recall Accuracy F1 Score

1 1164 1139 0.91 0.93 0.91 0.92
2 1141 1176 0.91 0.88 0.87 0.89
3 1054 1100 0.89 0.85 0.86 0.87
4 1082 1131 0.89 0.85 0.86 0.87

Mean 1110 1137 0.90 0.88 0.88 0.89

By investigating the false negative images, it is found that buildings are basically
located in the corners of these images. It should be noted that most of the buildings in
the false negative images are observable in the true positive images, and therefore these
buildings can still be reconstructed. Moreover, the spatial resolution of the buildings in
the true positive images is higher than that in the false negative ones because of the much
shorter observation distance. A careful examination was conducted to find all the missing
buildings that could not be reconstructed. A building is considered as missing if the number
of observations from any oblique camera is less than two. A total of 23 missing buildings
were found. These missing buildings were atypical buildings that were not detected in the
nadir images. These buildings were also far from other detected buildings and, therefore,
were not covered by the selected oblique images. Except for the missing ones, a total of
4032 buildings were covered by the selected oblique images, which accounted for 99.4% of
all the buildings in the survey area. The evaluation result demonstrates the effectiveness of
the view selection method.
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Match pairs were generated from the selected oblique images and all the nadir images.
Parameters for match pair generation were set as follows. The length of radius r for
overlapping image search was set as 505 m, which corresponded to the largest ground
distance between the principal points of two overlapping images. The length of the radius
was calculated using the image resolution and the ground sample distance listed in Table 1.
Parameters k1, k2, k3 and k4 were set as 2, 2, 1 and 4, respectively. Threshold vt for viewing
direction filtering was set as 50 degrees. A total of 16,261 match pairs were generated.
To evaluate the effectiveness of the proposed match pair generation method, the selected
oblique images and the nadir images were matched according to the generated match pairs.
RootSIFT with the approximate nearest neighbours (ANN) algorithm from the open-source
software OpenMVG was used for pairwise image matching [57]. To speed up the matching
process, the aforementioned downsampled images were used for the experiments. A total
of 15,605 match pairs were robustly matched. The number and percentage of matched
image pairs are listed in Table 3. The percentage of matched pairs from each single camera
is higher than 99%. The percentage of matched backward-forward and right-left image
pairs are 94% and 97.2%, respectively. The percentage of matched oblique-nadir pairs is
between 84.0% and 93.8%. The pairwise image matching result shows the effectiveness of
the proposed match pair generation method.

Table 3. Number and percentage of robustly matched image pairs.

Camera 1 2 3 4 5

1 1062 (99.6%) 2059 (94.0%) - - 1057 (93.8%)
2 - 1040 (99.9%) - - 1026 (93.4%)
3 - - 940 (99.9%) 2000 (97.2%) 842 (87.2%)
4 - - - 976 (100%) 834 (84.0%)
5 - - - - 3770 (99.1%)

3.5. Comparison of Pipelines

The proposed methodology was evaluated for SfM and dense cloud reconstruction.
The data processing pipeline based on the proposed methodology was compared with the
traditional pipeline from the open-source software OpenMVG [57] for SfM reconstruction.
The SfM pipeline from OpenMVG reconstructed a sparse model using all the 9775 images.
Firstly, position-based match pair generation was used for match pair generation. The
number of nearest neighbours for the position-based match pair generation was set as
100 in the experiments. Secondly, RootSIFT with ANN was used for pair-wise image
matching. Finally, an incremental SfM was used for sparse reconstruction based on the
robustly matched tie points.

The SfM pipeline based on the proposed methodology reconstructed a sparse model
as follows. Firstly, oblique images that cover buildings were selected by the proposed
methodology. Then, match pairs were selected using the proposed match pair generation
method. Third, RootSIFT with ANN was used for pair-wise image matching. Finally, an
incremental SfM was used for sparse reconstruction based on the robustly matched tie
points. The SfM reconstruction results were compared in terms of completeness, accuracy,
and efficiency. For the evaluation of completeness, the percentage of registered images
after SfM reconstruction was compared. For the evaluation of accuracy, RMSE (Root
Mean Square Error) of reprojection errors was used as the measure. For the evaluation of
efficiency, the time consumed by image matching and SfM reconstruction was compared.
To speed up the data processing workflow and comparison without loss of generality, the
aforementioned downsampled images were used for the SfM experiments.

Figure 15 shows the sparse models reconstructed by two pipelines. Figure 15a,b are
the top and horizontal views of the sparse model reconstructed by the traditional pipeline.
Figure 15c,d are the top and horizontal views of the sparse model reconstructed by the pro-
posed pipeline. The green points in the figures show the position of oriented images. The
top views show the difference of sparse point clouds reconstructed by the pipelines. The
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point densities in Figure 15a,c are similar in the building areas and significantly different
in other areas. Traditional pipeline reconstructed the scene using all the images without
discrimination of ground objects. The pipeline based on the proposed methodology recon-
structed the scene using 6396 images (4441 selected oblique images and 1955 nadir images),
which resulted in variational point density. The horizontal views show that the oriented
images are approximately in a plane, and the reconstructed terrain is approximately flat,
which is consistent with the ground truth. However, Figure 15b shows that many outlier
points existed in the sparse point cloud generated by the traditional pipeline. These outliers
are scattered in the space above and under the ground plane. In contrast, Figure 15d shows
that fewer outliers existed in the sparse point cloud generated based on the proposed
methodology. The reconstruction of the sparse model demonstrates the adaptiveness and
accuracy of the proposed methodology.

Statistics of sparse reconstruction based on the traditional pipeline and the proposed
pipeline are listed in Table 4.

Table 4. Statistics of sparse reconstruction based on the traditional pipeline and the proposed pipeline.

Pipeline Percentage of Registered Images RMSE (Pixels) Time Efficiency

Traditional 99.80% 0.49 22 h 17 min (image matching 1 h 26 min,
SfM 20 h 51 min)

Proposed 99.83% 0.42

6 h 56 min (data preparation and model
training 0.5 h, oblique view selection 1 h,

match pair generation 2.5 s, image
matching 11min, SfM 5 h 15 min)

• Completeness

It can be seen from Table 4 that both pipelines achieved relatively complete reconstruc-
tion. The traditional pipeline registered 99.80% of 9775 images. The proposed pipeline
registered 99.83% of 6396 images. The high completeness of the reconstruction shows the
precision and robustness of the proposed match pair generation method.

• Accuracy

Both pipelines reported subpixel level of RMSE in SfM reconstruction. The traditional
pipeline achieved 0.49 pixels of RMSE. The proposed pipeline achieved 0.42 pixels of RMSE,
which is smaller than that of the traditional pipeline. The evaluation results show the high
accuracy of the proposed methodology.

• Efficiency

Table 4 shows the time efficiency of the pipelines. It took the traditional pipeline
more than 22 h to complete the processing, whereas the proposed pipeline completed the
processing within 7 h. Specifically, the proposed pipeline spent 0.5 h, 1 h, 2.5 s, 11 min and
5 h and 15 min on data preparation and model training, oblique view selection, match pair
generation, image matching and SfM reconstruction, respectively. It is worth mentioning
that the data preparation and model training in Table 4 refers to the preparation of the
satellite dataset of the survey area and the training on this dataset. The time taken for
model training on the crowdAI dataset is not included, as a model is trained only once on
this dataset, and the trained model is reused as a pre-trained model to be fine-tuned on a
dataset of a specific area. The comparison results show that the proposed pipeline reduced
68.9% of the data processing time.
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Figure 15. Sparse models reconstructed by: (a) traditional pipeline (top view); (b) traditional pipeline
(horizontal view); (c) proposed pipeline (top view); (d) proposed pipeline (horizontal view).
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Dense clouds of the area shown in Figure 14 were generated, respectively, based on
the sparse reconstructions by two pipelines using the open-source software OpenMVS [58].
Additionally, the points of four typical buildings were randomly selected from the dense
clouds and used for comparison. The selected buildings are illustrated by Figure 16.

Figure 16. Buildings selected for dense cloud comparison.

For each building, distances between dense points generated based on two pipelines
were computed using the M3C2 distance plugin (Multiscale Model to Model Cloud Com-
parison) [59] available in the open-source software CloudCompare [60]. Two point clouds
of each building were aligned using the Iterative Closest Point (ICP) algorithm [61], based
on 50,000 random sample points, before the computation of points to points distances
(PTPD). Statistics of PTPD of the four selected buildings are listed in Table 5. The maximum
PTPD values of Building 1, 2 and 4 are less than one meter, and the maximum PTPD
value of Building 3 is slightly larger than one meter. The average PTPD values of all four
buildings are 5 or 6 cm, and the standard deviations of PTPD values of the four buildings
are 3 or 4 cm, which are equivalent to 0.43 or 0.57 of GSD.

Table 5. Statistics of distances between dense points generated based on the traditional pipeline and
the proposed pipeline.

Building Maximum
(m) Average (m) Standard Deviation

(m)
Standard Deviation

(GSD)

1 0.60 0.06 0.04 0.57
2 0.70 0.06 0.04 0.57
3 1.18 0.06 0.04 0.57
4 0.45 0.05 0.03 0.43

Figure 17 visualizes colourized point clouds and the corresponding PTPD values of
each building. The left column shows the point clouds of the buildings generated based on
the proposed pipeline. The right column visualizes the PTPD values for each building. The
legend of the figures in the right column shows the spatial and range distribution of the
PTPD values. It can be seen from the figure that the majority of the PTPD values of each
building are in the range of several centimeters. Large PTPD values are basically located
at highly occluded points or points of windows. Dense matching of these points is highly
uncertain due to unsatisfactory observing conditions. The statistics and visualization of the
PTPD values show high consistency between the point clouds of buildings reconstructed
using all the images based on the traditional pipeline and the selected images based on the
proposed pipeline.
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Figure 17. Point clouds and corresponding PTPD values: (a) point cloud of Building 1; (b) PTPD
values of Building 1; (c) point cloud of Building 2; (d) PTPD values of Building 2; (e) point cloud of
Building 3; (f) PTPD values of Building 3; (g) point cloud of Building 4; (h) PTPD values of Building 4.

4. Discussion

The proposed methodology utilizes semantic information to select the images covering
buildings and generate match pairs for the selected images. Experiments show significant
improvement in efficiency by incorporating the proposed methodology in the classical
SfM pipeline.

The accuracy of a sparse reconstruction reflects the inner consistency of a model.
A sparse reconstruction is optimized by Bundle block adjustment (BBA) based on tie
point observations. More images lead to more tie point observations and a more stable
block structure. If all tie point observations are of the same accuracy, more observations
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generally lead to more accurate SfM reconstruction and smaller RMSE of reprojection
errors. However, the experimental results have shown that the accuracy of the sparse
reconstruction using the entire image set is not higher than that using the semantically
selected images. The main reason is that the accuracies of tie point observations are not the
same. Images with repetitive textures (e.g., farmland) are prone to outliers, and outliers
undermine the overall accuracy of BBA of the entire image set. By semantically selecting
images covering buildings, the proposed pipeline objectively excludes many images with
repetitive textures from the spare reconstruction and reduces outliers (Figure 15). The
experimental results show that fewer but better tie point observations still guarantee the
accuracy of a sparse reconstruction.

The improvement in efficiency benefits from oblique view selection and match pair
generation. As stated above, the proposed pipeline excludes many images with repetitive
textures from sparse reconstruction, which reduces the number of images to process. Match
pair generation is also crucial for the efficiency and robustness of SfM reconstruction. The
position-based match pair generation method used by OpenMVG selects match pairs using
spatial distance between images, but neighbouring oblique images do not necessarily
overlap, and pairwise image matching based on these false match pairs is prone to false
tie points. The proposed methodology selects match pairs by using direct georeferencing,
which takes into account the position of images, viewing directions of images and the
terrain of a survey area. Additionally, the number of generated match pairs is constrained
to control the redundancy of the match graph. The proposed methodology generates fewer
but more precise match pairs. Therefore, SfM reconstruction based on the proposed match
pair generation method is more efficient.

The accuracy and completeness of the dense reconstruction is guaranteed by the
accurate and robust sparse reconstruction based on the proposed pipeline. The comparison
of dense clouds shows high consistency between the dense reconstructions of buildings
based on the proposed pipeline and the traditional pipeline. Accurate sparse reconstruction
generally leads to accurate dense reconstruction. Therefore, the accuracy of the dense cloud
generated based on the proposed pipeline is comparable to that based on the traditional
pipeline. Moreover, as almost all images that cover buildings have been selected and
used for dense reconstruction, the completeness of dense reconstruction of buildings is
also guaranteed.

The experimental results demonstrate that semantics-aided 3D reconstruction is much
more efficient than the traditional pipeline, and it is still accurate and complete. Therefore,
it can be used in regular data production work as well as time-critical applications such as
disaster management and emergency response. For example, to evaluate the impact of an
earthquake on residential houses and civil infrastructures in an area, the images that cover
houses and civil infrastructures can be selected and used for efficient 3D reconstruction.
Based on 3D reconstruction and semantic information, object level change detection and
destruction evaluation can be obtained.

5. Conclusions

An oblique view selection methodology for efficient and accurate building reconstruc-
tion in rural areas is proposed in this paper. The proposed methodology effectively selects
oblique images that cover buildings in a survey area based on instance segmentation and
direct georeferencing. Match pairs are generated based on nearest neighbours search for
matching the nadir images and the selected oblique images. The proposed methodology
was tested on a dataset containing 9775 UAV images. A total of 4441 oblique images
covering 99.4% of all the buildings in the survey area were automatically selected. The
average precision and recall of the oblique view selection are 0.90 and 0.88, respectively.
The percentage of robustly matched oblique-oblique and oblique-nadir image pairs are
above 94% and 84.0%, respectively. The sparse reconstruction based on the proposed
methodology significantly outperforms that based on the traditional pipeline in terms of
efficiency, and it is comparably accurate and complete. The comparison of dense point
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clouds shows high consistency between buildings reconstructed using all the images based
on the traditional pipeline and the selected images based on the proposed pipeline.

The effectiveness of the proposed methodology shows the benefits of semantic in-
formation for large-scale UAV photogrammetry. As the means and frequency of earth
observations increase, more and more high quality datasets for ground object segmenta-
tion become available. At the same time, with the continuous advancement of pattern
recognition and machine learning techniques, semantics-aided 3D reconstruction will be
widely used.
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