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Abstract: In this paper, we consider the difference in the abstraction level of features extracted by
different perceptual layers and use a weighted perceptual loss-based generative adversarial network
to deblur the UAV images, which removes the blur and restores the texture details of the images
well. The perceptual loss is used as an objective evaluation index for training process monitoring
and model selection, which eliminates the need for extensive manual comparison of the deblurring
effect and facilitates model selection. The UNet jump connection structure facilitates the transfer of
features across layers in the network, reduces the learning difficulty of the generator, and improves
the stability of adversarial training.

Keywords: UAV; image deblurring; super-resolution; UNet; generative adversarial network

1. Introduction

With the characteristics of low cost, high mobility and high imaging resolution, aerial
photography by UAV (Unmanned Aerial Vehicle) plays an important role in disaster
emergency rescue, power patrol and land resource investigation. In the process of acquiring
UAV images, some of the images taken are blurred due to the mechanical vibration of
the UAV, the rapid movement of ground targets, atmospheric turbulence effects, bokeh,
etc. The blur caused by the relative motion between the UAV and the target is called
motion blur, and the blur caused by objects imaged outside the focus of the camera is called
bokeh blur. Most of the drones have poor wind resistance and are easily affected by wind
during flight, making the flight attitude unstable. The blurred images captured are mainly
caused by motion blur, which results in the loss of the detailed information of the images
and has a great impact on applications that require important detail information, such as
mis-matching in image feature matching and difficulty in accurately locating the contours
of features. Therefore, deblurring the images captured by drones to recover a clear and
detailed image is important for subsequent image processing.

Since the image displayed at the image receiving end is no longer the original image
transmitted, the image effect has deteriorated significantly, providing obstacles for subse-
quent operations and calculations, etc., and causing instability in information transmission
and inaccuracy of information. For this reason, the degraded image must be processed in
order to recover the true original image and retain the complete information.

Image restoration has been a hot issue in image processing, especially in image repair
and image deblurring to improve image resolution. High-resolution images are a funda-
mental and important part of many studies. For example, in geological exploration, the use
of UAVs in mining and magnetic field discovery requires high-density, high-precision data
that are not affected by vegetation, terrain, traffic, etc., where high-resolution images are an
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essential part [1]. Topographic data should also be flexible for high-resolution, low-cost
transmission, which is also an important reference factor for geographic operations to be
conducted [2]. In addition to conventional terrain, images of complex terrain not often
seen in nature have a higher requirement for resolution because complex terrain may have
a more abyssal significance for the study and discovery of geological conditions [3]. In
archaeology, the need to take measurements from multiple angles (aerial and ground)
and to combine aerial measurements with reconstructed structures and complex soil mor-
phology places high demands on the resolution of the acquired images [4]. As research
continues, through improvements in photogrammetry and identification, different cameras
are developed with sensors that can provide different high resolutions and complemen-
tary spectral bands [5]. In ecology, the establishment of protected areas can better protect
ecological environments and historical artifacts, so the use of drones to assess the level
of protected areas and to monitor and measure sensitive areas has an important position,
and this work relies on high-resolution images [6]. Furthermore, it is crucial to deal with
biological invasions, and we need to effectively monitor invasive species monitoring, as
they may affect the ecological balance and disrupt the biological habitat [7]. In terms of
land management, the land cover should be assessed, such as bare ground, litter, green
vegetation, destroyed vegetation, etc., to ensure that the land consolidation process is free
from interference from other construction and mining operations [8]. The emergence of
image restoration technology and its rapid development are due to the following reasons:
firstly, the rapid development of computer technology and the increase in application fields
have led to a deeper understanding of digital images; secondly, the current demand for
high-quality images in agriculture, animal husbandry, forestry, industry and medicine is
increasing. Image is also one of the important sources for people to obtain and exchange
information in their daily life, so the application area of image recovery technology will
definitely involve people’s daily work or life. As the area of human activities is expanding,
the application area of image recovery technology is also bound to expand.

To obtain more accurate images, Suin, M. et al. proposed an inpainting approach for
solving the problem of the inability of encoder layers to build complete and faithful embed-
dings of missing regions to improve on past methods, and good performance was obtained
in multiple datasets [9]. Chen, J. et al. switched their ideas to solve the color image patching
problem using pure quaternion matrices and proposed a new minimization problem that
eliminates noise correlation, which was validated in multiple datasets [10]. Qiu, Z. et al.
proposed the Dilated Convolution and Deformable Convolution Wasserstein Generative
Adversarial Network (DDC-WGAN) to solve the problem, and this new approach was
verified to have better performance than the traditional approach [11]. Peter, P. proposed
a mask optimization network for data optimization in spatial picture-in-picture, with the
improvement that a generator and a corresponding optimization network can be jointly
trained, with the effect of accurately reflecting the image, achieving a breakthrough in
quality and speed. Kumar, A. et al. proposed a new patching approach that can use GAN
to focus on each aspect of image features, such as color and shape individually, and was
validated in two datasets, achieving competitive performance [12]. Jam, J. et al. designed a
loss model employing two encoders and proposed a recursive residual transition layer that
achieved some technical progress in terms of bias and quality for image repair, which was
well generalized on a stationary dataset [13]. Dervishaj, E. et al. proposed a GAN approach
that uses matrix decomposition to learn potential factors with state-of-the-art results in
image synthesis and image repair [14]. Park, Geonung et al. proposed the application of
high-resolution images taken by drones for urban images, pointing out that reducing the
number of variables in the classification does not produce significant changes in the initial
versus optimized RF [15].
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Image repair techniques have been extensively investigated and there have been signif-
icant advances in various aspects. Zheng, Haitian et al. proposed a new design of cascaded
modulated GAN (CM-GAN) for large image breakage and information incompleteness,
along with a training scheme for object perception to achieve better model results [16].
Dogan, Yahya et al. used the Recurrent Reverse Generator (CRG) architecture to refine
the facial image recognition problem, which can use an iterative approach to solve the
problem of missing parts in images, and trained their own specialized model to reach the
industry-leading level [17]. Lu, W. et al. proposed EXE-GAN, which partially solves the
face image drawing problem using a diverse and interactive face inpainting framework,
experimenting on publicly available datasets and demonstrating its advantages in terms
of face repair quality and diversity. Zhao, Y. et al. used a reference to another image to
recover the original mutilated image, relying on monocular depth estimation for a more
principled training that requires heuristic plane assumptions, obtained optimal levels on a
fixed dataset, and can effectively solve problems with a large range of image residuals [18].
Rezki, A. M. et al. proposed an improved patch classification algorithm with the advantage
of not requiring a reference, which is very suitable for spray paint evaluation without a
reference and was performed on the TUM-IID database. After analysis, the results were
found to have better results than existing algorithms [19]. Hudagi, M. R. et al. proposed a
hybrid image restoration approach that can effectively repair missing images by removing
unwanted objects from the image, achieving a maximum PSNR of 38.14 dB, a maximum
SDME of 75.70 dB, and a maximum SSIM of 0.983 as the leading effect [20]. Li, W. et al. pro-
posed a transformer-based large-aperture inpainting model that combines the advantages
of transformers and convolution to give higher realism and diversity to images, achieving
state-of-the-art performance in multiple datasets [21].

From the above analysis, it can be found that many scholars have proposed many
solutions to the problem of image resolution enhancement and image deblurring, but the
following shortcomings still exist in this field of research:

1. The model is still inadequate in extracting subtle features and cannot capture subtle
differences in color and shape in images.

2. Image repair sometimes produces distorted parts that cannot be strictly embedded
with the surrounding pixels.

3. Inability to generate reasonable images that achieve good results in repairing large gaps.

Therefore, in this paper, we propose the SR-DeblurUGAN model, whose operation
process is: firstly, the image is enlarged in resolution, then the color is filled, and then
the image is corrected by the discriminator, and finally, the image is reconstructed into
a high-resolution image. It can reduce the amount of transmission data of UAV aerial
photography and improve the battery utilization of UAV while ensuring the image quality.
The structure of our model is shown in Figure 1.
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Figure 1. Illustration of SR-DeblurUGAN.

2. Related Works
2.1. Overall

Among the more influential generative models are VAE [22], PixelCNN [23], Glow [24],
and GAN [25]. The great success of GAN in image generation undoubtedly depends on
the fact that GAN keeps improving its modeling ability under gaming and finally achieves
image generation with falsehoods. It consists of two neural networks, a generator and
a discriminator, where the generator tries to generate real samples that deceive the dis-
criminator, and the discriminator tries to distinguish between real and generated samples.
This adversarial game makes the generator and discriminator continuously improve their
performance, and the generator can achieve false output after reaching the Nash equilib-
rium. However, this Nash equilibrium exists only in theory, and the actual GAN training is
accompanied by some problematic limitations. One is GAN training instability, and the
other is pattern collapse.

2.1.1. CGAN

In the original GAN, there is no control over what is to be generated because the
output depends only on the random noise. We can add the conditional input c to the
random noise z so that the generated image is defined by G(c, z). This is CGAN [26], where
it is usually sufficient to connect the conditional input vector c directly to the noise vector z,
and to use the resulting vector as is as input to the generator, just as it was in the original
GAN. The condition c can be the class of the image, a property of the object or a textual
description embedded in the image that one wants to generate, or even a picture.
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2.1.2. ACGAN

To provide more auxiliary information and allow semi-supervised learning, additional
auxiliary classifiers can be added to the discriminator in order to optimize the model on the
original task as well as on the additional tasks. The architecture of this approach is shown
in the figure below, where C is the auxiliary classifier. Adding auxiliary classifiers allows
us to use pre-trained models (e.g., image classifiers trained on ImageNet), and experiments
in ACGAN [27] demonstrate that this approach can help generate sharper images as well
as mitigate pattern collapse problems. The use of auxiliary classifiers can also be applied in
text-to-image synthesis and image-to-image conversion.

2.1.3. GAN Combined with Encoder

Although GAN can transform the noise vector z into a synthetic data sample G(z),
it does not allow for inverse transformations. If the noise distribution is considered as a
potential feature space of data samples, GAN lacks the ability to map data samples x to
potential features z. To allow such a mapping, BiGAN [28] adds encoder E to the original
GAN, as shown in Figure 2.

Figure 2. Illustration of BiGAN.

Let ωx be the data space and ωz be the potential feature space, encoder E takes xωx
as input and produces a feature vector E(x)ωz as output. The modified discriminator
D computes P(Y|x, z) by taking both data samples and feature vectors as inputs, where
Y = 1 means that the samples are real while Y = 0 means that the data are generated by G.
Expressed in a mathematical equation as:

minGmaxDV(D, G) = Ex pdata(x,E(x))[logD(x)] +Ez pz(z)[log(1− D(G(z), z))] (1)

2.1.4. VAE-GAN

The images generated by VAE are blurred, but VAE generation does not have the
same problem of pattern collapse as GAN. The original intention of VAE-GAN [29] was
to combine the advantages of both to form a more robust generative model. The model
structure is shown in Figure 3.
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Figure 3. Illustration of VAE-GAN.

2.2. GAN in Image Generation Tasks

The main methods of GAN in image generation are direct methods, connection meth-
ods and iterative methods, which can be shown in Figure 4.

Figure 4. Three approaches to image synthesis using generative adversarial networks.

Distinguish an image generation method by the number of generators and discrimina-
tors it has.

2.2.1. Direct Methods

All methods under this category follow the principle of using a generator and a
discriminator in their models, and the structure of the generator and discriminator is
straightforward and without branches. Many of the earliest GAN models belong to this
category, such as GAN, DCGAN [30], ImprovedGAN [31], InfoGAN [32], f-GAN [33] and
GANINT-CLS [34]. Among them, DCGAN is one of the most classical ones and its structure
is used by many later models. The general building blocks used in DCGAN are shown
below, where the generator uses deconvolution, batch normalization and ReLU activation,
while the discriminator uses convolution, batch normalization and LeakyReLU activation,
which are nowadays used by many GAN model network designs. This approach is
relatively more straightforward to design and implement than the hierarchical and iterative
approaches and usually yields good results.

2.2.2. Hierarchical Methods

In contrast to the direct methods, the algorithms under the layered approach use two
generators and two discriminators in their models, where the different generators have
different purposes. The idea behind these methods is to divide the image into two parts,
such as “style and structure” and “foreground and background”. The relationship between
the two generators can be in parallel or in series.
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2.2.3. Iterative Methods

The iterative method differs from the hierarchical method in that, first, instead of
using two different generators performing different roles, the models in this category use
multiple generators with similar or even the same structure, and they generate images
from coarse to fine, with each generator regenerating the details of the result. When using
the same structure in the generators, iterative methods can use weight sharing among the
generators, while hierarchical methods usually cannot.

LAPGAN is the first GAN that uses the Laplace pyramid to generate images from
coarse to fine using iterative methods. Multiple generators in LAPGAN perform the same
task: acquiring the image from the previous generator and taking the noise vector as input,
and then outputting the details that make the image sharper when added back to the input
image (residual image). The only difference between these generator structures is the size
of the input/output dimensions, with the exception that the lowest-level generator takes
only the noise vector as input and outputs the image. LAPGAN outperforms the original
GAN and shows that iterative methods can generate sharper images than direct methods.

2.2.4. Other Methods

Unlike the other methods mentioned earlier, PPGN [35] uses activation maximiza-
tion to generate images, which is based on samples previously learned using denoising
autoencoders (DAE) [36]. In order to generate images conditioned on a specific class label
y, instead of using a feed-forward approach (e.g., a recurrent method can be considered
as feed-forward if it is expanded through time), the PPGN optimization process finds the
input z for the generator, which makes the output image highly activated for a certain
neuron in another pre-trained classifier (the neuron in the output layer corresponding to its
class label y).

3. Materials and Methods
3.1. Dataset Analysis

The datasets used in this paper have multiple sources. Testing images of four datasets
(agricultural datasets taken by drones, Urban 100, BSD 100, Sun-Hays 80). All the images
were cropped according to the desired super-resolution factor. This avoids misalignment
of the groundtruth high-resolution images and the super-resolved images. The details are
as follows:

1. Agricultural dataset collected in Shahe Town, Laizhou City, Yantai City, Shandong
Province, China, at 09:00–14:00 and 16:00–18:00 on 8 April 2022. The collected images
are shown in Figure 5A. A drone was equipped with a Canon 5D camera (stabilized by
a tripod). This camera acquires solid color images at 8-bit resolution. The acquisition
is performed automatically at a predetermined cadence during flight preparation.
The system uses autonomous ultrasonic sensor flight technology to reduce the risk
of accidents. The system includes a ground control radio connected to a smartphone
with a range of 5 km (without obstacles) under normal conditions.

2. The Urban100 dataset contains 100 images of urban scenes. It is commonly used as a
test set to evaluate the performance of super-resolution models.

3. The BSD 100 dataset is a dataset that provides an empirical basis for the study of
image segmentation and boundary detection, containing 1000 hand-labeled segments
of 1000 Corel dataset images from 30 human subjects, half of which were obtained by
presenting color images to the subjects; the other half were obtained by presenting
grayscale images. A common benchmark based on these data includes all grayscale
and color segmentations of the 300 images. The BSD 300 dataset is divided into
200 training images and 100 side views, and the ground truth is divided into two
folders, color and gray, which in turn have subfolders named after the marker id
(uid), containing segmentation information provided by each marker. These folders
have subfolders named by marker id (uid), which contain segmentation information
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provided by each marker, named by image id, and saved as .seg files. The dataset was
released in 2001 by the University of California, Berkeley.

4. The Sun-Hays 80 dataset is a dataset that has been used for super-resolution image
studies to compare and find relevant scenes in image databases using global scene
descriptions that provide ideal example textures to constrain image sampling to
problems that are more predictive of explicit scene matching compared to internal
image statistics for super-resolution tasks. We used patch-based texture transfer
techniques and generated phantom texture details after comparing the publisher’s
super-resolution images with other methods to draw conclusions. This dataset was
released institutionally by Brown University in 2012.

Figure 5. Illustration of our dataset. (A) The agricultural dataset; (B) the Urban100 dataset; (C) the
BSD100 dataset; (D) the SUN-Hays 80 dataset.

3.2. Dataset Augmentation

Since running the SRGAN model is very memory intensive, it consumes too many
hardware resources to train the machine with large images; moreover, the number of
images in the training set is very small. Therefore, in this paper, we randomly crop a small
piece of the low-resolution image and the high-resolution image “at the same location” for
training. On the one hand, it expands the number of images in the dataset and prevents
overfitting. On the other hand, it reduces the memory consumption of the model. After
this operation, there are random rotation and random flip operations to expand the dataset.
In the end, the resulting training set amounted to 3800 images.

3.3. Proposed Model
3.3.1. Generator

For image transformation problems, networks with an encoding–decoding structure
are generally used. The coding and decoding phases have a symmetric structure so that
the output and input dimensions of the network are consistent. In the coding stage, the
features are extracted gradually using convolutional layers, and the feature map resolution
is gradually reduced by pooling layers. Then, the feature details and spatial location
information are gradually recovered through the decoding process after reaching the
bottleneck layer. For image deblurring, there are some common features between the input
blurred image and the output deblurred image, the tone of the image should be the same,
and the edges of the image should be similar.

The Unet [37] model is different from the common encoding–decoding network in
that it has a jump connection structure, and the features extracted in the encoding stage can
bypass the bottleneck layer to reach the decoding stage, which makes the features recovered
in the decoding stage more detailed and helps to reduce the difficulty of generator learning.
In this paper, we make two main improvements based on Unet:

1. Adding a batch normalization layer after the convolutional layer but not for the
output layer, which is beneficial to the rapid convergence of the deep network and, to
a certain extent, to the effect of regularization, reducing the risk of overfitting, etc.

2. The number of feature maps is halved, which significantly reduces the number of
network parameters, saves computational resources, improves training and prediction
speed, and allows inputting larger sample batches for training.
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The modified Unet network has 8 convolutional layers and 4 pooling layers in the cod-
ing stage, 4 deconvolutional layers and 8 convolutional layers in the decoding stage, and the
size of the feature map becomes twice as large as the original one for each deconvolutional
layer, and the size of the convolutional kernel is 3× 3.

3.3.2. Discriminator

The discriminator is generally an ordinary multilayer convolutional neural network.
The input sample is the probability value of the real sample. The higher the probability
value, the higher the probability that the discriminator considers the input sample as the
real sample. In this paper, the discriminator outputs not a single probability, but a patch
of N × N probability values, using the PatchGAN [38] model. Each value in the patch
represents its receptive field, which corresponds to the probability that the local image block
is from the real sample, which is helpful to recover as much high-frequency information
as possible in each receptive field and make the deblurred image details clearer. In this
paper, the discriminator is an ordinary multilayer convolutional network with N = 4,
and its corresponding input image perceptual field size is 64, i.e., each value in the block
represents the probability that a block of size 64× 64 in the input image is from the real
sample. The structure of the discriminator is shown in Figure 1, where each bar represents
a sequential operation consisting of a convolutional layer, a batch normalization layer, and
a nonlinear activation layer. The size of the convolutional kernel is 4× 4, the nonlinear
activation function uses LeakyReLU [39], and the slope is set to 0.2.

4. Experiments
4.1. Overall

The process of adversarial training is as follows: the discriminator is trained first, then
the generator is trained, and so on alternately. The discriminator training process is shown
in Figure 6, and the generator training process is shown in Figure 7.

Figure 6. Illustration of the discriminator training process.

Figure 7. Illustration of the generator training process.

The transparent box in the figure indicates the frozen network, where the network
parameters are not updated during training; only the network in the orange box is involved
in training. The discriminator uses cross-entropy as the loss function, the labels of the real
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samples are set to 1, and the labels of the fake samples output by the generator are set to 0.
When the generator is trained, the discriminator is frozen and the labels of the generator
output are set to 1, which are used to deceive the discriminator. The loss function of the
generator is the sum of two parts; the first part is the perceptual loss obtained by the CNN,
and the other part is the loss from the failure to deceive the discriminator.

4.2. Experiment Parameters and Platform

The test device is a desktop computer with a Core i9-10900k CPU and Nvidia RTX3080
GPU. In the training process, the experiments were run on Ubuntu 20.14, using the Python
programming language, and the model implementation was based on the PyTorch frame-
work. The number of learning rounds was set to 150, and the network was optimized using
the stochastic gradient descent algorithm, where the initial learning rate is 1× 10−5.

4.3. Experiment Metrics

The traditional methods mainly use the peak signal-to-noise ratio (PSNR), structural
similarity index and other image quality evaluation indexes or are directly determined
by human visual perception. However, PSNR ignores the influence of image content on
human eyes and cannot fully reflect the image quality, which leads to stopping training too
early or too late. SSIM can achieve better quality evaluation results than PSNR but cannot
completely solve the problem of PSNR. SSIM can achieve better quality evaluation results
than PSNR but does not completely solve the problem of PSNR. For both PSNR and SSIM
methods, it is possible that there are two signals with the same structural similarity to the
same original signal, but the subjective quality still differs, which is difficult to automate by
human visual analysis, and the workload is high. The perceptual loss function measures
the difference between the generated image and the target image in terms of high-level
image features, and the image reconstructed using perceptual loss is more detailed and
semantically consistent with human visual perception than calculating the loss at the lowest
level of grayscale values. For example, if two images are identical and one of them is shifted
by one pixel, the loss calculated using image grayscale values will be much larger, but at
the more abstract feature level, the perceptual loss remains almost unchanged.

Regarding the model speed, in this paper, 100 images were processed and timed in
a single succession until all test set data were inferred. The average inference time per
100 images was found, and thus the FPS (Frames Per Second) was found.

4.3.1. Peak Signal-to-Noise Ratio (PSNR)

The PSNR is generally an engineering project used between the maximum signal
and the background noise. Usually, after image compression, the output image is usually
different from the original image to some extent. In order to measure the quality of the
processed image, we usually refer to the PSNR value to measure whether a processing
procedure is satisfactory or not. It is the logarithmic value of the mean squared error
between the original image and the processed image relative to 2n−1 (the square of the
maximum value of the signal, n being the number of bits per sample) and is measured
in dB.

Since perceptual loss is closer to human visual perception in evaluating the details
and semantics of reconstructed images, this paper uses perceptual loss as a metric for
model selection. The network weights are selected by analyzing the direction and change
of perceptual loss curves on the validation and training sets.

Peak signal-to-noise ratio is often used as a measure of signal reconstruction quality in
areas such as image compression, and it is often defined simply by the mean squared error
(MSE). For two m× n monochrome images I and K, if one is a noise approximation of the
other, then their MSEs are defined as:

MSE =
1

mn ∑ ∑ ||I(i, j)− K(i, j)||2 (2)
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PSNR = 10× log10(
MAX2

I
MSE

) = 20× log10(
MAXI√

MSE
) (3)

where MAXI is the maximum value indicating the color of the image point, which is 255 if
each sample point is represented by 8 bits.

4.3.2. Structural Similarity Index

The structural similarity index (SSIM) is a metric used to quantify the structural simi-
larity between two images. Unlike the L2 loss function, SSIM is modeled after the Human
Visual System (HVS), which implements the theory related to structural similarity and is
sensitive to the perception of local structural changes in an image. SSIM quantifies the prop-
erties of an image in terms of luminance, contrast and structure, using the mean to estimate
luminance, variance to estimate contrast and covariance to estimate the degree of structural
similarity. The SSIM values range from 0 to 1, with larger values representing more similar
images. The SSIM value is 1 if the two images are identical. Given two images x, y, the
luminance, contrast and structure between them are shown in the following equations.

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(4)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(5)

s(x, y) =
σxy + c3

σxσy + c3
(6)

SSIM(x, y) = [l(x, y)α × c(x, y)β × s(x, y)γ] (7)

where µx is the mean of x, σ2
x is the variance of x, µy is the mean of y, σ2

y is the variance of y,
σxy is the covariance of x and y, c1 = (k1L)2, c2 = (k2L)2 are two constants used to maintain
stability and avoid division by zero, and L is the range of pixel values, indicating that the L
value for a B-bit image is 2B − 1. In general, for uint8 data, the maximum pixel value is 255,
and for floating-point data, the maximum pixel value is 1. In general, k1 = 0.01, k2 = 0.03.

5. Results and Discussion
5.1. Results

From Table 1, we can see that the PSNR and SSIM of our method are higher than those
of deblurGAN, which means that this method is richer in details after deblurring, and
deblurGAN loses some texture information after deblurring.

Table 1. Comparison of deblurGAN and our model.

Method PSNR SSIM FPS Average Perceived Loss

deblurGAN 26.15 0.75 20.2 21.63
simDeblur 27.33 0.81 18.5 19.63
ours 28.93 0.83 7.42 15.79

Figure 8 shows a comparison of before and after the application of various models.
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Figure 8. Comparison of different models.

From the above figure, we can see that the perceptual loss of this method is lower than
that of other models, which means that the recovered images are semantically closer to the
subjective judgment of image quality. deblurGAN does not take into account the difference
in the abstraction level of the features proposed by different perceptual layers and does not
constrain the low-level perceptual layers enough to extract detailed features, which makes
the recovered images still smooth. It can be seen that the deblurred image by the model
highlighted in this question is consistent with the original image in terms of tone, and the
texture information is richer and the details are clearer.

The experimental results show that the method in this paper has the following advantages:

1. More effective recovery of image details;
2. Lower deblurring processing time.

5.2. Validation on More Channels

In the above experimental results, we follow the traditional approach to super-resolve
(super-resolve) color images. Specifically, we first convert the color image to YCbCr space.
The SR algorithm is applied to the Y channel only, while the Cb and Cr channels are
interpolated by bicubic interpolation. In this section, we try to consider all three channels
in this process and verify the model performance.

The model in this paper can accept more channels without changing the learning
mechanism and the network signal. In particular, by setting the input channel to c = 3, it
can easily handle three channels simultaneously. The experimental results are shown in
Table 2.
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Table 2. Results of validation on three channels.

Series PSNR SSIM Input/Ouput

1 28.617 0.981 32.4
2 28.815 0.981 33.4
3 27.958 0.982 34.8
4 21.758 0.981 35.2

From the experimental results, we can see that from the model proposed in this paper,
the visual effect of the transmitted image is not much different from the original effect, and
the amount of transmitted data is smaller, the transmission time is shorter, and the model
is more robust.

5.3. Application on Edge Computing

In order to deploy the SRUGAN model proposed in this paper in a practical appli-
cation scenario, we developed an edge computing device based on Jetson, whose system
architecture is shown in Figure 9.

Figure 9. Illustration of the hardware system.

The Wifi module acquires the low-resolution raw images transmitted by the UAV,
and the Jetson operational logic board performs the image super-resolve and deblurring
operations locally. The display module can display the processing results in real-time. A
physical diagram of the device is shown in Figure 10.

Figure 10. Edge computing device based on Jetson.

We have protected the entire computational body with aluminum. The weight of this
device is less than 700 g, which is less than the weight of a normal DSLR camera, such as
the Canon 5D. This allows the device to be easily mounted on a drone. With this device,
we can capture optimized images directly on the drone and transmit them to the local host.

6. Conclusions

In this paper, we consider the difference in the abstraction level of features extracted by
different perceptual layers and use a weighted perceptual loss-based generative adversarial
network to deblur the UAV images, which removes the blur and restores the texture
details of the images well. The perceptual loss is used as an objective evaluation index for
training process monitoring and model selection, which eliminates the need for extensive
manual comparison of the deblurring effect and facilitates model selection. The UNet jump
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connection structure facilitates the transfer of features across layers in the network, reduces
the learning difficulty of the generator, and improves the stability of adversarial training.
At the same time, this structure helps to extract subtle information from the images.

GANs tend to show some inconsistencies in performance. Therefore, in this paper,
we use various datasets, including open-source datasets and self-harvested agricultural
datasets, to test them, and the experimental results show that the proposed model achieves
stable performance on these datasets.

In the future, we will continue to study the structure of the generator network to
ensure the recovery of image quality and further improve the prediction efficiency.
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