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Abstract: Due to the nonlinear and asymmetric input constraints of the fixed-wing UAVs, it is a
challenging task to design controllers for the fixed-wing UAV formation control. Distance-based
formation control does not require global positions as well as the alignment of coordinates, which
brings in great convenience for designing a distributed control law. Motivated by the facts mentioned
above, in this paper, the problem of distance-based formation of fixed-wing UAVs with input
constraints is studied. A low-gain formation controller, which is a generalized gradient controller of
the potential function, is proposed. The desired formation can be achieved by the designed controller
under the input constraints of the fixed-wing UAVs with proven stability. Finally, the effectiveness of
the proposed method is verified by the numerical simulation and the semi-physical simulation.

Keywords: multi-UAV formation; velocity constraints; fixed-wing UAV

1. Introduction

Compared with the single unmanned aerial vehicle (UAV), multiple unmanned aerial
vehicle (multi-UAV) formations have several advantages, including improved execution
efficiency and capability, better fault tolerance and robustness and etc. [1–3]. In real-
ity, the multi-UAV formations have been frequently used in light shows, disaster relief,
and communication maintenance [4,5]. Thus, the study of multi-UAV formation has arisen
much attention in recent years.

To achieve the multi-UAV formation, a variety of control methods have been pro-
posed. The survey [6] classified the formation control from perception capabilities into
position-based [7,8], displacement-based [9,10], and distance-based [11,12]. Among them,
the distance-based formation control requires less individual perception capability. More
concretely, it can help design formation control laws in agents’ local coordinate frames,
which neither requires global position measurements nor the alignment of agents’ local
coordinate frames [11]. In practical applications the global coordinates are sometimes not
available (GPS-denied) and the alignment of coordinates is difficult for the multi-UAV
system. Due to the facts mentioned above, the distance-based formation control prob-
lem has become a research hotpot recently. Reference [12] derived a gradient controller
from the potential function based on an undirected infinitesimal rigidity graph. Then
the work [12] proved that the infinitesimal rigidity is a sufficient condition for the local
asymptotic stability of the equilibrium manifold. Based on the work of reference [12],
a new design strategy for formation control was proposed in reference [13], which can
achieve the local asymptotic stability for general infinitesimal rigid formations and the
global asymptotic stability for triangular infinitesimal formations. Reference [14] investi-
gated the local asymptotic stability of n-dimensional undirected formations with single
and double integrator models, and revealed that a rigid formation is locally asymptotically
stable even though the formation is not infinitesimally rigid. Reference [15] integrated the
different formation control laws proposed by the previous works into a unified convergence
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analysis framework, and considered the case of minimally rigid target formation as well
as non-minimally rigid target formation. Then the authors of [15] proved the exponen-
tial stability of the formation system under a generalized controller. Besides the work
mentioned above, different cases were studied for specific considerations, such as control
with disturbances [11,16–18], optimal formation control [19,20], and the formation control
combined with flocking [21–23].

Although a variety of distance-based formation control methods have been proposed
in many studies including the works mentioned above, most of them model the dynamics of
the agents in the system as a single integrator or double integrator. As a consequence, when
applying to the UAV system, the control method proposed in these works is unsuitable
because the UAV cannot move in any direction and the velocity in the head direction must
be greater than zero. More specifically, the dynamics of the UAVs are under-actuated
and input-constrained. In the current study of the formation control for the fixed-wing
UAVs, the kinematics of the fixed-wing UAV are modeled as a unicycle model, which is a
nonholonomic system. Thus, the study of formation control with nonholonomic constraints
and input saturation is of full meaning in practice. Existing nonholonomic constraint
studies can be found in references [23–26], whereas input saturation studies can be found
in references [27–31]. It is worth mentioning that the robust backstepping approach or the
sliding mode approach is a powerful approach for controlling the nonholonomic system
with input constraints [32–34]. However, there may be some problems such as introducing
more complex structures, relying on more system information, etc. Most of them are
based on the leader-follower structure, which is a simple and clear control architecture but
highly dependent on the motion of the leader agent. Reference [31] solved the distance-
based formation control problem under the nonholonomic constraint and the velocity
saturation constraints by employing the time-varying projection matrix and time-varying
scalar. However, the approach in reference [31] requires a minimum linear velocity to be
less than zero, which is unsuitable for the fixed-wing UAVs. Therefore, the problem of the
distance-based formation control for the fixed-wing UAVs is still an open problem.

The low gain design technique has been proved to be an effective idea in coping with
input-constrained problems of linear systems [35–38]. Although distance-based formation
control is considered a complex nonlinear problem, the idea of low gain techniques can still
bring new perspectives or new thinking. Meanwhile, for the multi-agent formation control
problem, it is usually a popular approach to design a controller based on the constructed
potential function [13–15].

Different from the previous works on the formation control problem, in this paper,
the dynamics of the UAV is modeled as a unicycle model with linear and angular velocity
constraints while the coordinates of the UAVs are not required to be aligned. Due to the
dynamic property of the fixed-wing UAV [28,30], the angular velocity is saturated while
its linear velocity is bounded within a positive interval. Taking both the linear and the
angular velocity constraints into consideration, the distance-based formation problem for
fixed-wing UAVs becomes more challenging. A potential-function-based controller is then
designed by utilizing the low gain design technique. Stability analysis is also provided.
Finally, the effectiveness of the proposed method is verified by using both the numerical
and the semi-physical simulations.

In summary, the main contributions of this article are as follows.

(1) We present a novel problem formulation for distance-based formation control of fixed-
wing UAVs. For fixed-wing UAVs with minimum forward velocity, we modify the
problem description of the general unicycle model, i.e., the formation is required to
keep moving at a uniform velocity simultaneously.

(2) We design a low-gain formation controller, which can keep the input of the system
from saturation. The proposed controller is a general gradient controller with a low
gain coefficient, which is designed based on the distance-based potential function.
Furthermore, we give the complete stability analysis to prove that the desired distance-
based formation can be achieved while the input constraints of each UAV are satisfied.
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(3) We simulate our proposed controller, including numerical simulation and semi-
physical simulation, and verify that the proposed method can effectively solve the
distance-based formation control problem under the input constraints of fixed-wing
UAVs.

The rest of the paper is organized as follows. In Section 2, the problem of distance-
based formation control of fixed-wing UAVs is formulated. Section 3 proposes the control
law with input constraints and gives the stability analysis. The simulation results are
presented in Section 4, followed by a conclusion of the paper in Section 5.

2. Problem Formulation
2.1. UAV Modeling

Consider a formation of N fixed-wing UAVs. For i = 1, . . . , N, the kinematic model of
UAV i is described by

ẋi = vi cos θi,
ẏi = vi sin θi,
θ̇i = wi,

(1)

where [xi, yi]
T ∈ R2 and θi ∈ (−π, π] are the position and orientation of the i-th UAV in

the inertial Cartesian frame, respectively. In this paper, the linear velocity vi ∈ R and the
angular velocity wi ∈ R are the control inputs of system (1).

Remark 1. It is worth noting that the models of UAVs are described in 2D instead of 3D. It is
based on the fact that when the fixed-wing UAVs are performing formations, the UAVs usually
fly at constant altitudes [16,17,20,23]. For example, in practical implementations, the UAVs are
usually controlled to fly at different altitudes to avoid collisions. In this sense, by setting a given
altitude, each UAV performs a fixed altitude flight.

Suppose that the UAV i is subject to the following velocity constraints:

0 < vi,min ≤ vi ≤ vi,max,
−wl

i,max ≤ wi ≤ wr
i,max, (2)

where vi,min and vi,max are the minimum and maximum forward linear velocities of the i-th
UAV, respectively, and wl

i,max and wr
i,max are the maximum left-turn and right-turn angular

velocities, respectively.

Remark 2. Although there are some existing works that address the distance-based formation
control problem of the unicycle model, they do not consider the velocity constraints of fixed-wing
UAVs. That is, the velocity constraints (2) are not present in the general unicycle model [23–26].
To tackle this challenge, a novel controller is designed to implement distance-based formation control
of the fixed-wing UAVs in this paper.

Remark 3. It is worth noting that the velocity constraints can be different for each UAV, which
relaxes the requirement to use the same type of the UAV in the formation [30].

2.2. Desired Formation

In this paper, the undirected graph G ∆
= (V , E) is used to represent the interaction

of UAVs, where V = {1, 2, . . . , N} is the set of N vertices and E ⊂ V × V is the set of
m edges. Each vertex represents a UAV and the neighbor set of vertex i is defined as
Ni(E) = {j ∈ V|(i, j) ∈ E}. The edge (i, j) ∈ E means that the UAV i, j can sense the

relative position with respect to each other. Then, let pi
∆
= [xi, yi]

T ∈ R2, and denote

pij
∆
= pi − pj as the relative position between the UAV i and j. The distance and the desired

distance between the UAV i and j are denoted by dij
∆
= ‖pij‖ and d∗ij, respectively.
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The distance-based formation usually defines the desired formation based on the
distances among the UAVs. When the distance between the UAVs reaches the desired
distance, the formation goal will be considered to be achieved. However, fixed-wing
UAVs cannot stay still after reaching the desired distance and usually have to keep flying
at a uniform velocity. Therefore, different from the distance-based formation control in
reference [31], the desired formation requires not only that the desired distance between
the UAVs be maintained, but also that the UAVs keep moving at a preset uniform velocity.

Therefore, the desired formation control objective can be described as follows:∥∥pi(t)− pj(t)
∥∥→ d∗ij as t→ ∞, ∀(i, j) ∈ E ,

ṗi(t)−~v0 → 0 as t→ ∞, i = 1, . . . , N,
(3)

where ~v0 ∈ R2 is a constant vector.
Figure 1 illustrates the process of achieving the desired formation consisting of three

fixed-wing UAVs. It can be observed that the three UAVs maintain the desired distance
from their neighbors while moving at the same velocity ~v0.

1
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*
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*
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*
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*
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Figure 1. The desired formation of three UAVs.

2.3. Problem Statement

Two assumptions are posed before the problem statement.

Assumption 1. The velocity constraints of all UAVs have a common range and the uniform velocity
~v0 lies within this velocity range, i.e., ∃vmin, vmax, wr

max, wl
max ∈ R+, for ∀i ∈ {0, 1, ..., N} it

holds that
0 < vi,min ≤ vmin < ‖~v0‖ < vmax ≤ vi,max,
−wl

i,max ≤ −wl
max < 0 < wr

max ≤ wr
i,max. (4)

Assumption 2. The distances between all UAVs are bounded, and they are all less than a known
constant dM, i.e.,

dij ≤ dM, ∀(i, j) ∈ E . (5)

Thus, the formation problem is described as follows.

Problem 1. Under Assumptions 1 and 2, the control inputs vi and wi are designed so that each
UAV reaches the desired distance from its neighbors while the entire formation maneuvers at a
consistent velocity, i.e., Equation (3) holds while the velocity constraint of Equation (2) is satisfied.

Remark 4. It is obvious that Assumption 1 is a prerequisite for a formation mission to be achievable.
Only if assumption 1 is satisfied, it is possible for all UAVs to be in formation at a uniform velocity.
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Remark 5. Assumption 2 is reasonable since the communication range of UAVs in reality is
usually limited, and once the distance between UAVs is farther than their communication range,
their interaction topology will be broken and the formation will not be implemented.

3. Controller Design

In this section, the concept of distance-based potential function is first proposed, then
the designed potential function is used to design the low-gain-based controller so that the
velocity constraints can be satisfied. Finally, the stability analysis of the proposed controller
is presented.

3.1. Distance-Based Potential Function

Let eij = dij − d∗ij. Then, the vector e = [..., eij, ...] ∈ Rm consists of all eij where
(i, j) ∈ E .

Definition 1. For each UAV i, define a distance-based potential function Fi : R2|Ni |+1 → [0, ∞)
as follows:

Fi(pi, . . . , pj, . . . ) ∆
= γ ∑

j∈Ni

G(
∥∥pi − pj

∥∥), (6)

where γ > 0 and the function G is to be determined such that Fi satisfies the following assumption:

Assumption 3. The funtion Fi satisfies the following conditions:

• Fi ≥ 0 always holds, where Fi = 0 if and only if
∥∥pi − pj

∥∥ = d∗ij for all j ∈ Ni;

• For the function g(x) ∆
= Ġ(x)

x , if ‖x‖ ≤ xM, it holds that ‖g(x)‖ ≤ gM, where Ġ(x) denotes
differentiation of the function G;

• Denote

fi
∆
= −∇pi Fi = −γ ∑

j∈Ni

g(
∥∥pij

∥∥)pij, (7)

and there exists r0 such that fi = 0⇔ Fi = 0 in {p : Fi(p) ≤ r0}.

In this paper, the function G(·) is designed as

G(
∥∥pij

∥∥) = 1
2

[(∥∥pij
∥∥2

+
d∗4ij∥∥pij
∥∥2

)
− d∗2ij

]
. (8)

Correspondingly, the function g(·) is

g(
∥∥pij

∥∥) = 1−
d∗4ij∥∥pij
∥∥4 . (9)

Remark 6. The second term of Assumption 3 implicitly implies that the function G is differentiable.
Further, the properties of the function Fi are related to the ones of the function G, which means that
the function G needs to be suitably selected. In fact, the function G can take many forms which were
summarized in reference [15]. Furthermore, similar to Assumption 1 of reference [31], Assumption
3 is satisfied by most of the cooperative control laws including the distance-based formation control
law. In addition, r0 indicates the size of the attraction domain. In other words, it determines whether
the system is globally or locally stable.

Remark 7. The distance-based potential function is a cornerstone of the controller proposed in this
paper. On the one hand, the distance-based potential function can be used as the Lyapunov function
candidate for proving the stability of the closed-loop system, as the Lyapunov functions are usually
difficult to find for nonlinear systems. On the other hand, for the multi-agent formation control
problem, distance-based potential function is more visual and intuitive, which makes it easier to
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understand the action of the controller. In fact, it is a popular approach to design a controller based
on the constructed potential function [13–15]. In addition, it has been pointed out by reference [15]
that the attractive property of ensuring collision avoidance for the formation system can be obtained
by choosing a suitable potential function.

3.2. Low-Gain-Based Controller

On the basis of the distance-based potential function Fi, the controller for UAV i
without velocity constraints is designed as[

vi
wi

]
=

[
cos θi sin θi
− sin θi cos θi

]
( fi(γ) +~v0), (10)

where fi(γ) is defined in Equation (7) and indicates that fi is related to the low gain
coefficient γ.

For the convenience of notation, let

hi =
[

cos θi sin θi
]T , h⊥i =

[
− sin θi cos θi

]T , h0 =
[

cos θ0 sin θ0
]T . (11)

Thus, Equation (10) can be rewritten as

vi = hT
i ( fi(γ) +~v0),

wi = h⊥i
T
( fi(γ) +~v0).

(12)

Remark 8. hi and h⊥i are widely used in reference [31,39,40], where hi is the unit vector in the
heading direction of the UAV i and h⊥i is the unit vector pointing to the vertical heading direction
to the right. A graphical explanation for hi and h⊥i is shown in Figure 2.

ih


ih
iv

iw

Figure 2. The illustrations of hi and h⊥i .

Then, based on Equation (12), the low-gain-based controller with velocity constraints
is designed as

vi = satvi

(
hT

i ( fi(γ) +~v0)
)
,

wi = satwi

(
satw1i ((h

⊥
i )

T fi(γ)) + (h⊥i )
T
~v0

)
,

(13)

where

satvi (x) =


vi,min, x ∈ (−∞, vi,min)

x, x ∈ [vi,min, vi,max]

vi,max, x ∈ (vi,max,+∞)

,

satwi (x) =


−wl

i,max, x ∈ (−∞,−wl
i,max)

x, x ∈ [−wl
i,max, wr

i,max]

wr
i,max, x ∈ (wr

i,max,+∞)

,

satw1i (x) =


−wl

i,1 max, x ∈ (−∞,−wl
i,1 max)

x, x ∈ [−wl
i,1 max, wr

i,1 max]

wr
i,1 max, x ∈ (wr

i,1 max,+∞)

,

(14)
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and the function fi(γ) is defined in Equation (7) while hi and h⊥i are defined in Equation (11).
The variables wl

i,1 max and wr
i,1 max are the controller parameters satisfying

− wl
i,max ≤ −wl

i,1 max < 0 < wr
i,1 max ≤ wr

i,max. (15)

Remark 9. On the basis of Equation (12), Equation (13) is designed to incorporate the saturation
function to accommodate the input constraints. Furthermore, in the later analysis, Equation (13)
will degenerate to Equation (12) when the gain γ is small enough, which is why the controller is
called “low-gain-based”.

3.3. Stability Analysis

In this part, the stability of the system with the designed controller will be analyzed.

Theorem 1. Consider a formation of N fixed-wing UAVs with unicycle dynamics (1) and input
constraints (2). Suppose that Assumption 3 holds. Then, Problem 1 can be tackled with the contol

inputs given by Equation (13). That is, for all init angle θi0 ∈ (−π + θ0 + arcsin
wr

i,1 max
‖~v0‖

, π + θ0−

arcsin
wl

i,1 max
‖~v0‖

), there exists a constant γ∗ > 0 such that, for each given γ ∈ (0, γ∗], the following
equalities hold ∥∥pi(t)− pj(t)

∥∥→ d∗ij as t→ ∞, ∀(i, j) ∈ E ,
ṗi(t)−~v0 → 0 as t→ ∞, i = 1, . . . , N,

(16)

where both the linear and the angular velocity constraints are satisfied.

Proof. The proof can be divided into three parts.
Firstly, it will be proved that the angle of each UAV under the angular velocity con-

troller in Equation (13) will converge to a certain region. Consider the derivative of the
heading angle of the UAV i

θ̇i = wi = satwi

(
satw1i ((h

⊥
i )

T
fi) + (h⊥i )

T
~v0

)
= satwi

(
satw1i ((h

⊥
i )

T
fi)− ‖~v0‖sin(θi − θ0)

). (17)

Let wiδ = satw1i ((h
⊥
i )

T fi) ∈ [−wl
i,1 max, wr

i,1 max], then

θ̇i = wi = satwi (−‖~v0‖sin(θi − θ0) + wiδ). (18)

The right-hand side of Equation (18) is regarded as a function of angle θi and its
graphical explanation is shown in Figure 3.

Without loss of generality, consider θi ∈ [−π + θ0, π + θ0]. Then it holds that

θ̇i =


> 0, θi ∈ [−π + θ0 + arcsin

wr
i,1 max
‖~v0‖

, θ0 − arcsin
wl

i,1 max
‖~v0‖

)

−−, θi ∈ [θ0 − arcsin
wl

i,1 max
‖~v0‖

, θ0 + arcsin
wr

i,1 max
‖~v0‖

]

< 0, θi ∈ (θ0 + arcsin
wr

i,1 max
‖~v0‖

, π + θ0 − arcsin
wl

i,1 max
‖~v0‖

]

, (19)

which means that [θ0 − arcsin
wl

i,1 max
‖~v0‖

, θ0 + arcsin
wr

i,1 max
‖~v0‖

] is an atracting set for (−π + θ0 +

arcsin
wr

i,1 max
‖~v0‖

, π+ θ0− arcsin
wl

i,1 max
‖~v0‖

), i.e., θi → [θ0− arcsin
wl

i,1 max
‖~v0‖

, θ0 + arcsin
wr

i,1 max
‖~v0‖

] as t→
∞ while the symbol “−−” denotes that the positive or negative sign is uncertain.
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i

i
0

0

,1max
0

0

arcsin
r
iw
v

 

,1max
0

0

arcsin
l
iw
v

 

0 

>0

<0
,max
l
iw

,max
r
iw

Figure 3. The explanation of Equation (18).

Then, the existence of γ which makes the velocity of the UAVs unsaturated is discussed,
when the angle θi converges to a certain region.

It can be observed that the linear and angular velocity controllers are the projections
of vector ~v0 and vector fi(γ) in the direction of hi and h⊥i , respectively, with the saturation
function added. More intuitively, a scheme of the controller is drawn as Figure 4 for the
i-th UAV in the local coordinate frame.

As shown in Figure 4, the two red vertical dashed lines represent the linear velocity
constraints in the forward direction, while the two red horizontal dashed lines and the two
yellow horizontal dashed lines represent the maximum angular velocity constraints for
{wl

i,max, wr
i,max} and {wl

i,1 max, wr
i,1 max}, respectively. The blue arrow shows the vector ~v0,

and the dark red arrows in four directions show the “shortest” vector fi(γ) that reaches
the saturation condition. That is, if the “shortest” vector exists in all four directions, there
exists γ that makes all the saturation functions in Equation (13) not work due to the fact
that limγ→0 fi(γ) = 0.

,1max
0

0

arcsin
r
iw
v

 
‖ ‖

,1max
0

0

arcsin
l
iw
v

 
‖ ‖

,miniv ,maxiv

,1max
l
iw

,1max
r
iw
,max
r
iw

,max
l
iw

ih
ih


if0v

Figure 4. An intuitive presentation about the proposed controller with input constraints.

Let the “shortest” vectors in the four directions be f up
i , f down

i , f le f t
i , and f right

i , respec-

tively. Clearly as shown in Figure 4, f right
i reaches a minimum when the vector ~v0 and the

vector hi are in the same direction, i.e.,∥∥∥ f right
i

∥∥∥
min

= vi,max − ‖~v0‖. (20)
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Obviously, as the angle between the vector ~v0 and the vector hi changes, the “shortest”
vector fi in each of the four directions changes. Consider the two extreme cases (i.e.,
the angle reaches its maximum) as shown in Figure 5a,b below:

,1max
0

0

arcsin
r
iw
v

 
‖ ‖

,1max
0

0

arcsin
l
iw
v

 
‖ ‖

,miniv ,maxiv

,1max
l
iw

,1max
r
iw

,max
r
iw

,max
l
iw

ih
ih


if
0v

(a)

,1max
0

0

arcsin
r
iw
v

 
‖ ‖

,1max
0

0

arcsin
l
iw
v

 
‖ ‖

,miniv ,maxiv

,1max
l
iw

,1max
r
iw
,max
r
iw

,max
l
iw

ih
ih


if0v

(b)

Figure 5. Two extreme cases where the angle reaches its maximum. (a) An extreme case where θi is

equal to θ0 − arcsin
wl

i,1 max
‖~v0‖ . (b) Another extreme case where θi is equal to θ0 + arcsin

wr
i,1 max
‖~v0‖ .

From Figure 5a, the length of f up
i and f le f t

i in this case reaches the minimum, respec-
tively. Further, the minimum can be obtained by the following equations, respectively:∥∥∥ f up

i

∥∥∥
min

= wl
i,max − wl

i,1 max,∥∥∥ f le f t
i

∥∥∥
1 min

= ‖~v0‖ cos(arcsin
wl

i,1 max
‖~v0‖

)− vi,min.
(21)

Furthermore, from Figure 5b, the length of f down
i and f le f t

i in this case reaches the
minimum, respectively. Further, the minimum can be obtained by the following equations,
respectively: ∥∥∥ f down

i

∥∥∥
min

= wr
i,max − wr

i,1 max,∥∥∥ f le f t
i

∥∥∥
2 min

= vi,max − ‖~v0‖ cos(arcsin
wr

i,1 max
‖~v0‖

).
(22)

Now, let Mi = min{
∥∥∥ f up

i

∥∥∥
min

,
∥∥∥ f down

i

∥∥∥
min

,
∥∥∥ f le f t

i

∥∥∥
min

,
∥∥∥ f right

i

∥∥∥
min
}, where

∥∥∥ f le f t
i

∥∥∥
min

=

min{
∥∥∥ f le f t

i

∥∥∥
1 min

,
∥∥∥ f le f t

i

∥∥∥
2 min
}. Then M = min{ · · · ,Mi, · · · }. Obviously M > 0. Further-

more, for fi, since the distance between the UAVs is bounded combined with Assumption 3,
it follows that ∑

j∈Ni

g(
∥∥pij

∥∥) is bounded, so there exists a sufficiently small γ such that

fi(γ) < M always holds.
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Since fi(γ) < M always holds, the following inequality will hold for each UAV i

vi,min < hT
i ( fi +~v0) < vi,max,

−wl
i,1 max < (h⊥i )

T fi < wr
i,1 max,

−wl
i,max < (h⊥i )

T fi + (h⊥i )
T~v0 < wr

i,max,

(23)

where Equation (13) degenerates into Equation (12) which does not involve the saturation
function. This means that all velocity constraints are satisfied.

Finally, consider the Lyapunov function candidate

V =
1
2 ∑

i∈V
Fi + ∑

i∈V
‖~v0‖(1− cos(θi − θ0)). (24)

Taking the differential of Equation (24) yields

V̇ =
1
2 ∑

i∈V

[
γ ∑

j∈Ni

g(
∥∥pij

∥∥)pT
ij( ṗi − ṗj)

]
+ ∑

i∈V
‖~v0‖ sin(θi − θ0)wi

= ∑
i∈V

[
γ ∑

j∈Ni

g(
∥∥pij

∥∥)pT
ij ṗi

]
− ∑

i∈V
‖~v0‖h⊥i

T
h0wi

= ∑
i∈V

[
γ ∑

j∈Ni

g(
∥∥pij

∥∥)pT
ij ṗi − ‖~v0‖h⊥i

T
h0wi

]

= ∑
i∈V

[
− f T

i ṗi − ‖~v0‖h⊥i
T

h0wi

]
= ∑

i∈V

[
− f T

i hihT
i ( fi +~v0)− ‖~v0‖h⊥i

T
h0h⊥i

T
( fi +~v0)

]
(25)

= ∑
i∈V

[
− f T

i hihT
i fi − f T

i hihT
i ~v0 − h⊥i

T
~v0h⊥i

T
fi − h⊥i

T
~v0h⊥i

T
~v0

]
= ∑

i∈V

[
− f T

i hihT
i fi − f T

i hihT
i ~v0 − f T

i h⊥i h⊥i
T
~v0 − h⊥i

T
~v0h⊥i

T
~v0

]
= ∑

i∈V

[
−(hT

i fi)
2 − (h⊥i

T
~v0)

2
− f T

i ~v0

]

= ∑
i∈V

[
−(hT

i fi)
2 − (h⊥i

T
~v0)

2
+ γ ∑

j∈Ni

g(
∥∥pij

∥∥)pT
ij~v0+

]

= ∑
i∈V

[
−(hT

i fi)
2 − (h⊥i

T
~v0)

2
]
≤ 0,

which implies that the system is stable. The equality V̇ = 0 yields that hT
i fi = 0 and

h⊥i
T
~v0 = 0, which further implies that θi = θ0 or θi = θ0 + π. However, θi = θ0 + π is

impossible because the first part proves that the angle θi will converge to a certain region
near θ0. On the other hand, the former can be considered in the following two cases:

1. fi = 0;
2. hT

i fi = 0 but fi 6= 0.

For the case 1, the desired formation is obviously achieved. The case 2 is discussed
below. Consider the dynamics of UAV i’s position:
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ṗi = hivi

= hisat
(

hT
i fi(γ) + hT

i ~v0

)
= hihT

i fi(γ) + hihT
i ~v0

= hihT
i fi(γ) +~v0 − h⊥i h⊥T

i ~v0

= ~v0

, (26)

which means that θi = θ0, i.e., the vector hi is invariant. Whereas considering the dynamics
of the UAV i’s angle, it holds that

θ̇i = satwi

(
satw1i ((h

⊥
i )

T
fi(γ)) + (h⊥i )

T
~v0

)
= (h⊥i )

T fi(γ) + (h⊥i )
T~v0

= (h⊥i )
T fi(γ)

6= 0

, (27)

which means that θi is always changing, so the contradiction arises and the case 2 is
not valid.

With the discussion mentioned above, the system will converge to the desired forma-
tion, i.e., Equation (3) holds and the proof is complete.

Remark 10. The effect of low gain γ is to disable all saturation in the controller given by
Equation (13). In practice, it works well to protect the fixed-wing UAV from being saturated
all the time. Note that all saturation functions will not work after the angle θi converges to a
certain region.

Remark 11. Although Theorem 1 requires the initial angle of all UAVs to be within a certain
region, in practice the angle is usually unstable outside of that range, and it has a tendency to enter
a certain region. Therefore practically the initial angle can be arbitrary, as can be verified in the
experimental results in the following part.

4. Simulations

In this section, the effectiveness of the proposed low-gain-based controller is verified
in numerical and semi-physical simulations, while the corresponding simulation results
are analyzed as well.

4.1. Simulation Setup

In the simulation, a formation of five fixed-wing UAVs is considered. Furthermore,
the desired formation shape is a regular pentagon whose underlying graph as shown in
Figure 6a where d∗12 = d∗23 = d∗34 = d∗45 = d∗15 = 2rdsin(π/5) and d∗25 = d∗35 = 2rdsin(2π/5).
Additionally, the velocity constraints for each UAV i are given as follows:

vi,max = 16 (m/s),
vi,min = 10 (m/s),
wl

i,max = π/3 (rad/s),
wr

i,max = π/3 (rad/s).

(28)

Meanwhile, the direction of the uniform velocity~v0 is shown by the arrows in Figure 6b
with constant magnitude 13 m/s. In Figure 6b, the total time is divided equally into five
periods, (t0, t1), (t1, t2), (t2, t3), (t3, t4) and (t4, t5), and the desired uniform velocity ~v0

during these five periods are ~v(0)0 , ~v(1)0 , ~v(2)0 , ~v(3)0 , and ~v(4)0 , respectively.
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Figure 6. The illustration of some simulation settings. (a) The underlying graph of five fixed-wing
UAVs. (b) The setting of ~v0.

Next, for each UAV i, choose the following potential function:

Fi = γ ∑
j∈Ni

1
2

[(∥∥pij
∥∥2

+
d∗4ij∥∥pij
∥∥2

)
− d∗2ij

]
. (29)

Then

fi = −∇pi Fi = −γ ∑
j∈Ni

(
1−

d∗4ij∥∥pij
∥∥4

)
pij. (30)

Let wl
i,1 max = wr

i,1 max = π/4 for each UAV i. It is then easy to obtain
∥∥∥ f up

i

∥∥∥
min

=

0.2618,
∥∥∥ f down

i

∥∥∥
min

= 0.2618,
∥∥∥ f le f t

i

∥∥∥
min

= 1.9807,
∥∥∥ f right

i

∥∥∥
min

= 4. Furthermore, note that

∑
j∈Ni

(
1−

d∗4ij∥∥pij
∥∥4

)
≤ 4

(
1−

d∗4ij

d4
M

)
< 4. (31)

Assuming that dM = 10, then γ is set as 0.0064.

4.2. Numerical Simulation

In the numerical simulation, the initial positions of the five UAVs are [20, 8]T , [8, 8]T ,
[4, 0]T , [14,−10]T , [24, 0]T(m), and heading angles are 0 (rad), respectively. The parameter
rd is set to be 10.

To better illustrate the impact of the input constraints on the controller design, we sim-
ulate the control algorithm proposed in the reference [23], where the controller parameters
are given in the simulation part of reference [23]. It should be noted that reference [23] does
not perform stability analysis of the control algorithm in the case of the presence of input
constraints. Figure 7c,d illustrate the control inputs vi and wi of the algorithm proposed in
reference [23] without the velocity constraints. Although the angular velocities can satisfy
the constraints after saturating all velocities, it can be observed that the linear velocities
still exceed the input constraints defined in Equation (2).
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Figure 7. Numerical simulation results of the method proposed in [23] without input constraints.
(a) The illustration of trajectory of the five UAVs controlled by the method proposed in [23] without
input constraints. (b) The illustration of distance errors and θi controlled by the method proposed
in [23] without input constraints. (c) The linear velocity inputs vi of the five UAVs controlled by the
method proposed in [23] without input constraints. (d) The angular velocity inputs wi of the five
UAVs controlled by the method proposed in [23] without input constraints.

Then, to verify the effectiveness of the control algorithm proposed in this paper, we
simulate the method proposed in [23] and our algorithm in the same situation where the
constraints (2) are enforced on the UAVs. Figure 8 illustrates the numerical simulation
results of the two methods. It can be seen that although the algorithm proposed in ref-
erence [23] performs well when there exists no input constraints as shown in Figure 7,
the control algorithm fails when the constraints (2) are enforced on the UAVs, as shown in
Figure 8. Instead, under the control of our method, the input constraints of each UAV are
satisfied while the desired distance-based formation is achieved.
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Figure 8. Cont.
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Figure 8. The method in reference [23] vs. our method. (a) The illustration of trajectory of the five
UAVs controlled by the method proposed in [23]. (b) The illustration of trajectory of the five UAVs
controlled by our method. (c) The illustration of distance errors and θi controlled by the method
proposed in [23]. (d) The illustration of distance errors and θi controlled by our method. (e) The
illustration of control input vi and wi controlled by the method proposed in [23]. (f) The illustration
of control input vi and wi controlled by our method. (g) The illustration of the norm of f controlled
by the method proposed in [23]. (h) The illustration of the norm of f controlled by our method.

Figure 9 illustrates that the value of the Lyapunov function converges to zero. It can
also be seen that there is a sharp peak in its Lyapunov function when the uniform velocity
~v0 changes. The reason for this phonomenon is that it is the uniform linear velocity rather
than the uniform angular velocity that is considered in this paper.
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Figure 9. The illustration of Lyapunov function controlled by our method.

To further illustrate that our algorithm can tackle the case of non-identical input
constraints, we modify the velocity constraints of each UAV as

9 ≤ v1 ≤ 15, |w1| ≤ 0.95,
9.5 ≤ v2 ≤ 15.5, |w2| ≤ 1,
10 ≤ v3 ≤ 16, |w3| ≤ 1.05,

10.5 ≤ v4 ≤ 16.5, |w4| ≤ 1.1,
11 ≤ v5 ≤ 17, |w5| ≤ 1.15,

(32)

where the units of velocity and angular velocity are m/s and rad/s, respectively.
Figures 10 and 11 show the simulation results for the case of non-identical input con-

straints. It can be seen that the input constraints are still satisfied although the convergence
time becomes longer. This is the result of a trade-off in the control algorithm.
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Figure 10. Numerical simulation results for the case of non-identical input constraints. (a) The
illustration of trajectory of the five UAVs controlled by our method with non-identical input con-
straints. (b) The illustration of distance errors and θi controlled by our method with non-identical
input constraints.
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Figure 11. Numerical simulation results for the case of non-identical input constraints. (a) The illustra-
tion of control input vi and wi controlled by our method with non-identical input constraints. (b) The
illustration of Lyapunov function controlled by our method with non-identical input constraints.

4.3. Semi-Physical Simulation

To prove that our method can be apllied to the physical UAV system, the proposed
formation controller is further validated in a semi-physical simulation system.

4.3.1. Semi-Physical Simulation System

The semi-physical simulation system consists of four main parts: onboard computer,
autopilot, ground station, and switch. The relationships among them are shown in Figure 12.
The functional details of each component are introduced in references [41,42].

Autopilot

Serial 
Communication

UAV0

Onboard Computer

X-PlaneQgoundcontrol Formation Controller

Ubuntu+ROS

Autopilot

Serial 
Communication

UAV0

Onboard Computer

X-PlaneQgoundcontrol Formation Controller

Ubuntu+ROS

Autopilot

Serial 
Communication

Onboard Computer

X-Plane Formation Controller

Ubuntu+ROS

QGoundControl

Switch
Ground Station

UDP

UDP

-th UAVi

Figure 12. The components of semi-physical simulation system.

In this simulation system, the software X-plane is used to simulate the dynamics of
UAVs as well as the flight environment, which is a professional flight simulation software
with powerful features, providing high precision dynamics models of UAVs and realistic
3D simulation scenarios. Meanwhile, the autopilot is used for the hardware-in-the-loop
(HIL) experiment, which will further narrow the gap between the simulation and the
physical reality.

In this paper, we select the HiLStar17 as the model for the semi-physical simulation as
shown in Figure 13.
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Figure 13. The UAV model used in this paper.

4.3.2. Semi-Physical Simulation Results

In the semi-physical simulation, the parameter rd will be adjusted to 100 to accommo-
date the realistic formation formation flight. Then, the semi-physical simulation results are
shown as follows.

Figure 14 shows the initial position of the UAV displayed in the ground station and
the evolution of the trajectory, and a more detailed trajectory is shown in Figure 15a.

(a) (b) (c)

Figure 14. The evolution of the trajectory. (a) Initial positions. (b) Positions at 583 s. (c) Positions at
1248 s.
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Figure 15. Cont.
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Figure 15. Semi-physical simulation results. (a) The illustration of trajectory of the five UAVs in the
semi-physical simulation. (b) The illustration of distance errors and θi in the semi-physical simulation.
(c) The illustration of control input vi and wi in the semi-physical simulation. (d) The illustration
of Lyapunov function in the semi-physical simulation. (e) The illustration of the norm of f in the
semi-physical simulation.

Figure 15b shows the distance error and the angle of the UAVs, which converge to the
desired values. Figure 15c illustrates the variation of the control input of the UAV labeled by
the number 1 during the simulation. Figure 15d then indicates that the value of Lyapunov
function converges to zero. Finally Figure 15e indicates that the norm of f is gradually
decreasing, which means that the control input energy of the formation is reduced.

5. Conclusions

With the idea of the low gain technique, this paper proposes a low-gain formation
controller to solve the formation control problem of distance-based fixed-wing UAVs subject
to the input constraints. The proposed controller is designed based on the potential function
and can achieve the formation of fixed-wing UAVs while satisfying the velocity constraints.
The numerical simulations and the semi-physical simulations are carried out to vefify the
effectiveness of the proposed algorithm.

In the future, the formation with the uniform angular velocity will be further con-
sidered, and the obstacle avoidance algorithm will also be incorporated to consider the
formation and obstacle avoidance problem as a whole.
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