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Abstract: The cooperation of multiple unmanned aerial vehicles (Multi-UAV) can effectively solve
the area coverage problem. However, developing an online multi-UAV coverage approach remains
a challenge due to energy constraints and environmental dynamics. In this paper, we design a
comprehensive framework for area coverage with multiple energy-limited UAVs in dynamic en-
vironments, which we call MCTA (Multi-UAV Coverage through Two-step Auction). Specifically,
the online two-step auction mechanism is proposed to select the optimal action. Then, an obstacle
avoidance mechanism is designed by defining several heuristic rules. After that, considering energy
constraints, we develop the reverse auction mechanism to balance workload between multiple UAVs.
Comprehensive experiments demonstrate that MCTA can achieve a high coverage rate while ensuring
a low repeated coverage rate and average step deviation in most circumstances.

Keywords: multi-UAV; two-step auction; area coverage; obstacle avoidance; energy constraint

1. Introduction

Unmanned aerial vehicles (UAV) have the characteristics of low operating cost, good
maneuverability, and no risk of casualties [1,2]. Accordingly, it has been applied to many
fields, such as surveying and mapping [3], surveillance [4], bathymetry [5–9], and disaster
rescue [10,11]. As a typical application, area coverage with UAVs has attracted great
attention in robotics. Its main objective is to move single UAV or a group of UAVs to
cover a given area [12]. Compared with single UAV, area coverage with multiple UAVs has
significant advantages. First, due to the workload distribution and collaboration, multi-
UAV can efficiently complete the task. Second, it enhances robustness against component
failure due to redundancy. Therefore, multiple cooperative UAVs are expected to play an
important role in the area coverage field.

Although considerable efforts have been devoted to addressing the area coverage prob-
lem for multi-UAV, there are still some challenges that need to be resolved. For instance, most
of the existing studies assume that different obstacles are equal and insurmountable [13].
However, the real environment may contain obstacles with different threat levels. In ad-
dition, existing studies do not consider energy constraints, and their effectiveness is only
verified in simple scenarios. Furthermore, some studies ignore the interaction among
multiple UAVs, which may lead to conflicts between UAVs [14].

In light of this, we further investigate multi-UAV for cooperative area coverage. Com-
pared with the previous work, we take the energy constraint and workload balance of
multi-UAV into consideration and solve a more challenging coverage problem.

1.1. Related Work

In the field of robotics, much work has been done to solve the area coverage problem.
Khamis et al. [15] proposed an auction algorithm for multi-robot systems. Xin et al. [13]
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proposed an auction-based spanning-tree coverage algorithm, which ensures the connectiv-
ity of each spanning tree and tries to balance the workload between robots. However, the
above algorithms are difficult to achieve online planning of area coverage actions due to
the lack of global information.

To address the limitation above, Viet et al. [14] proposed an online method based
on boustrophedon motions. After reaching the critical point, the intelligent backtracking
mechanism based on the suggested A* search was applied to reach the starting point
with the shortest collision-free path. Khan et al. [16] used a reputation-based auction
mechanism to model the interaction between the UAV operators serving in close-by areas,
achieving a strategic balance of control. It should be noted that the environment they
considered was too simplistic, making their algorithm unable to adapt to the naturally
dynamic environment.

In addition, the setting of dynamic obstacles is also crucial to adapt to the real envi-
ronment in the field of area coverage. Gabriely and Rimon [17] proposed a spanning tree
coverage algorithm based on a grid network. Sonti et al. [18] extended the set of path
planning in an environment with static obstacles. Gorbenko et al. [19] studied an effective al-
gorithm for multi-robot forest coverage underweighted terrain, which is suitable for solving
synthetic terrain with real-world weight and special hard terrain. Roi Yehoshua et al. [20]
divided the obstacles’ threat to UAVs into five levels. They proposed a spanning tree-based
coverage algorithm to meet the complexity of the real environment and the decision makers
requirements for different targets. Nevertheless, most of these studies ignore the influence
of energy constraints.

At the same time, the introduction of energy constraints is suitable for practical
application scenarios [21–25]. Strimel et al. [26] introduced a new full-coverage planning
algorithm that considers the robot’s fixed fuel or energy capacity. Dutta et al. [27] proposed
a constant-factor approximation algorithm for real-time coverage path planning with energy
constraints. They studied the coverage planning problem of mobile robots with a limited
energy budget, aimed to minimize the total travel distance covered by the environment
and the number of visits to the charging station. However, covering as many low-risk areas
as possible under energy constraints is still a challenge.

1.2. Contributions

In this paper, we presents a novel online planning solution of area coverage for multi-
UAV in dynamic environments. The main contributions of this paper are as follows:

• We design the comprehensive MCTA framework for area coverage with multiple
energy-limited UAVs in dynamic environments.

• We propose the two-step auction mechanism to select the optimal next action and
avoid dynamic obstacles.

• We develop a reverse auction mechanism to avoid conflicts and balance workloads
between UAVs.

The remainder of this paper is organized as follows: Section 2 formulates the area
converage problem. Section 3 presents our MCTA framework. In Section 4, a series
of experiments are conducted to evaluate the performance of MCTA. Finally, Section 5
concludes the major findings and outlines the potential direction for future work.

2. Problem Formulation

As illustrated in the left of Figure 1, we employ v energy-limited UAVs to simultane-
ously cover a given square area with potential threats. The square area is rasterized into m2

basic square units with side length D (Figure 2). Each unit has a threat level η ∈ [0, 1]. The
unit with η = 0 means a safe unit, and the UAV can pass freely. The unit with 0 < η < 1
means there is a potential threat to UAVs, but the UAV can still pass. The unit with η = 1
means an extremely dangerous obstacle which the UAV cannot pass. We assume that each
UAV can only acquire the threat level of the units within its sensing scope, and it can move
in four base directions, i.e., up, down, left, and right. As shown in Figure 2, we define a
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module as a square composed of four units and treat the center point of the module as an
equivalent replacement. Then, we define the modules that the UAV can reach in one time
step as the auction scope.
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Figure 1. The proposed MCTA framework. The scenario on the left depicts the multi-UAV coverage
process. The blocks on the right list key modules of MCTA.
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Figure 2. A square area is rasterized into m2 basic square units with side length D. A module is
composed of four basic units.

Let a set of continuous units { fi,k,1, fi,k,2, . . .} denote the trajectory Fi,k of UAVi
(i = 1, 2, . . . , v) in the kth step, where fi,k,p is the pth in the kth time step of UAVi’s position
on the sequence. Denote the flight mileage (i.e., the number of accumulated passed units)
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of UAVi in time step k as li,k. The total flight mileage Li of UAVi at the end of the coverage
task can be defined as:

Li = ∑
k

li,k. (1)

In the coverage process, the remaining energy Bi,k of UAVi in the kth time step is
related to its current flight mileage ∑k

k=0 li,k. The initial energy of each UAV is set as B, i.e.,
Bi,0 = B. Introducing different initial energy to the problem is sure to be more challenging,
but in this paper, we only consider the case where each individual is equivalent to better
analyze the completion of the coverage task. The UAV has two modes: work mode and
sleep mode. In the process of coverage, the UAV is in work mode. In sleep mode, UAV will
not perform the coverage task.

Our goal is to develop an online planning strategy of area coverage that enables
multiple energy-limited UAVs to cover as many passable units as possible while avoiding
collisions with other UAVs and obstacles. In other words, we expect to complete this
coverage task with a higher coverage rate Cr, lower repetitive coverage rate Rr, and lower
average flight deviation AD. The optimization objective is defined as:

min
[
−Cr, Rr, AD

]
, (2a)

s.t. ∀i ∈ {1, 2, . . . , v}, Li ≤ B, (2b)

∀i, j ∈ {1, 2, . . . , v}, i 6= j, fi,k,p ∩ f j,k,p = ∅, (2c)

where constraint (2b) means the UAV cannot continue searching after its energy is ex-
hausted. Constraint (2c) means no collision between UAVs.

3. MCTA Framework

In this section, we introduce the multi-UAV coverage through two-step auction frame-
work. We first elaborate the two-step auction algorithm, which gives the bidding result of
four adjacent modules to the UAV. Then, we focus on obstacle avoidance and multi-UAV
conflict resolution. The UAV may take those strategies when the auction process ends. After
that, we introduce the energy constraint model and loop-check mechanism. Finally, by
assembling those modules above, we develop our framework. The details of each process
are described in the following subsections.

3.1. Two-Step Auction

In the online environment, the UAV only knows the local information within its
exploration scope. To achieve the optimal coverage result with the limited information, we
design the two-step auction algorithm (Algorithm 1).

To distinguish the effect of obstacles in different positions, we divide the auction scope
of the UAV into three areas and set different weights Wd (d = 1, 2, 3) for areas S1, S2, and
S3. As shown in Figure 2, area S1 is a set of units in the current module that are close to the
adjacent module. Area S2 is a set of basic units in adjacent modules that are closest to the
module center where the UAV is located. Similarly, area S3 is a set of basic units in adjacent
modules that are far away from the module center where the UAV is located. Considering
that the obstacles which are extremely close or far away from the UAV have relatively little
influence on covering the neighbor module, we set W2 > W1 > W3.

In order to reduce the risk during the coverage process, the UAV will evaluate the
threat level ζ of the module to determine the future flight trajectory [20]. ζ is given
as follows:

ζ = ∑(ηWd), (3)

where η is the threat level of the unit. The UAV will give priority to covering modules with
lower ζ and then cover modules with higher ζ to reduce risks.

To make the UAV “see” farther, we design the two-step auction mechanism. In
this mechanism, module centers in the auction scope bid to the UAV according to the
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distribution of obstacles in the corresponding two-step auction area. The auction result of
four modules can be written as set C = {c1, c2, c3, c4}. Here, we define the bid value ci of
module mi as:

ci =
1

ζi + ζm
. (4)

The bid value ci consists of two parts. First, we calculate ζi of module mi according
to Equation (3). Then, we assume that the UAV is in module mi, then calculate the ζ of
module m1, m2, and m4 corresponding to module mi and record the maximum value as ζm.
To make the UAV preferentially cover modules with lower threat levels, the bidding value
of modules should be negatively related to their threat levels. When the bidding price of
adjacent module centers is the same, the energy loss will be considered: the greater the
turning angle, the greater the energy loss [28]. To reduce the negative effect of turning, we
set the module priority level m1 > m2 > m4 > m3.

After obtaining the auction result from all adjacent modules, the UAV will determine
the winning module, that is, the module corresponding to m

′
1 (Algorithm 1, line 7). Then, the

UAV plans to reach the winning module. In other words, the two-step auction algorithm
informs the desired position for the UAV.

Algorithm 1 Two-step Auction.
Input: UAV position p, orientation o
Output: Four models sorted by bidding price ci and orientation o
1: for i← 1 to 4 do
2: ci ← ζi;
3: Assume that the UAV is in module mi;
4: Based on module mi, calculate ζm = max(ζ1, ζ2, ζ4);
5: ci ← 1

ci+ζm
;

6: end for
7: {m′1, m

′
2, m

′
3, m

′
4} ← sort({c1, c2, c3, c4}, o);

8: return {m′1, m
′
2, m

′
3, m

′
4}

3.2. Obstacle Avoidance and Multi-UAV Conflict Resolution

After determining the winning module that it plans to arrive at, the UAV may not
actually reach the module due to obstacles or multi-UAV conflicts. Even if a module is
accessible, the UAV also has to choose a suitable way to reach it. Therefore, the avoidance
of obstacles and the resolution of multi-UAV conflicts should be taken into consideration.

First, we introduce the obstacle avoidance strategy. Assume that the UAV is not able
to overcome an obstacle by going over it. As shown in Figure 3, we give the specific path
selection method based on obstacles in different locations. When the UAV cannot enter the
next module, it does not fly to the corresponding module center. At this time, the UAV will
re-select the second-best module in the current auction bidding process. If the UAV can
access none of the four module centers involved in the bidding, it enters sleep mode and
stops covering.

Then, we develop a conflict resolution strategy to solve this situation in that two or
more UAVs bid a certain module at the same time. The key insight behind this strategy is
the conflicting module center selects the UAV reversely, which can be regarded as a reverse
auction. When the conflict occurs, the module will give priority to choosing the UAV that
has encountered “unfair” treatment: the one that has the least flight mileage L. After the
UAV is selected, other UAVs will pause for one time step and wait for the winning UAV to
pass. Finally, all UAVs continue to execute the two-step auction process, select the module
plan to reach, and continue the covering process.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Six obstacle distributions and the UAV’s corresponding path selection method. (a) The
obstacle is located in area S1. The UAV will turn into the next module. (b) The obstacle is located in
area S2. The UAV turns into the next module. (c) The obstacle is located in area S3. The UAV goes
straight into the next module. (d) Double obstacles located in area S2. The UAV cannot enter the next
module. (e) The obstacle is located in the neighbor unit of the unit where the UAV of the current
module is located. The UAV cannot fly to the next module. (f) The obstacle is located in the neighbor
unit in the direction of the winning module and the opposite unit in the current module. The UAV
cannot fly to the next module.

3.3. Energy Constraint and Loop-Check

In addition to a higher coverage rate, the framework also has requirements for reducing
the repetitive coverage rate and the average flight deviation. If the UAV cannot enter the
sleep mode at an appropriate time, the convergence of the framework cannot be guaranteed,
and it will also cause a higher repetitive coverage rate and average flight deviation. Based
on this, we proposed the energy constraint model and the loop-check mechanism.

In the energy constraint model, the energy of the UAVi decays as the flight mileage Li
increases. The remaining energy Bi,k of UAVi in the kth time step is defined as:

Bi,k = B−
k

∑
k=0

li,k, (5)

where B is the initial energy of the UAV, that is, the UAV is allowed to travel at most
B units.

Moreover, if the UAV’s surrounding obstacles are distributed similarly during the
flight process, it may fly back and forth. We define the trajectory generated by the back and
forth flying as a loop. This loop increases the repeated coverage rate and leads to energy
waste. To avoid the two negative effects, the UAV should do a loop-check. If the UAV
enters the loop, it will enter into sleep mode.

In summary, for UAVi, if its remaining energy Bi,k = 0, or it is judged to enter the loop,
or there are no passable modules, it will enter into sleep mode. That is, the UAV no longer
participates in the auction process and stops covering. This theoretically guarantees that
our framework will converge.

3.4. MCTA Framework

Combining those mechanisms above, each UAV cooperates to complete the coverage
task in a complex dynamic environment (Algorithm 2). During the multi-UAV coverage
process, if all UAVs enter into sleep mode, the whole coverage will end. It is worth men-
tioning that our framework is also suitable for the single-UAV or fixed obstacle situation,
which is a degraded version of solving multi-UAV and dynamic environment problems. In
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the following section, we will conduct related experiments to evaluate the performance of
our framework.

Algorithm 2 MCTA.
Input: pi[k], orientationi[k], plan_poses, i = 1, 2, . . . , v

1: {m′1, m
′
2, m

′
3, m

′
4} ← Two-step Auction (pi[k], oi[k]);

2: plan_ f lagi ← 0;
3: for j← 1 to 4 do
4: if module m corresponding to m

′
j is reachable then

5: orientationi[k + 1]← direction of module m;
6: plan_ f lagi ← 1;
7: break
8: end if
9: end for

10: if plan_ f lagi = 1 then
11: Judge if there is a multi-UAV conflict;
12: if no conflict occurs or win the conflict then
13: Check the remaining energy Bi,k and the loop;
14: if Bi,k > 0 and not in the loop then
15: Choose a suitable way to reach module m;
16: pi[k + 1]← the position of module m;
17: else
18: modei ← sleep;
19: end if
20: else
21: Stay in place for next step;
22: end if
23: else
24: modei ← sleep;
25: end if

4. Experiments and Analysis

This section demonstrates the performance of MCTA by conducting a series of exper-
iments. We first show the effectiveness of MCTA in a typical environment with a single
UAV and four UAVs. Then, the adaptability and the scalability are verified through the
quantitative experiments with different UAV numbers and energy constraints.

4.1. Qualitative Evaluation

We first evaluate the feasibility of MCTA for only one UAV. In the experiment, we
set 10% obstacles in the given environment (N = 10%×M) and allow obstacles to move
randomly. We assume that obstacles of different η have different mobility capabilities:
the higher the η, the smaller the obstacle’s moving range. Specifically, the position of
the obstacle is (x, y) before moving and changes to (x + m, y + m) after moving, where
m is a random integer generated from the closed interval [−a, a]. The specific mapping
relationship between η and a is given in Table 1.

Table 1. The mapping of η and a.

η 0.2 0.4 0.6 0.8 1

a 4 3 2 1 0 (obstacles cannot move)

Figure 4 shows the coverage process with single UAV under a 20 × 20 dynamic
environment. Different colors represent different η of obstacles: the darker the obstacle, the
higher the threat level. Figure 4a illustrates the initial situation: obstacles with different η
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are distributed in different positions and the UAV is ready to perform its coverage mission.
Figure 4b shows the coverage performance when the time step = 20. At this time, there are
about 1/5 green units (units covered for the first time) and no brown units (units covered
twice or more), which means that the UAV is actively exploring the new area. The coverage
result is given in Figure 4c. Obviously, only few units are not covered.

(a) step = 0 (b) step = 20 (c) final

Threat level

UAV trajectory

Auction scope

Covered area

Repeated covered area

Module center

Figure 4. The evolution of coverage with a single UAV. The area covered for the first time is filled in
green, and the area covered twice or more is filled in brown. After the UAV performs related flight
actions, it will generate its own flight trajectory (the black line).

Then, we test the performance of MCTA with four UAVs in the same environment. In
Figure 5a, the position of UAV2 is (1, 2), and the position of UAV3 is (1, 1); therefore, they
may encounter a conflict in the next time step due to their adjacent positions. However,
from the trajectories of two UAVs in Figure 5b, the conflict did not happen, which indicates
our reverse auction mechanism works. In addition, compared with Figure 4b, Figure 5b
has significantly more green units. It shows the advantages of multi-UAV coverage in
terms of efficiency. In the final time step (Figure 5c), we extract and compare the length
of each UAV¡’s trajectory and find that they are almost the same (Figure 5d). This means
the balanced workload between UAVs. Although the coverage rate of four UAVs is almost
same with that of the single UAV, the whole coverage process of four UAVs ends faster. As
a result, the coverage with multiple UAVs is more efficient.

(a) step = 0 (b) step = 20 (c) final (d)

UAV1 trajectory UAV2 trajectory UAV3 trajectory UAV4 trajectory

Figure 5. The evolution of coverage with four UAVs. Compared with single UAV, in a similar initial
environment (a), multiple UAVs can achieve better coverage performance before the framework
converges (b). In the final time step (c), different trajectories are shown in different colors. The pie
chart (d) illustrates the proportion of each UAV’s trajectory length.

In summary, the MCTA framework can obtain a high coverage rate regardless of single-
UAV or multi-UAV situations. Moreover, it realizes the avoidance of conflicts and balances
the workload between multiple UAVs. This indicates the adaptability and effectiveness of
our framework in dynamic and complex environments.

4.2. Quantitative Evaluation

In this subsection, we introduce the following metrics to further evaluate the quantita-
tive performance of MCTA:
• Coverage rate: The coverage rate Cr is defined as the ratio between the area of covered
modules and the area of the entire environment:

Cr =
|F1
⋃

F2
⋃ · · ·⋃ Fv|
M

× 100%, (6)
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where Fi is the set of Fi,k, | · | represents the number of elements in a set, and F1
⋃

F2
⋃

. . .
⋃

Fv
represents the union of all UAV flight trajectories.
• Repeated coverage rate: The repeated coverage rate Rr is defined as:

Rr =
∑i,k

(
li,k −

∣∣Fi,k
∣∣)

|F1
⋃

F2
⋃ · · ·⋃ Fv|

× 100%, (7)

where ∑i,k
(
li,k −

∣∣Fi,k
∣∣) represents the difference between the flight mileage of all UAVs

and the number of units passed by the flight trajectory, that is, the units that are repeatedly
covered are accumulated by the frequency of coverage.
• Average flight deviation: To investigate the degree of deviation of the flight path of each
UAV from its average path, the average flight deviation AD is defined as follows:

AD =
1
v ∑

i
abs(Li − L̄), (8)

where L̄ is the average flight mileage. AD measures whether the workload of each UAV
is balanced.

After that, we enrich the environments to challenge the adaptability of our framework
quantitatively. As shown in Figure 6, env-free is the simplest environment. It is also the
environment of the previous subsection; env-strip illustrates the staggered distribution of
obstacles and its passable routes are less than env-free; In env-convex, we set a regular border,
which brings a challenge to achieve complete coverage; on the basis of env-convex, we set
up a non-convex env-ring. Its passable area is similar to the loop; in env-honeycomb and
env-maze, the border becomes more complicated and both of them increase the risk of UAVs
falling into loops.

(a) (b) (c)

(d) (e) (f)

Figure 6. Configuration spaces of the (a) free, (b) strip, (c) convex, (d) ring, (e) honeycomb, and
(f) maze.
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Table 2 provides part of quantitative experimental results. In simple environments
(i.e., env-free, env-strip, and env-convex), increasing the number v of UAVs will increase Rr
but makes little contributions to Cr. In this case, if the convergence time is not considered,
single UAV performs better than multiple UAVs. However, in complex environments (i.e.,
env-ring, env-honeycomb, and env-maze), increasing the number of UAVs can increase Cr
obviously. At this time, multiple UAVs have more advantages. Then, we compared the Cr,
Rr, and AD in static and dynamic environments separately and found that they were almost
the same. This shows that the MCTA framework can overcome the negative effects of
uncertain factors caused by the dynamic environment. Moreover, most of Cr can reach more
than 90%, Rr are generally less than 50%, and AD are about 3. Therefore, our framework
can make the UAV complete coverage tasks efficiently in complex environments.

Table 2. Cr, Rr, and AD of MCTA under different configurations.

Environment Size v
Static Dynamic

Cr Rr AD Cr Rr AD

free
20 × 20

1 93.54% 15.66% 0 93.06% 14.87% 0
4 92.18% 23.37% 1.34 91.98% 23.32% 1.44
8 88.14% 25.11% 1.41 88.52% 24.66% 1.44

40 × 40 1 91.06% 19.30% 0 91.74% 19.75% 0
4 91.09% 23.39% 2.26 91.08% 23.92% 2.41

convex

20 × 20
1 96.34% 30.32% 0 96.52% 31.40% 0
4 95.59% 38.91% 1.58 96.28% 40.17% 1.6

12 92.42% 49.06% 1.4 92.70% 48.36% 1.36

40 × 40
1 94.58% 33.51% 0 94.73% 32.47% 0
8 95.39% 43.23% 3.9 95.40% 43.24% 3.86

12 95.08% 45.48% 2.74 95.20% 45.78% 2.74

maze
20 × 20 8 81.89% 33.32% 3.42 80.53% 35.26% 3.4

12 82.36% 38.42% 2.64 82.67% 41.01% 2.43

40 × 40 1 79.47% 29.80% 0 79.75% 29.97% 0
12 87.07% 45.11% 9.13 87.67% 45.29% 8.93

ring
20 × 20 1 83.02% 22.78% 0 83.44% 24.26% 0

12 86.82% 46.64% 1.35 86.43% 47.05% 1.43

40 × 40 1 81.27% 33.76% 0 80.81% 32.32% 0
12 89.09% 49.53% 2.95 88.42% 50.27% 2.97

honeycomb 20 × 20 1 75.74% 36.19% 0 75.75% 35.62% 0
8 80.75% 37.57% 3.27 80.45% 37.95% 3.33

strip
20 × 20

1 92.07% 28.82% 0 93.15% 29.16% 0
4 93.31% 39.58% 3.26 93.70% 39.52% 2.96
8 93.30% 45.57% 1.82 92.89% 44.94% 1.85

40 × 40 1 87.42% 28.94% 0 87.86% 30.27% 0
12 92.13% 46.28% 4.83 92.61% 45.93% 4.88

Of course, in individual environments, MCTA performs relatively poorly, such as
20× 20 env-honeycomb and 40× 40 env-maze. Regardless of the number v, Cr is typically
less than 90%, and Rr is also relatively high. This is probably caused by the complex-
ity and disconnectivity of the environment, where UAVs are prone to fall into the local
optimal solution.

Figure 7 shows the final Cr, Rr, and AD of different v under different 20× 20 environ-
ments. In Figure 7a, when v changes from 4 to 8, Cr increases very obviously. However,
when v changes from 8 to 12, Cr does not increase significantly, and sometimes even de-
creases. At the same time, we also noticed that in the three corresponding environments
in Table 2, AD usually increases significantly when the number v increases sharply. We
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attribute these two phenomena to frequent conflicts caused by excessive number of UAVs,
which leads to the reduction of coverage efficiency. As a result, for the environment of a
certain size, an appropriate increase in the number of UAVs can effectively improve the
coverage rate, but an excessive number of UAVs may have a negative effect, because excess
means diseconomy and poor coverage performance. Figure 7b,c show the Rr and AD of
four UAVs under different initial energy in 20× 20 dynamic env-free. From the trend of the
two histograms, it is clear that the larger initial energy of the UAV, the larger Rr and AD.
This is exactly what we are expected on energy saving: to complete the coverage task, the
UAV does not need too much initial energy.

(a) (b) (c)

Figure 7. The performance of the MCTA framework under different configurations. (a) The coverage
rate Cr under three complex environments (env-honeycomb, env-maze, and env-ring) in different
numbers of UAVs (1, 4, 8, and 12). (b,c) The number v of UAVs is fixed to 4 and the average flight
deviation AD and repeated coverage rate Rr are shown with different initial energy (B, 1.2B, 1.5B, and
2B) in two simple environments (env-free and env-convex) and two complex environments (env-maze
and env-ring).

Considering all factors, to achieve a better search coverage result, for env-freedom,
env-convex, and 20× 20 env-strip, the best number of UAVs is 1. For 20× 20 env-maze and
env-honeycomb, the best number of UAVs is 8. Then, for 40× 40 env-strip, env-maze, and
env-ring, the best number of UAVs is 12. In general, on the premise of achieving a high
coverage rate, MCTA minimizes the repeated coverage rate and average step deviation as
much as possible.

5. Conclusions

In this paper, we design an efficient framework for multiple UAVs in dynamic envi-
ronments. The framework can be executed online and realizes the optimal solution within
the exploration scope. A series of experiments have been conducted to demonstrate its
superior coverage rate, scalability to the number of UAVs, and adaptivity to the dynamic
environments. Note that the physical properties of the UAVs are not specified. The pro-
posed multi-UAV collaborative coverage framework is generally applicable for systems
with similar configurations.

In future work, we will take the non-linear change of the remaining battery into
account, e.g., a UAV spends more energy to take off than other stages (such as hovering
or moving sideways). Furthermore, another promising direction is to explore the upper
bound number of UAVs. In addition, we would like to evaluate our framework through
field experiments.
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