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Abstract: The high demand for distilled agave products reduces wild populations. The use of geospa-
tial technologies such as unmanned aerial vehicles (UAVs) offer enormous benefits in spatial and
temporal resolution and lower costs than traditional direct field observation techniques for natural
resource monitoring. The objective was to estimate the green biomass (Wt) of Agave durangensis
Gentry using high-resolution images obtained by a UAV in Nombre de Dios, Durango. Random
sampling was performed in the agave area. A Pearson correlation analysis was performed, followed
by a regression analysis. The results showed that NDVI was the most correlated (r = 0.65). The
regression analysis showed that the model obtained explains 59% (RMSE = 32.06 kg) of the total
variability in the estimation of green biomass (Wt) of agave using images derived from the UAV.
The best estimate was achieved with B1, B2, NDVI, GNDVI, EVI2, and SAVI as predictor variables.
High-resolution images were shown to be a tool for estimating Wt of Agave durangensis Gentry.

Keywords: agave; UAV; images; NDVI; green biomass

1. Introduction

Agaves belong to the Asparagaceae family and are one of the most important groups
of plants from a cultural and economic point of view. The center of greatest richness and
concentration of the Asparagaceae family is Mexico where 251 species are distributed (76%
of the total), with 177 endemic (70%) [1,2]. According to García-Mendoza [2], the most
diverse and broadest genus of the family is agave with 210 species, of which 159 are found
in Mexico, with 119 endemic species [1,2].

Agave has been used for thousands of years, due to its numerous benefits, e.g.,
the distilled beverages known generically as mezcals [3]. The first records of mezcal
production date back to the early 16th century in the western part of the country, extending
to regions that today comprise the states of San Luis Potosí, Zacatecas, and Durango [4].
Its production is the most important agro-industrial activity and is carried out in at least
20 states of the Mexican Republic, taking advantage of wild and cultivated populations [3].
Mezcal is officially regulated by Mexican Standard NOM-070-SCFI-2016 and the states with
denomination of origin are Durango, Zacatecas, Michoacán, Puebla, Guerrero, Tamaulipas,
San Luis Potosí, Guanajuato, and Oaxaca [5]. Mezcal production at the national level
has increased in the last 5 years, going from being a low-cost drink and considered for
the exclusive consumption of low-income people to being positioned almost on a par
with tequila, gaining great renown at the national level and beginning to be placed on
the international market with great acceptance [6]. Currently, in the state of Durango,
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there are only three certified factories and 10 mezcal bottling plants distributed mainly
in the municipalities of Nombre de Dios, Mezquital, and Durango [4,7]. In this context,
mezcal production has been the main cause of the decline in wild populations of the
Agave genus, since its intensive exploitation puts the species at risk and could even lead to
extinction [8,9]. Therefore, it represents a challenge to generate methodologies that allow
sustainable management in such a way that the relevant ecological, economic, and social
functions, at local, national, and global scales, of this type of ecosystem are fulfilled [3].

The development of technology has allowed the acquisition of satellite images at
different resolutions through different remote sensors for the evaluation of ecological
aspects of vegetation at a large scale, providing valuable information for the sustainable
management of natural resources [10,11]. In specific cases, they are used for crop mapping
and assessment of agave leaf biomass [12–14]. However, a common problem found with
the use of this type of technologies is the cost and the availability of high-resolution images
for the evaluation of natural resources [15].

In this sense, recent advances in aerial photogrammetry and remote sensing techniques
contribute to solving environmental problems [16–19]. Specifically, with the emergence
of unmanned aerial vehicles (UAVs), these techniques offer enormous benefits in spa-
tial and temporal resolution and low costs relative to traditional direct field observation
techniques [20–22]. UAVs provide aerial photographs and spectral information of ter-
restrial ecosystems in real time with high precision, thanks to the ability to use different
multispectral sensors and the integration of a global positioning system (GPS) in its struc-
ture [23,24]. There are a range of sensors used for vegetation analysis; these sensors have
different spectral resolutions, such as cameras with red, green, and blue (RGB) channels,
as well as multispectral, hyperspectral, and thermal sensors [25]. In this context, UAVs
allow transporting these sensors in order to collect information with higher spatiotemporal
resolution for monitoring the growth and development of different crops in precision
agriculture [15,26]. Generally, this monitoring is carried out through the generation of
vegetation indices (VIs), which are algebraic combinations of the spectral bands integrated
in each sensor (multispectral), in order to highlight the vigor of the vegetation and its
reflectance properties [27].

Its multispectral composition allows differentiating the presence of vegetation on the
land surface, separating it from other objects that are not of interest such as soil or urban
areas [28–32]. Some studies have shown that VIs show high correlations with respect to
biomass or volume production estimated from direct field measurement; hence, it has
become common not only to use them to describe vegetation health but also to include
them in the prediction of such variables [33–35]. In this context, the objective of this study
was to estimate the green biomass of Agave durangensis Gentry using high-resolution images
obtained by a UAV in an agave area in Nombre de Dios, Durango.

2. Materials and Methods
2.1. Study Area

The study area was located in the municipality of Nombre de Dios, in the State of
Durango, in an area with the presence of agave of the species Agave durangensis Gentry,
with an area of 15 ha (Figure 1). The area has a 5% slope. The climate in the area is semiarid
(BS) with rainfall in summer. The average rainfall is 520 mm, and the average annual
temperature is 29 ◦C. The predominant soil type is Regosol.
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Figure 1. Location of the study area.

2.2. Estimation of Biomass

For the calculation of green biomass in the field, 40 agave plants were randomly
sampled in the area. In each agave plant, direct measurements were made of the diameter
of cover (D), considered as the average aerial cover of the plant measured from north to
south and from east to west. On the other hand, the total height (At) of each agave was
measured, considered as the vertical distance from the ground to the highest aerial part of
the plant. Both measurements were made using a flexometer. In addition, the location of
the plant was recorded using a Trimble geo 7x Global Navigation Satellite System (GNSS)
handheld data collector, which guaranteed maximum precision in the location of each
plant sampled.

On the basis of the information obtained from the field inventory of agaves, the
total individual green biomass (Wt) was calculated using the allometric equation for the
species Agave durangensis Gentry in the state of Durango (Table 1), obtained from the forest
planning system for arid zones (SiFoZa-http://fcfposgrado.ujed.mx/sifoza, accessed on
10 June 2022).

Table 1. Selected models for the estimation of green weight by components and total weight for
Agave durangensis Gentry in the state of Durango.

Component Model Parameter R2 RMSE

Total green biomass (Wt) Wt = β1D + β2D2 + β3D2 At + β1D
+ β2D2 + β3D2 At

β1 = 0.308681
β2 = −0.00229
β3 = 0.000018

0.79 28.99

βn = regression coefficients; D = diameter of coverage; At = total height; R2 = coefficient of determination; RMSE
= root-mean-square error.

2.3. Information Obtained by the Unmanned Aerial Vehicle (UAV)

An eBee UAV was used to obtain high-resolution images. This drone is designed to
collect data efficiently and safely, in order to map and monitor crops quickly and easily.
It is a fixed-wing drone, powered by an intelligent LiPo (lithium polymer) battery with a
capacity of 3830 mAh and autonomy of 35 min of flight time. It has a wingspan of 96 cm,
a weight of 700 g, and a maximum cruising speed of 65 km/h (40 mph). The eBee can

http://fcfposgrado.ujed.mx/sifoza
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cover up to 12 km2 and acquires images with a ground sampling distance (GSD) of up to
1.5 cm per pixel. A CANON S110NIR camera was mounted on the eBee UAV; this camera
acquires images with 8 bit radiometric resolution in three channels of the electromagnetic
sector (Table 2). The acquisition of the images is performed automatically during the flight
controlled by the eBee’s intelligent pilot.

Table 2. CANON S110NIR sensor image characteristics.

Band Wavelength (µm) Spatial Resolution (cm) Abbreviation

Green 0.54–0.57 5 B1
Red 0.65–0.68 5 B2

Near-infrared 0.78–0.90 5 NIR

2.4. Acquisition and Processing of UAV Images

High-resolution images were acquired at a flight altitude of 114 m; flight time was
14 min for an area of 17.2 ha. A lateral overlap of 60% and a longitudinal overlap of 80%
were used. The flight took place on a sunny and clear day, with a wind speed of 5 m/s.
Five ground control points (GCPs) distributed over the flight area were established to
improve the overall accuracy of the images. The GCPs were taken with coordinates in the
Universal Transverse Mercator (UTM) system. For this purpose, two boards 1.5 m long
by 20 cm wide were placed in the shape of a cross and were painted with a high-contrast
color, for their facile recognition in the images of areas taken by the UAV. These GCPs were
distributed in the flight area; one was placed in the center and the rest were distributed
within the polygon of the study area. The GCP coordinate was taken by placing the GNSS
in the center where the cross of the mark was formed. Later, in the Pix4D software, the
coordinates of the GCPs taken in the field were imported using the Manager Manual Tie
Points (MTP) function; using this process, the coordinates were linked to the images to
improve the accuracy of the general geolocation of the orthomosaic. The images obtained
by the UAV were processed to generate an orthomosaic with a uniform color; thus, it
was not necessary to make any color balance adjustment of this orthomosaic with three
bands with a resolution of 4 cm/pixel of the agave area. This process was performed in
Pix4D software.

Once the orthomosaic was obtained, vegetation indices were generated with the
objective of considering them as explicative spectral variables in the estimation of the green
biomass of agave (Table 3). The selection of these indices in the present study was based
on the spectral resolution of the sensor used (B1, B2, and NIR) and the application of the
indices in other studies to evaluate the density of vegetation cover and separation of soil
from vegetation [36–40].

Table 3. Vegetation indices used to estimate biomass.

Index Formula Reference

NDVI (normalized difference vegetation index) (NIR − red)/(NIR + red) Rouse et al. [36]
GNDVI (green normalized difference vegetation index) (NIR − green)/(NIR + green) Gitelson et al. [37]

EVI2 (enhanced vegetation index) 2.5 × (NIR − red)/((NIR + 2.4 × red) + 1) Jiang et al. [38]
SAVI (soil-adjusted vegetation index) ((NIR − red))/((NIR + red + 0.16)) Rondeaux et al. [39]

SR (simple ratio) NIR/red Birth and McVey [40]

The geolocations of each agave taken in the field, together with the estimated green
biomass information, were superimposed with the orthomosaic generated from the UAV
flight. With this, the mean of the pixel value was extracted with a circular buffer of 80 cm,
in each of the spectral bands of the orthomosaic and the vegetation indices, using QGIS
software [41].
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2.5. Statistical Analysis

In order to find the spectral variables that best estimate Wt, a correlation analysis
was performed. Subsequently, multiple linear regression models were fitted to identify
the variables that best predict Wt, using a stepwise procedure that used a combination
of forward and backward selection. This procedure starts with no predictors, and then
sequentially adds the most contributing predictors (such as forward selection). After
adding each new variable, any variable that no longer provides an improvement in model
fit is removed (similar to backward selection). Agave Wt was the dependent variable, while
bands (B1, B2, and NIR) and vegetation indices (NDVI, GNDVI, EVI, SAVI, and DVI) were
independent variables. This process was performed in R software [42], using the “MASS”
library [43]. The model used was as follows:

y = β0 + β1 × 1 + β2 × 2 + . . . + βnXn + εi,

where y is the green biomass of agave, Xn denotes the spectral bands and vegetation index,
βn denotes the regression coefficients, and εi is the random error.

In order to evaluate the model’s ability to fit, goodness-of-fit coefficients were calcu-
lated: coefficient of determination (R2) and root-mean-square error (RMSE).

R2 = 1 −

∑n
i = 1 (yi −

ˆ
yi)

2

∑n
i = 1 (yi − yi)

2

,

RMSE =

√√√√√ n
∑

i = 1
(yi − ŷi)

2

n − p
,

where yi is the observed parameter, ŷi is the estimated parameter,
ˆ
yi is the mean of the

parameter, n is the number of total observations, and p is the number of model parameters.
Once the best model was selected, the equation was applied to generate a distribution

map of agave Wt in the study area; this process was performed using the library raster [44].
Figure 2 shows the technical roadmap used in this study for estimating agave biomass on
the basis of UAV images.

Figure 2. Technical roadmap for agave biomass estimation based on UAV images.
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3. Results

According to the inventory of agave plants in the plantation, it was found that the
average D was 126.06 cm, while the average At was 101.53 cm and the average Wt was
71.81 kg (Table 4).

Table 4. Descriptive statistics of the variables of the agaves sampled in the field.

Variable Mínimum Máximum Mean Standard Deviation

D (cm) 54.4 205 126.06 36.75
At (cm) 46 157 101.53 24.65
Wt (Kg) 7.26 209.39 71.81 48.73

D = diameter of coverage; At = total height; Wt = total green biomass.

The correlations between Wt and the vegetation bands and indices are shown in
Figure 3. The Pearson correlation coefficients (r) ranged from −0.02 to 0.65. The analysis
showed a negative correlation with B1 and NIR, while B2, NDVI, GNDVI, GNDVI, EVI2,
SAVI, and SR showed a positive linear association. NDVI was the spectral variable that
showed the highest linear association with Wt (r = 0.65).

Figure 3. Correlation analysis.

The regression analysis allowed generating a model involving spectral variables B1,
B2, NDVI, GNDVI, GNDVI, EVI2, and SAVI derived from the high-resolution UAV images,
which explained 59% (RMSE = 32.06 kg) of the total variability in the estimation of Wt of
Agave durangensis Gentry (Table 5). Figure 4 illustrates the distribution of model residuals.
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Table 5. Regression model parameter.

Model Parameter R2 RMSE

Wt = β0 + β1B1 + β2B2 + β3NDVI +
β4GNDVI + β5EVI2 + β6SAVI

β0 = −528.17

0.59 32.06 kg

β1 = −33.08
β2 = 36.43
β3 = 859.66

β4 = −11,476.71
β5 = 7035.82
β6 = −15.79

βn = regression coefficients; Wt = total green biomass; D = diameter of coverage; At = total height; R2 = coefficient
of determination; RMSE = root-mean-square error.

Figure 4. Predicted versus observed values (left); predicted values versus residuals (right).

The model generated to estimate Wt was applied, and, as a result, a map was obtained
showing the predicted values of Wt (Figure 5). Given the presence of tree, shrub, and grass-
land vegetation in the study area, only the Wt of the Agave durangensis Gentry vegetation is
shown at the plant level. The predicted Wt ranged from 0 to 180 kg, with a mean of 57 kg.
In the area, there was a variation of Wt in the spatial distribution of agave plants, given
the different measures of cover (D) associated mainly with the most mature agave plants.
(D ≥ 126 cm) in the study area.

Figure 5. Wt map for Agave durangensis Gentry.
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4. Discussion

Remote sensing technologies, such as the one shown in this study, have been explored
to make indirect estimates of important vegetation variables for their evaluation and
monitoring in a more precise and low-cost manner. Obtaining high-resolution spectral
information derived from a UAV allowed estimating the Wt of the species Agave durangensis
Gentry in the present study. This is confirmed by Gitelson [29], who mentioned that
the use of UAVs as novel tools allows a quantitative evaluation in a fast way and at a
relatively low cost. In the present study, NDVI was the spectral variable that presented
the highest correlation with agave Wt; this result is similar to that found in several studies
that used UAVs to determine variables that facilitate the identification of tree species,
shrubs, and agaves, as well as the nutritional status of crops such as sugarcane, wheat, and
alfalfa [29–32], and the estimation of the fraction of vegetation cover [45,46]. As for the
most contributing predictors in the most optimal model to estimate agave Wt, they were
the spectral variables B1 and B2 and the vegetation indices of NDVI, GNDVI, EVI2, and
SAVI. The contribution of these variables was related to the normalization of the index that
provided a greater separation of green vegetation from background soil luminosity [36] and
reduced the effects produced by topographic, atmospheric, and illumination factors [47].
In addition to the sensitivity of the green channel and red edge (B1, B2, and NIR) to the
chlorophyll content at the leaf and canopy level of the vegetation, the indices increased
with higher wavelengths, as observed by [33–35,48,49].

The sequentially fitted model for Wt estimation explained 59% of the total variance
(R2 = 0.59; RMSE = 32.06 kg), with this value being below those obtained in different studies
that used multispectral data for crop biomass assessment. For example, Rouse et al. [36]
achieved an R2 of 0.86 for winter crops using a portable multispectral spectrometer, while
Gitelson et al. [37] used data from an HJ1 satellite for biomass assessment in a wheat crop
(R2 = 0.79). On the other hand, the result in the present study was similar to that obtained
by Jiang et al. [38], who achieved an R2 of 0.58 for the evaluation of grassland biomass
with images from the Sentinel-2 satellite platform with a spatial resolution of 10 m. For
the case of agave crops, Rondeaux et al. [39] performed an estimation of agave (Agave
sisalana) biomass using a generalized additive model analysis (explained deviation of 76%
and RMSE of 5.15 Mg·ha−1) with Sentinel sensor images. Their results showed higher
adjustment values than those found in the present study. It is worth mentioning that few
studies have been found where the use of UAVs was applied for biomass estimation in
agave. On the other hand, these values may have been lower because the estimation of
biomass using spectral values, from any remote sensor, in crops where the density and
vegetation cover are homogeneous (wheat, corn, and agave plantations) diminishes the
effect of factors such as soil, soil moisture, and weeds. In this case, planting density in
agave areas is heterogeneous, with the presence of weeds and the high presence of bare
soil, affecting the establishment of a sensitive relationship between biomass and sensor
spectral values. However, future studies can be applied to biomass estimation in arid and
semiarid ecosystems using multispectral remote sensing on UAVs.

5. Conclusions

In this study, spectral variables derived from a UAV were tested to estimate biomass
in an area of Agave durangensis Gentry. The variables B1, B2, NDVI, GNDVI, EVI2, and
SAVI presented the best fit in the multiple linear regression model used for the estimation
of agave biomass (R2 = 0.59; RMSE = 32.06 kg). This study demonstrates the use of UAVs
for obtaining biomass information in natural agave areas, which allows its estimation in
order to offer an alternative to remotely evaluate and monitor agave biomass. Lastly, it is
recommended to evaluate this methodology in an agave plantation area (homogeneous
crop) in order to assess its accuracy considering the effect of soil with vegetation using
UAV-derived images.
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