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Abstract: A hybrid model-based and data-driven framework is proposed in this paper for au-
tonomous coastline surveillance using an unmanned aerial vehicle. The proposed approach comprises
three individual neural network-assisted modules that work together to estimate the state of the target
(i.e., shoreline) to contribute to its identification and tracking. The shoreline is first detected through
image segmentation using a Convolutional Neural Network. The part of the segmented image that
includes the detected shoreline is then fed into a CNN real-time optical flow estimator. The position
of pixels belonging to the detected shoreline, as well as the initial approximation of the shoreline
motion, are incorporated into a neural network-aided Extended Kalman Filter that learns from data
and can provide on-line motion estimation of the shoreline (i.e., position and velocity in the presence
of waves) using the system and measurement models with partial knowledge. Finally, the estimated
feedback is provided to a Partitioned Visual Servo tracking controller for autonomous multirotor
navigation along the coast, ensuring that the latter will always remain inside the onboard camera
field of view. A series of outdoor comparative studies using an octocopter flying along the shoreline
in various weather and beach settings demonstrate the effectiveness of the suggested architecture.

Keywords: UAV; autonomy; target tracking; visual servo control; coastline surveillance

1. Introduction
1.1. Related Literature

The practical applications of Unmanned Aerial Vehicles (UAVs) have now acquired a
wide range from classic photography to surveillance of buildings, areas, or even coastlines.
Multirotors have the flexibility to regulate velocity during the flight, maintain their position,
recognize and follow targets and dynamically change course if necessary, in both indoor and
outdoor settings. Their mechanical simplicity and low cost make them a favored option
when speed and precision are critical. In addition, recent advances in navigation and
perception sensors have significantly boosted their flying endurance and payload capacity,
making them viable platforms for missions such as area coverage and surveillance.

Practicing coastal engineers, managers, and academics now have access to off-the-shelf
survey-grade UAV equipment, data processing, and analysis tools. Border surveillance
and search and rescue missions are just a few of the many uses of a UAV for coastal
surveillance [1,2]. In many of these situations, flying at high altitudes and following
a simple GPS-aided track may be sufficient for roughly guiding the vehicle down the
shoreline and capturing an image or video data for additional processing. On the other
hand, some surveillance applications necessitate a higher level of image detail, resulting in
lower altitude flights and precise navigation above the coastline. This performance dictates
the incorporation of vision data efficiently (e.g., features, contours, etc.) in the motion
control loop, resulting in a variety of task-specific visual servoing schemes.

Drones 2022, 6, 146. https://doi.org/10.3390/drones6060146 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6060146
https://doi.org/10.3390/drones6060146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-2309-4498
https://orcid.org/0000-0002-4045-4715
https://orcid.org/0000-0002-1229-3029
https://doi.org/10.3390/drones6060146
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6060146?type=check_update&version=2


Drones 2022, 6, 146 2 of 28

Litter identification and localization are classic examples of such cases. The concen-
tration of significant volumes of rubbish along coasts is expected, especially during the
summer tourist season [3–5]. Low altitude UAV flights may offer useful visual information
during a litter detection operation regarding the location and classification of the garbage
along the shoreline [6]. Human detection in search and rescue missions along the sea, lake,
or river shorelines, coastline erosion assessment, particularly in rocky water environments,
and water sampling missions in case of environmental disasters. In these cases, the first
responder’s access is hazardous or impossible and are all examples that require detailed
visual information and UAV servoing at low altitudes (e.g., water sampling in contaminated
marine areas).

The basic vision-aided control approaches that appear in the literature are Image-based
(IBVS), Position-based (PBVS), 2-1/2-D, and Direct visual servoing [7–11]. An error signal
is measured on the image plane and routed directly to velocity commands in IBVS control.
PBVS systems, on the other hand, utilise retrieved features to generate a (partial) 3-D
reconstruction of the environment [7,8]. The error is calculated in the image plane and is
then employed by the control system. Because of the inadequacies of PBVS systems, IBVS
techniques have grown in popularity. Any mistakes in the vision system’s calibration will
result in faults in the 3-D reconstruction, which will lead to errors during task execution.
Furthermore, because the PBVS control law is specified in the 3-D workspace, there is
no mechanism for directly regulating the image. As a result, items of interest (including
features used by the visual servo system) may escape the camera’s FoV [9].

According to those mentioned above, the use of image-based control in UAV stabi-
lization and tracking control has proven to be highly useful in various applications [12]. In
stabilization processes, IBVS has been employed in multiple ways offering different solu-
tions and successful results. Examples are schemes such as decoupling the translational and
rotational mathematical equations of a robot’s motion [13,14] and implementation of control
schemes using stereo vision camera systems [15]. In addition, studies combining IBVS with
LQ-servo methodologies [16], as well as the formulation of adaptive IBVS schemes [17] for
the flight of a UAV, are also presented in the literature. IBVS has also been extended to the
field of study where it is combined with reinforcement learning methods [18,19].

Regarding target tracking during UAV flights executing IBVS control, various ap-
proaches have been presented in the literature. Indicatively there are studies such as,
vertical take-off and landing of a UAV while compensating the ground effect through an
adaptive sliding mode controller [20], tracking of a moving ground vehicle which executes
a predetermined performance control concept while adhering to FoV constraints [21], a
discrete-time non-linear model predictive controller (MPC) that solves a computationally
intensive restricted optimization problem online to successfully land a quadrotor on a
moving and sloped platform [22], use of a linear observer estimating the velocity of the
visual features [23], design of an IBVS control method which takes into account the image
dynamics uncertainties linked to depth information and target motion, as well as the uncer-
tainty of the robot dynamics [24] and design and deployment of a complete vision-based
target tracking and following system with a Deep Neural Network as the scheme’s back-
bone [25,26]. In the systems mentioned above that consider image-based control for target
tracking, the target’s motion is specified by either a low or constant velocity profile.

Visual servo control applications for UAVs in activities linked to surveillance of
coastlines or places with similar geomorphological characteristics are particularly limited
in the existing literature. The authors of [27] presented the steering of a tiny fixed-wing
aircraft throughout the limits of diverse terrains or regions of interest controlled by an
autonomous vision-based system. Furthermore, [28] recommended generating a tangent
on a recognized shoreline trajectory while integrating image processing directly with
the controller. Finally, in [29] a guiding algorithm based on recognizing and extracting
geographical tracks from real-time aerial photos, such as rivers, coasts, and highways,
was implemented.

It should be noted, however, that IBVS also have significant drawbacks. The control
law for an IBVS system entails mapping the image space velocities to robot workspace
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velocities, a procedure encoded through the image Jacobian. Control issues arise regarding
singularities or poor conditioning of the Jacobian, which occur as a relative position and
motion of the camera and under-view item function. Furthermore, because the control
is executed concerning the image, there is no direct control over the system’s cartesian
velocities. Inductively, successful trajectories in the image plane can be transformed into
bizarre (and maybe dangerous) trajectories for the vehicle in the Cartesian space, [10].

Decoupling translational and rotational degrees of freedom is a regular occurrence
in visual servoing tasks in underactuated systems (i.e., UAVs). To overcome the issues
with the popular IBVS method, the Partitioned Visual Servo (PVS) control strategy [30] was
proposed, is based on decoupled techniques, and has comparable decoupling properties but
only uses image plane features. The central concept is to decouple the z axis motion from
the other degrees of freedom and create separate controllers for this Degree of Freedom
(DoF). Nevertheless, even with the most modern methods of visual servoing for target
tracking, there is still the problem of online estimation of target motion, which is not
addressed in any of the studies as mentioned above [8].

Estimating the hidden state of a dynamical system from noisy observations in real-time
is one of the most fundamental tasks in signal processing and control, having localization,
tracking, and navigation applications. The Kalman Filter (KF) soon became the workhorse
of state estimation in discrete-time systems that state-space models well describe, thanks
to its low-complexity implementation and solid theoretical background [31], while the
original KF assumed linear state-space models, many problems encountered in practice are
driven by non-linear dynamical equations. As a result, non-linear variations of the original
KF, such as the Extended Kalman filter (EKF), were developed soon after its publication,
where analytical system and measurement models are considered during filter design [32].

Deep neural networks have seen much success in real-world applications in recent
years. It has been proven that these data-driven parametric models may capture the prop-
erties of complex processes without the need for explicit (e.g., state-space) models [33–37].
Dosovitskiy et al. presented end-to-end optical flow estimates with convolutional networks
in [38]. The flow field output of this model, named FlowNet, takes two images as input.
Convolutional networks frequently yield noisy or fuzzy outputs when trained for per-pixel
prediction tasks. Network predictions can be subjected to out-of-the-box optimization as a
post-processing step as a workaround. For motion segmentation, the original FlowNet was
ineffective. FlowNet2 [39], on the other hand, is equally accurate as other state-of-the-art
approaches while being orders of magnitude faster. This particular CNN is trained in many
different datasets, so it can efficiently deal with optical flow estimation in a case such as a
coastline. However, it is evident that data-driven approaches like the one above, even for
primary sequences, necessitate many trainable parameters and large data sets and so lack
the interpretability of model-based methods.

The shortcomings and advantages of model-based Extended Kalman filtering and
data-driven state estimation motivate the employment of a hybrid technique that takes
advantage of the best of both worlds: the standard EKF’s soundness and low complexity, as
well as DNNs’ model-agnostic nature. As a result, in this work, we exploited a framework
called KalmanNet [40] that proposes a hybrid MB/DD online recursive filter. The noise
statistics are considered unknown in KalmanNet, and the underlying state-space model is
either known or approximated from a physical system dynamics model. The Kalman Gain
(KG) computations in the EKF are a significant component encapsulating the dependence
on noise statistics and domain knowledge. They are replaced with a simple Recurrent
Neural Network (RNN) integrated into the EKF architecture. The resulting system learns
to perform Kalman filtering in a supervised manner using labeled data.

1.2. Contributions

In this work, we propose a hybrid MB/DD vision-based framework for the efficient
detection and tracking of coastlines in dynamic motion induced by waves, using an au-
tonomous octocopter. The major contributions of this work can be summarized as follows:
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1. Implementation and training of a CNN for detecting shoreline features from raw
camera images.

2. Deployment of a CNN for the optical flow estimation of the detected coastline.
3. Formulation of an EKF based on an approximate wave motion model, which provides

an online estimate of the coastline motion in the image plane.
4. Formulation of a Neural-Network aided EKF that learns from data. This module

combines the EKF implementation (model-based method) and the CNN-based (data-
driven method) optical flow estimation to estimate the shoreline motion in the image
plane online directly.

5. Development of a robust PVS control strategy for the autonomous navigation of an
octocopter along a wavy shoreline, incorporating as feedback the output of (4) while
ensuring the latter is always retained inside the camera field of view.

1.3. Outline

The remainder of the paper is laid out as follows: Section 2 gives some background on
the UAV motion model and low-level control. A description of the problem is presented
in Section 3. The methodology applied to synthesize the proposed framework is detailed
in Section 4. Section 5 proves the framework’s efficacy through a series of comparative
experimental cases. Finally, Section 6 presents the conclusions of this study.

2. Preliminaries
2.1. Multirotor Equations of Motion

The vehicle, depicted in Figure 1, used in this study is a custom-made octocopter com-
prised of eight fixed-pitch propellers and individual rotors attached to a rigid cross frame.
Each rotor produces a thrust that causes roll, pitch, yaw, and overall thrust. The vehicle is
controlled via the differential regulation of the thrust. As a result, the thrust and torque
applied by each individual motor-propeller set determine the system dynamics [41,42].

Figure 1. Reference frames of the multirotor aerial vehicle.

A body-fixed frame B = {eBx , eBy , eBz} is attached to the vehicle’s center of gravity OB,
and an inertial frame I = {eIx , eIy , eIz} is placed at a fixed position OI . The dynamic model
of a multirotor can be provided from the general Newton–Euler motion equations of a
6-DoF rigid body subject to external forces and torques, according to [41]:

I ṗB = IvB (1)

mi
I v̇s.B = IRBfB (2)

JBω̇B = τB (3)
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where IpB =
[ I xB

IyB
IzB

]T , the position vector and IvB =
[ IvxB

IvyB
IvzB

]T the
linear velocity vector of the vehicle wrt the inertial frame I. The angular velocity expressed
in B is given by ωB =

[
pB qB rB

]T . The rotation matrix from frame B to I is denoted
as IRB, JB is the inertia matrix expressed in B and m is the mass. The definition of the
generalized forces and torques applied on the multirotor is presented as follows:

fB = fM + fd + fg (4)

τB = τM + τd (5)

where fd denotes the drag forces, τd the drag moments, fg is the gravity vector, fM and τM
are the motor thrust and torque vectors, respectively. More details can be found in [41,42].

2.2. Multirotor Low-Level Control

The octocopter vehicle used in this study utilizes a Pixhawk Cube Orange [43] fea-
turing the ArduPilot firmware [44]. The complete functionality of the low-level control
architecture is implemented as a collection of cascaded P/PID controllers that handle the
vehicle’s low-level control via the inner and outer loop architecture as follows:

1. an inner loop executing attitude control while using as input references roll, pitch,
yaw, and throttle values,

2. an outer loop executing translational motion control while using as input references
the desired position or velocity values.

This architecture provides for separate control of each axis for minor deviations from
the hovering condition. The low-level controller’s outer-loop accepts reference linear
velocities and yaw rate in the body-fixed frame B. The commanded torques and vertical
thrust are the low-level controller’s outputs, which are finally translated to motor voltages.

Remark 1. The PVS controller in the proposed method calculates velocities in the camera frame
C, which are then converted into the vehicle body frame B and used as a reference in the low-level
controller’s outer loop. An overview of the control architecture is shown in Figure 2.

Figure 2. ArduPilot’s low-level control architecture.

3. Problem Statement

According to the introductory presentation of the proposed method we begin our
study by defining the problem being addressed. We use an octorotor equipped with a
downward-looking camera to investigate the PVS tracking problem as part of autonomous
coastline monitoring in the presence of coastal waves (Figure 3). The downward-looking
camera (Figure 4) is first given a central projection perspective model, which is a common
assumption in visual servoing tasks [9]. The camera’s frame is designated by the letter
C with the axes [Xc, Yc, Zc]T linked to the center OC. The image frame’s Iim coordinates
[u, v]T are measured in pixel units and OIim is the picture’s upper-left corner. Using the
camera geometrical model, a set of n fixed 3-D points with coordinates Pi = [Xi, Yi, Zi]

T ,
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i = 1, . . . , n expressed in the camera frame are projected to the normalized image plane as
2-D points with coordinates si = [xi, yi]

T , i = 1, . . . , n , as follows [9]:

si =
[
xi yi

]T
=
[

ui−cu
αx

vi−cv
αy

]T
(6)

where ui, vi are the pixel coordinates of the i-th feature, cu, cv are the pixel coordinates of
the primary point, and αx, αy are the pixel focal length for each image axis. If we examine
a moving target (i.e., coastline waves), the differential equation that describes the flow of
features belonging to the coastline:

ṡ = L(Z, s)vc +
∂s
∂t

=

Lxy(Z, s)vxy + Lz(Z, s)vz +
∂s
∂t

(7)

where s =
[
sT

1 , · · · , sT
n
]T ∈ <2n is the overall image feature vector, L(Z, s) = [LT

1 (Z1, s1),
· · · , LT

n (Zn, sn)]T ∈ <2n×6 is the overall interaction matrix, Lxy(Z, s) includes the first,
second, fourth and fifth columns and Lz(Z, s) includes the third and sixth columns of
Ls(Z, s), respectively, [7]:

Li(Zi ,si)=

 − 1
Zi

0 xi
Zi

xiyi −(1 + x2
i ) yi

0 − 1
Zi

yi
Zi

(1 + y2
i ) xiyi −xi

 (8)

Lxy(Zi, si) =

[
− 1

Zi
0 xiyi −(1 + x2

i )

0 − 1
Zi

(1 + y2
i ) xiyi

]
and Lz(Zi, si) =

[ xi
Zi

yi
yi
Zi
−xi

]
(9)

where Z = [Z1, . . . , Zn]
T the respective depth measurement for each future and and

∂s
∂t =

[
∂s1
∂t , . . . ∂sn

∂t

]T
is the overall flow vector caused by the motion of individual features

which in our case is caused by the waves. vc ,
[
VT , ΩT]T

=
[
vx, vy, vz, ωx, ωy, ωz

]T rep-
resents the linear V and angular Ω velocities of the camera. Similarly vxy =

[
vx, vy, ωx, ωy

]
and vz = [vz, ωz].

Figure 3. Multirotor UAV executing coastline (i.e., target) detection and tracking. The classification
result of the CNN-based detection is the output of the trained CNN for coastline detection according
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to the camera image stream. CNN-based shoreline detection window depicts real-time the output
highlighted in red. CNN-based optical flow estimation windows depict, in purple color, the visualized
optical flow estimation of the detected coastline based on the segmented/classified image. The
UAV navigates along the coastline through a PVS control strategy to detect the target and estimate
its motion.

Figure 4. Geometric representation of a downward-looking camera.

In order to successfully control a vehicle executing visual feedback while surveying a
coastline, the following steps have to be executed:

1. Detection of the features belonging to the coastline through a CNN-based online estimator.
2. Estimation of the features flow ∂si

∂t because of the motion of the coastline induced
by the waves, through the hybrid model-based (MB)/data-driven (DD) proposed
real-time estimator.

3. Development of a feature trajectory planning term sd(t) in the field of the image that
is integrated in the overall control scheme and is responsible for the movement of the
vehicle along the shoreline.

4. Formulation of a PVS tracking controller with the aim of converging the error close
to zero, while t → ∞, despite the camera calibration and depth measurement er-
rors (i.e., the focal lengths αx, αy and the features depth Zi, i = 1, . . . , n are not
precisely estimated).

Figure 5 depicts the implemented architecture to achieve the aforementioned steps.
The position of features si that describe the shoreline are detected using a Convolutional
Neural Network (CNN) for image segmentation. The actual multirotor velocity, which
is available through the vehicle navigation and autopilot system, is subtracted from the
result of a CNN-based optical flow real-time estimator in the image plane to get a coarse
approximation of these features individual velocity ∂si

∂t . The feature’s position measurement
and velocity approximation are then fed to a neural network aided real-time state estimator
that learns from data to carry out Extended Kalman Filtering, which performs an improved

online estimation of the position and velocity flow ŝ, ∂̂s
∂t . Finally, the estimated errors ê, ∂̂e

∂t
are incorporated as feedback into the PVS planning and tracking control scheme to achieve
the octorotor’s autonomous vision-based navigation along the shoreline.
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Figure 5. Block diagram presenting the architecture of the control strategy approach.

4. Materials and Methods
4.1. CNN-Based Coastline Detection

A pre-trained CNN for image segmentation is employed to achieve reliable coastline
detection [45]. The CNN divides an image’s total pixels into relevant object classes. In order
to accomplish specific tasks, the sequence of CNN layers undergoes end-to-end learning.
The data is initially fed into the convolutional layer, including a learnable filter set. The
result is normalized and sent to the pooling layer, which takes tiny data sets from the con-
volutional layer and samples the output of the chosen package’s result. The fully connected
layers take up the high-level reasoning after a series of convolutional and pooling layers.
Finally, backpropagation is used to learn CNN weights. The Keras image segmentation
framework, specifically the pre-trained CNN model mobilenet_segnet, is used for image
segmentation of the digital image recognizing the shoreline (Base Model: MobileNet and
Segmentation Model: Segnet, an encoder network comprising 13 convolutional layers
designed for object classification).

A data collection containing frames from the camera installed on the octocopter was
utilized for training the selected CNN (Section 5.1). Training (7200 frames) and a validation
(800 frames) data sets were created from the frames data set. The frames have a resolution
of 672× 376 pixels. The following stages were included in the pre-processing procedure:

• Polygons are used to indicate the coastline through the labeling procedure.
• Masks are generated (binary images according to the annotated features from the

labeling procedure).
• The frames were resized from 672× 376 pixels to 224× 224 pixels.
• Two-class classification (Class 0: Sea and Ground as black background on the mask

and Class 1: Coastline).
• The training and validation sets were enhanced using a variety of augmentation methods.

Following the pre-processing, the CNN was trained on a computer with full GPU
utilization until the CNN converged on the necessary accuracy after 10 epochs. On a
raw image, the results of the trained CNN are shown in Figure 6. The trained CNN’s
performance was validated by real-time prediction while flying above distinct coastlines.
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Figure 6. Combined output of the coastline detection through CNN-based image segmentation. The
detected coastline is highlighted in red upon the original image. The depicted bounding box and its
edges, above the detection output, are used to design the control scheme that will aim to restore the
shoreline to the center of the image.

The Region of Interest (ROI) can then be generated as a bounding box using stan-
dard image processing techniques [46] after a trained network offers online accurate
shoreline detections. Calculating a bounding box serves two purposes: (i) specific fea-
ture matching across consecutive frames; (ii) minimization of PVS control features. The
bounding box of the discovered coastline is depicted in Figure 6, with numbered corners
s = [u1, v1, . . . u4, v4]. In order to formulate the feature error, these corners will be used in
the PVS controller. In terms of individual feature velocity, this research concentrated on
estimating the centroid velocity of the bounding box. It is predicted that its motion will
adequately capture the individual velocity of its corners and the coastline portion enclosed
therein. We separate the centroid measurements, which are the following:

zubc =
1
4

4

∑
n=1

ui, zvbc =
1
4

4

∑
n=1

vi (10)

and the individual velocity of the centroid, after removing the induced motion from
the vehicle:

zv =

[
zu̇bc
zv̇bc

]
=

[ zubc (t)−zubc (t−∆t)
∆t

zvbc (t)−zvbc (t−∆t)
∆t

]
− L̂bcv̂c (11)

where, L̂bc ∈ <2×6 and v̂c are approximations of the interaction matrix for the centroid and
the octorotor’s velocity, respectively, and ∆t is the time interval between two consecutive
centroid position detection measurements. Equation (11) is the initial method of estimating,

and without the use of a corresponding algorithm, the ∂̂e
∂t for all cases of visual servoing

tracking tasks.

4.2. CNN-Based Coastline Optical Flow Estimation

As presented in Section 1.1, FlowNet 2 is as accurate as other state-of-the-art ap-
proaches while being faster. Utilizing FlowNet 2 and introducing as input pairs of images
from the output of CNN presented in Section 4.1 results in the optical flow field estimation
on the image plane.

Figure 7 depicts the visualized output of the CNN-based optical flow estimation. The
optical flow estimate is based on the segmented image resulting in the part that does not
belong to the shoreline (Class 0 according to Section 4.1) being colored white. In contrast,
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the shoreline is colored according to the value of the optical flow (purple in the case of
Figure 7).

Figure 7. Result of the coastline optical flow estimation from the tuned/modified FlowNet2.

Assuming that all the pixels belonging to the detected coastline move evenly, we can use
the optical flow field average for the target state estimation. The average flow rate obtained
from FlowNet 2 by subtracting vehicle odometry provides a coarse data-driven approximation
of the coastline wave motion (alternatively, is the data-driven estimate of (11)).

Domain knowledge, such as structured state-space models, is not included in a prin-
cipled way by DNNs (e.g., FlowNet 2). As a result, even for simple sequences, these
data-driven approaches necessitate a high number of trainable parameters and big data sets
and thus lack the interpretability of model-based methods. Due to these constraints, the
use of highly parametrized DNNs for real-time state estimation in applications integrated
into hardware-constrained mobile devices like drones and vehicular systems is limited.

Therefore, the aforementioned data-driven approach will not be used as a standalone
tool for the velocity estimation of the coastline. Instead, it will be incorporated as input
to a neural network-aided EKF, as it will be presented in detail in Section 4.4. They are
combined with an approximate wave motion model as described in Section 4.3 to provide a
complete state estimation vector (i.e., position and velocity) of the coastline. This feedback
will be further integrated into the proposed PVS control strategy to achieve autonomous
coastline surveillance with the octocopter vehicle.

4.3. EKF-Based Coastline Motion Estimation

The formulation of an EKF online estimation of shoreline motion, directly in the image
plane, using a wave motion model and measurements from the CNN detection and optical
flow estimation frameworks is explained in this section. The wind, which creates waves on
the water surface, causes the coastline to move individually. According to the mesh that
depicts the ocean surface, it can be thought of as particles that follow a trajectory specified
by the following equations, according to the Gerstner wave modeling approach [47]:

Xw = Xwo +
N

∑
n=0

ankwxn sin(ωnt− kwn · Pwo) (12)

Yw = Ywo +
N

∑
n=0

ankwyn sin(ωnt− kwn · Pwo) (13)
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Zw = Zwo +
N

∑
n=0

ansin(ωnt− kwn · Pwo) (14)

where Pwo = [Xwo , Ywo ]
T describes the particle’s resting position on the suface, while Zwo is

the altitude’s last resting place, an the amplitude, ωn
2π the frequency and kwn =

[
kwxn , kwyn

]T

the direction unit vector for the surface wave components. Only the tracking of surface
motion was important in the surveillance application studied in this work, not the altitude
of the coastline. After that, the following practical considerations are made:

• The bounding box centroid, which is part of the shoreline, is the projection of a water
particle Pbc = [Xbc, Ybc]

T , which has a rest location Pbco = [Xbco , Ybco ]
T , and so

follows the Gerstner wave model.
• We consider that there is just one dominant frequency ωbc that impacts the wave’s

amplitude abc, while the other frequencies have a tiny contribution and may thus
be ignored.

• The waves’ direction is constant throughout time, therefore kw = kbc = const. The
constant phase terms φwx , φwy appear in the sinusoidal terms of the surface position
components Xw, Yw, respectively.

As a result, using the Equation set (12) and (13) to explain the centroid’s surface motion
while taking into account the previous considerations yields:

Xbc = Xbco + abckbcx sin(ωbct− φbc) (15)

Ybc = Ybco + abckbcy sin(ωbct− φbc) (16)

where φbc = kbc · Pbco , with kbc =
[
kbcx , kbcy

]T
. Using the camera model Equation (3) and

the appropriate algebraic manipulations, the projection of the centroid in the image plane
is represented as follows:

ubc = ubco + Abcu sin(ωbct− φbc) (17)

vbc = vbco + Abcv sin(ωbct− φbc) (18)

where: ubco = cu +
αxXbco

Zbc
, vbco = cv +

αyYbco
Zbc

, Abcu = αxabc
Zbc

kbcx , Abcv =
αyabc
Zbc

kbcy . The
purpose is to design an EKF in order to achieve an estimation of the centroid velocity. Next,
we define the system and measurement models for the proposed estimator.

4.3.1. System Model

Taking the Equation set (17) and (18) and calculating the two times derivatives with
respect to time, the following harmonic oscillation models with constant dump terms,
which describe the coastline motion are obtained:

übc = −ω2
bcubc + ω2

bcubco (19)

v̈bc = −ω2
bcvbc + ω2

bcvbco (20)

Considering the state vector m = [ubc, u̇bc, vbc, v̇bc, ωbc, ubco , vbco ]
T , and the terms

ωbc, ubco , vbco to be constant over time, the non-linear system model is formulated
as follows:

ṁ = f(m)m (21)
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More specifically, by invoking (19) and (20) and considering ωbc, ubco , vbco to be con-
stant over time, we formulate the following state-space form of the system, which is
clearly non-linear:

u̇bc
übc
v̇bc
v̈bc
ω̇bc
u̇bco

v̇bco


=



0 1 0 0 0 0 0
−ω2

bc 0 0 0 0 ω2
bc 0

0 0 0 1 0 0 0
0 0 −ω2

bc 0 0 0 ω2
bc

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





ubc
u̇bc
vbc
v̇bc
ωbc
ubco

vbco


(22)

The system dynamics matrix can be approximated by the Jacobian matrix F = ∂f(m)
∂m

F =
∂ f (m)

∂m
=



0 1 0 0 0 0 0
−ω̂2

bc 0 0 0− 2ω̂bv ˆubc + 2ω̂bv ˆubco ω̂2
bc

0 0 0 1 0 0 0
0 0 −ω̂2

bc −2ω̂bv ˆvbc + 2ω̂bv ˆvbco 0 ω̂2
bc

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(23)

the terms of F have been evaluated at the current state estimates. Assuming that the
elements of F are approximately constant between the sampling interval Ts, then a two-
term—Taylor series to approximate the fundamental matrix, in discrete form Φk ≈ I + FTs
can be employed. Hence, the discrete system model is approximated as follows:

mk = Φkmk−1 + wk (24)

where wk is the process noise, which is assumed to be drawn from a zero mean multivariate
normal distribution, with covariance, Qk : wk ∼ N(0, Qk).

4.3.2. Measurement Model

The measurement vector is defined as:

zbc =
[
zubc , zvbc , zu̇bc , zv̇bc

]T (25)

where zubc , zvbc are the centroid coordinates in image space as determined by the CNN,
and zu̇bc , zv̇bc are the respective velocities after removing the influence of camera motion,
as stated in Section 4.1. These measures are related to the EKF’s estimated states in the
following way:

zbck = Hkm̂k + υk (26)

where Hk is a constant matrix and υk is the measurement noise, which is assumed to be
drawn from a zero mean multivariate normal distribution, with covariance, Rk : υk ∼
N(0, Rk).

4.3.3. State Update

The next step is the calculation of the Kalman gain Kk, which is obtained from the
following recursive set of discrete equations:

Mk = ΦkPk−1Φk
T + Qk (27)

Kk = MkHk
T
(

HkMkHk
T + Rk

)−1
(28)

Pk = (I−KkHk)Mk (29)
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where Pk is the state estimate covariance matrix. The following equation is used to deter-
mine the state update:

m̂k = Φkm̂k−1 + Kk
(
zbck −HkΦkm̂k−1

)
(30)

The vector m̂k comprises updated estimates of the target’s (bounding box) centroid’s
position and velocity, as well as updates on the frequency and offsets caused by the waves’
sinusoidal motion of the shoreline. In the case of standalone model-based EKF utilization,
in order to synthesize vector ∂̂s

∂t and the estimated error vector ∂̂e
∂t , we use the estimates ˆ̇ubc

and ˆ̇vbc. The presented EKF formulation comprises the model-based part EKF estimator

presented in the following Section 4.4 and finally the estimated error vector ∂̂e
∂t is utilized in

the PVS tracking control strategy presented in Section 4.5.

Remark 2. The proposed EKF-based estimation technique can be employed for the centroid and all
the corners of the bounding box. In such a case, estimating the four corner positions and velocities
can be incorporated into an image-based control scheme. However, this will increase complexity and
computational cost without significant performance improvements.

4.4. Neural Network Aided Kalman Filtering for Coastline Motion Estimation
4.4.1. Preliminaries

The core module of the proposed framework (Figure 5) is the neural network-aided
Kalman filtering for coastline motion estimation presented in this section. In this case, the
specific module results in formulating and adapting the hybrid MB/DD online recursive
filter called KalmanNet, which leverages data and partial domain knowledge to learn
the Extended Kalman Filtering operation. The formulated KalmanNet is presented in
Section 4.3 rather than using data to directly estimate the missing state-space model param-
eters, as stated in Section 1.1. KalmanNet initially concentrates on nonlinear, Gaussian, and
continuous state-space models, which are represented as follows for each t ∈ Z:

xt = f(xt−1) + wt, wt ∼ N(0, Q), xt ∈ Rm (31)

yt = h(xt) + vt, vt ∼ N(0, R), yt ∈ Rn (32)

where xt is the system’s latent state vector at time t, which evolves from the previous
state xt−1 via a non-linear state-evolution function f(·) and a white gaussian noise wt with
covariance matrix Q. The vector of observations at time t is yt, which is created from
the current latent state vector by a non-linear observation mapping h(·) corrupted by
additional white gaussian noise vt with covariance R.

State-space models are investigated in the context of various tasks, all of which are
distinct and may be loosely divided into two categories: observation approximation and
hidden state recovery. The first category is concerned with estimating portions of the
observed signal yt and can include predicting future data based on previous observations,
generating missing observations in a block via imputation, and denoising the observations.
The recovery of a concealed state vector xt falls under the second.

The filtering issue is crucial to real-time tracking. In this case, one must produce a
quick online estimate of the state xt based on each incoming observation yt. Our main focus
is on cases in which the state-space model representing the underlying dynamics is only
partially known. The state-evolution (transition) function f(·) and the state-observation
(emission) function h(·) are two functions we know (or have an estimate of). This expertise
is obtained from our understanding of the system dynamics, physical design, and sensor
model for real-world applications. The noise statistics Q and R are unknown, in contrast to
the traditional assumptions in KF. We assume, more specifically:

1. There is no knowledge of the distribution of the noise signals wt and vt.
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2. The functions f(·) and h(·) could be used to approximate the true underlying dynam-
ics. Approximations of this type can be used to depict continuous-time dynamics in
discrete time, acquire data with misaligned sensors, and other types of mismatches.

4.4.2. Hybrid MB/DD Real-Time Estimator Formulation

The utilization of KalmanNet in the case of coastline waves begins with defining the system
that represents its motion. According to the analytical EKF formulation presented in Section 4.3,
the shoreline dynamic wave motion system is defined through the harmonic oscillator (19)
and (24). Furthermore, the measurement model is represented via (26) and (25).

We formulate KalmanNet by identifying the specific computations of the EKF that
are based on unavailable knowledge. The corresponding functions f(·) and h(·) are
known (Gerstner waves model assumption and measurement model, respectively); yet
the corresponding covariance matrices Q and R are unavailable. These missing statistical
moments are used in model-based Extended Kalman Filtering only for computing the
Kalman Gain via the use of (28). Thus, the KalmanNet learns Kalman Gain from data and
combines the learned Kalman Gain in the overall Extended Kalman Filter flow. In each time
step t, similarly to the EKF, KalmanNet estimates m̂k in two steps; prediction and update.

Only the first-order statistical moments are predicted, as opposed to the model-based
Extended Kalman Filter. Specifically, the previous posterior m̂k−1 is used to generate a
prior estimate for the present state m̂k|k−1. Then, using m̂k|k−1, a previous estimate for the
current measurement zbck

is computed. KalmanNet, unlike its model-based predecessors,
does not rely on noise distribution information and does not keep a precise estimate of
second-order statistical moments.

Similar to the model-based EKF and the Kalman Gain Kk, KalmanNet uses the new
measurement zbck

to compute the current state posterior m̂k from the previously computed
prior m̂k|k−1 in the update step. In contrast to the model-based EKF, the Kalman Gain is not
explicitly computed; instead, it is learned from data using an RNN. RNN’s built-in memory
allows them to track second-order statistical moments without knowing the underlying
noise statistics.

4.4.3. Simulator

As mentioned above, the data-driven part of the hybrid MB/DD real-time estimator
requires RNN training that learns Kalman Gain calculation with labeled data. A labeled
dataset is initially created to achieve the training. The process of collecting this data
and creating the set (shown below) took place in a synthetic environment of a realistic
coastline and flight simulation of a UAV. Hence, this section presents the synthetic realistic
environment development and data collection process, aiming at the required RNN training.
The overall development and utilization of simulation environments for autonomous flight
applications are due to the following reasons:

• safety reasons→ increased risk of vehicle crash during the early testing of prototype
autonomous flight algorithms

• logistics problems while rapid prototyping→ inability to conduct experiments fre-
quently (e.g., every day) along the coast

In order to expedite the development process, a synthetic but realistic coastline sim-
ulation environment (Figure 8) was built using the Robot Operating System (ROS) [48]
and Gazebo [49] frameworks, featuring also MAVROS [50] communication protocol as
SITL. The synthetic environment is based on [51] featuring a coastline with configurable
parameters for the waves (i.e., peak period, gain, direction, etc.), the wind velocity, and
the fog and ambient visual conditions. A 3DR Iris quadrotor [52] is deployed inside the
simulation environment equipped with the appropriate sensor suite:

• Navigation sensors (GPS, IMU, altimeter, etc.)
• Downward-looking stereo camera system (ZED 2), providing frame-based image data
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Figure 8. Capture from the Gazebo synthetic coastline environment for simulation.

In this flight simulation environment, the vehicle can be remote-controlled by the user,
while at the same time, the following data is collected online:

• Position of the pixels belonging to the coastline, which results from the outcome of the
CNN-based coastline detection module.

• Approximation of the ∂̂e
∂t vector, which results from the outcome of the CNN-based

optical flow of the pixels belonging to the detected coastline after subtracting the
vehicle velocity.

Collecting the data above leads to creating the dataset for the RNN training of the
Kalman Gain calculation, which will be presented in the following Section 4.4.4.

4.4.4. Training & Deployment

The Kalman Gain is computed by the model-based EKF and its variants using knowl-
edge of the underlying data. To execute such computations in a learning manner, one must
supply input to a neural network that captures the knowledge required to evaluate Kalman
Gain. Because Kk is dependent on the statistics of the observations and the state process, the
RNN should be fed statistical information from the measurement zbck

and the state estimate
m̂k−1 at each time step t. As a result, the following features connected to the state-space
model’s unknown statistical relationship can be employed as RNN input features:

1. Feature 1: The measurement difference ∆z̃bck
= zbck

− zbck−1
.

2. Feature 2: The innovation difference ∆zbck
= zbck

− ẑbck|k−1
.

3. Feature 3: The forward evolution difference ∆m̃k = m̂k|k − m̂k−1|k−1. This value
reflects the difference between two successive posterior state estimates, where the
accessible feature for time instance t is ∆m̃k−1.

4. Feature 4: The forward update difference ∆m̂k = m̂k|k − m̂k|k−1, i.e., the difference
between the posterior state estimate and the prior state estimate, where ∆m̂k−1 is used
for the time step t.

Features 1 and 3 contain information on the state evolution process, whereas features
2 and 4 contain information about the uncertainty of our state estimate. Because the
difference operation removes predictable components, the time series of differences is
mainly influenced by the noise statistics we want to learn.

The Kk is determined by keeping track of second-order statistical moments. Because
the Kalman Gain computation is recursive, an internal memory element such as an RNN
should be utilized to track it. KalmanNet is trained in a supervised manner utilizing the
generated dataset. Even though we use a neural network to compute the Kalman Gain
rather than simply producing the estimate m̂k|k, we train KalmanNet from start to finish.
The state estimate m̂k, which is not the output of the internal RNN, is used to compute
the loss function. We employ the backpropagation through time (BPTT) approach to train
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KalmanNet since it is a recursive design with both an external recurrence and an internal
RNN. A forward and backward gradient estimate run through the network is computed
when KalmanNet is unfolded across time using shared network parameters.

KalmanNet is a data-driven/model-based hybrid that, in our application, is formu-
lated to combine deep learning with the traditional EKF-based coastal motion estimating
approach. It benefits from the individual capabilities of both data-driven and model-based
techniques by identifying the specific noise-model-dependent calculations of the EKF and
replacing them with a dedicated RNN integrated into the EKF flow. KalmanNet and its
model-based equivalent have numerous key distinctions due to the addition of specialized
deep learning modules to the EKF. Unlike the model-based EKF, it does not try to linearize
the SS model or impose a statistical model on the noisy signals. Moreover, KalmanNet
filters in a nonlinear manner because its KG matrix is dependent on the input zbck

and it is
more resilient to model mismatch than the traditional model-based Kalman.

For the case of the shoreline, we deploy the so presented KalmanNet through the
combination of the CNN-based optical flow estimation (Section 4.2), the EKF formulation
(Section 4.3), and the integration and adaptation of KalmanNet based on the specific data.
Keeping in mind the hypothesis of Gerstner waves (coarse estimation of the state-space
model), we generated the optimal estimation of the motion of the coastline.

From data provided by CNN-based shoreline detection and the related optical flow
estimation, we generated a dataset by configuring Features 1, 2, 3, and 4 as explained. The
dataset is made up of a training set with a length of 100-time steps and a test set with a
length of 1000 time steps. The model was trained on a PC with the GPU fully utilized up to
the required MMSE convergence after 200 seasons.

The state-evolution parameters employed by the filters differ somewhat from the
genuine model in the presence of incomplete model information (Gerstner waves model
of motion), resulting in a significant reduction in the model-based EKF due to the model
mismatch. KalmanNet solves such mismatches in all studies, and its performance is
comparable to that attained when complete information is available for such settings. In the
presence of solid nonlinearities (e.g., Gerstner wave motion model) and model uncertainties
due to erroneous approximation of the underlying dynamics. The model-based versions
of the EKF fail, and KalmanNet learns to approach the MMSE while keeping the EKF’s
real-time operation and low complexity.

The outcome of this procedure is integrated into the proposed PVS control strategy

through the estimated error vector ∂̂e
∂t , which will be presented in the following Section 4.5.

4.5. PVS Control Strategy
4.5.1. Control Development

The development of a PVS scheme for octocopter control is examined in this section.
The controller must fulfill the following requirements:

• Successful tracking of a dynamic coastline.
• Handling of the motion caused from the coastline waves.
• Maintenance of the coastline as close as possible to the center of the camera’s FoV.

In accordance with the above objectives to be achieved, a PVS control method is devel-
oped aiming at the simultaneous stabilization and monitoring of the detected shoreline in
the field of view, while the vehicle flies along the entire of a beach. Let the error be defined
as e = s− sd, where s = [u1, v1, . . . u4, v4]

T the corners of the coastline bounding box and:

sd(t) =
[
ud1 , vd1 + υ f t, ud2 , vd2 + υ f t, ud3 , vd3 + υ f t, ud4 , vd4 + υ f t

]T
(33)

where υ f is a tuning parameter, and t is the time in this simple planning profile. The
octorotor’s additional velocity, expressed in the image plane, is controlled by the parameter
υ f in order to move forward along the shoreline.
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The dynamics of the error in the image plane are presented via [8]:

ė = ṡ− ṡd ⇒ ė = Lxyvxy + Lzvz +
∂e
∂t
− ṡd (34)

The combination of (7) and the exponential error decrease ė = −ke results to control law:

vxy = −L̂+
xy

(
ke− ṡd +

∂̂e
∂t

+ Lzvz

)
(35)

where

vz =

[
vz = λvz ln(

σ∗

σ
), ωz = λωz(α

∗ − α)

]
(36)

in which α, with 0 ≤ α < 2π is the angle between the horizontal axis of the image plane
and the directed line segment joining two feature points, and α∗ is the desired value of the
angle, σ the area of the bounding box defined by the coastline detected features and σ∗ its
desired value.

The result of the employed PVS strategy is visualized in Figure 9. As it is shown, the
calculations of planar and rotational velocities by (35) and (36), cause the execution of the
image trajectory (depicted in Figure 9 with a red arrow) from a random (left side of Figure 9)
to the desired configuration (right side of Figure 9) of the bounding box surrounding the
detected coastline.

4.5.2. Stability Analysis

This section presents the proof of the stability analysis of the aforementioned PVS
control scheme in (35) and (36). We start with the following theorem:

Theorem 1. The dynamics of the error of the features on the image plane, i.e.,:

ė = Lxyvxy + Lzvz +
∂e
∂t
− ṡd, (37)

under the control laws (35) and (36) are asymptotically stable around zero.

Proof. As per the PVS scheme, the dynamics and control are split into two parts, namely re-
lating to the planar and rotational motions around the xy plane and the z axis of the camera
frame, respectively. Therefore, we will reflect this core idea in the following stability analy-
sis. First of all we treat the xy dynamics. Considering the function Le = ‖e‖2, it is positive
definite, for Lxyvxy 6= 0, except for e = 0, while its derivative, under the control law (35) can
also be shown to be negative semi-definite at the same set: E = {e ∈ R8 s.t. Lxyvxy(e) 6= 0}
(which is essentially the null space of Lxy). For a single feature, i.e., e ∈ R2, the correspond-
ing set to E is the empty set, and the feature can be arbitrarily positioned on the image
plane through the above xy-planar control law (35).

However, adding even one more feature renders the set E non-empty; this is owing
to the first two columns of Lxy, which render the matrix rank deficient wrt its smallest
dimension. This observation reflects the intuitive fact that if the camera’s distance from the
features is farther or closer away from the desired final position, then the planar motion
can not stabilize the above error to the origin on its own. This point of view also explains
why in the case of a single (point) feature, the xy motion suffices for stabilization.

We, therefore, define the control law for the z-camera axis in (36) to treat the remaining
degrees of freedom. As in [8], we define two new states, namely the bounding box’s angle,
denoted by α ∈ S1 and its area denoted by σ ∈ R+. It is evident that the latter are functions
of the features and the control velocity, i.e.,:[

α
σ

]
=

[
fα(s) + gα(ωz)
fσ(s) + gσ(vz)

]
. (38)
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Note that since the angle is invariant wrt the axial translation, the input vz does not
affect the angle kinematics. Concurrently, the area σ is invariant under rotation, thus
depending only on the translational input. The dynamics of the new states can be extracted
by the kinematics as follows:

d
dt

[
α
σ

]
=

 ∂ fα

∂s

∣∣∣
(s)

ṡ + g′α(ωz)

∂ fσ

∂s

∣∣∣
(s)

ṡ + g′σ(vz)

. (39)

Under the assumption that the camera is close to the vertical position (which is
reasonable for the current framework), the Jacobians ∂ fα

∂s

∣∣∣
(s)

, ∂ fσ

∂s

∣∣∣
(s)

can be taken equal to

zero, therefore yielding the approximate dynamics:

d
dt

[
α
σ

]
=

[
g′α(ωz)
g′σ(vz)

]
. (40)

We note that the mappings g′α, g′σ depend implicitly on α, σ, however, their exact
form is not necessary to extract a proof of stability. Consider the following Lyapunov
function candidate:

L = Lσ +Lα , ln
(

σ?

σ

)2
+ (α? − α)2. (41)

This function is positive definite for [σ, α]T ∈ R+× S1−{σ?, α?}, while its time deriva-
tive is negative on the same set through (36), which renders the system Globally Asymptot-
ically Stable. This can be shown without the mappings g′α, g′σ: Consider the derivative:

L̇ = 2 ln
(

σ∗

σ

)
σ?

σ2 g′α(ωz) + (α∗ − α)g′σ(vz)⇔

= ln
(

σ∗

σ

)
σ?

σ2 g′α

(
λvz ln

(
σ∗

σ

))
+ 2(α∗ − α)g′σ(λωz(α

∗ − α)).
(42)

However, it is evident that g′σ(0) = g′α(0) = 0, and that both mappings assume the
same sign as their arguments. This can become evident if one considers that irrespective of
the translational or rotational motion in the xy plane, if the camera gets closer to (resp. far-
ther away from) the target object, the feature area increases (resp. decreases), with a similar
relationship for the angle-related mapping. Therefore the above Lyapunov derivative is
indeed negative, for a choice of negative constants λvz , λωz .

To finish the proof, we note that a specific set of values [σ, α]T ∈ R+ × S1 completely
and correctly defines a rotation and a position in the z-axis of the camera, essentially defin-
ing the two remaining degrees of freedom of each feature of the feature error vector.

4.5.3. Implementation Details
Error Feedback

In this work, the position error e is formulated using the CNN framework’s detection

measurements. Regarding the estimation of ∂̂e
∂t , the estimated centroid velocity, as described

in Section 4.4, is assumed for all features.

Level Frame Mapping

Because the camera is permanently linked to the vehicle at OC, which differs from OB,
roll and pitch motions of the vehicle will result in a non-desirable flow of features that may
tend to violate the field of view limitations. A virtual camera frame OVC with the origin at
OB and the optical axis aligned with the gravity vector is suggested to mitigate this effect.
In this virtual frame, unlike a gimbal, the features are unaffected by the quadrotor’s roll
and pitch movements. The rotation matrix VCRC ∈ SO(3) must be calculated online using
the quadrotor’s current roll and pitch measurements (available from the on-board IMU).
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Furthermore, any constant rotational mounting offsets are considered for the transformation
to the virtual camera frame. More information can be found at [21].

Quadrotor Under-Actuation

Along the longitudinal and lateral axes, the octocopter system is under-actuated. Most
autopilot systems, including the low-level controller used in this study (see Section 2.2),
handle under-actuation effectively by managing the system implicitly through its dynamics.
As a result, the vehicle receives linear and yaw-rate reference velocity instructions in
velocity control mode, not roll and pitch rate. A camera with 6 DoFs and L(Z, s) ∈ <2n×6

was considered in Section 3. By removing the corresponding columns, the interaction
matrix should be changed to represent the kinematic capabilities of the actual system,
taking into consideration the vehicle’s under-actuation.

Figure 9. PVS control strategy visualization.

5. Results
5.1. Experimental Setup

Three sets of experiments demonstrate the validation of the proposed hybrid MB/DD
framework for coastline surveillance. The experimental process consists of a comparative
study between three different methods aiming at the tracking of a coastline, analyzed and
presented in the following section and the supplementary video (https://youtu.be/Q145
uPSixpE, accessed on 19 May 2022). During the experiments, a custom-made octocopter
equipped with an onboard computer, a ZED 2 Stereo Camera mounted looking down, and a
Pixhawk Cube Orange running the ArduPilot firmware were used. During the experiments,
the vehicle was flying at relatively low altitudes (less than 20 m above ground-sea level).
Using the Robot Operating System ROS [48], the above presented CNN-based shoreline
identification, CNN-based coastal optical flow estimate, Neural Network aided Extended
Kalman Filtering, and PVS control method were all implemented in the onboard computer.
The velocity commands generated by the PVS control scheme are sent to the octocopter’s
microcontroller via the MAVROS [50] communication protocol. The octocopter’s low-
level control, which is explained in Section 2.2, is used to realize handle the Pixhawk’s
velocity commands.

5.2. Experimental Results

In this section, utilizing the PVS control scheme (35), we present three comparative
scenarios of following a coastline using a flying vehicle octorotor. The Moore–Penrose

https://youtu.be/Q145uPSixpE
https://youtu.be/Q145uPSixpE
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pseudo-inverse of the interaction matrix L̂xy
+

and the error e of the coastal features (bound-
ing box corners) are determined in all circumstances using the detection output of the
CNN provided in Section 4.1. For all features, si, i = 1 . . . 4, the depth measurements Zi
are considered equal and collected by the octocopter’s altimeter sensor. Environmental
elements were treated as exogenous factors that could not be changed in any scenarios. The
desired configuration for the bounding box of the detected coastline is visually defined in
Figure 9. Specifically, the controller manages to minimize the error of bounding box angle
concerning the vertical axis of the image and the corresponding error of the distance of
the box centroid of the image plane. Consequently, to achieve this goal, the edges of the
bounding box must approach a set of desired coordinates on the image plane.

In the first scenario, we test a PVS control strategy according to the architecture

depicted in Figure 10. The estimate of the error velocity term ∂̂e
∂t was calculated by (11)

without employing an estimation algorithm of the coastline motion. The present scenario
error performance is depicted in Figures 11 and 12, where it can be seen that the controller
never manages to track the movement of the shoreline and keep it in the center of the image.
The errors of the pixels in the field of the image never manage to converge steadily to zero,
while at the same time, there is very aggressive behavior in the yaw axis (see Figure 12a).
Inductively the behavior of the vehicle during the experiment led to its termination for
safety reasons.

In order to confirm the results’ repeatability and stability, the demonstration scenario
is repeated in a different beach environment. Figures 13 and 14 clearly depict that the
performance of this controller is not close to the desired. All the errors have continuous
fluctuations until they seem to approach the violent loss of the shoreline from the field of
the image, and again the experimental process is terminated.

In the second scenario, the EKF estimator (Section 4.3) was incorporated in the PVS

strategy (depicted in Figure 15) and the term ∂̂e
∂t was estimated on-line by the recursive

algorithm described in Section 4.3.3 and (30). In this case, the position and velocity of the
coastline as the result of CNN-based coastline detection (Section 4.1) and CNN-based optical
flow estimation (Section 4.2) after the subtraction of the vehicle’s velocity, respectively,
were inserted as input in the EKF-based estimator.

Figures 16 and 17 depict strategy performance which achieves convergence regarding
the coastline maintenance as much possible in the center of image while flying.

Although compared to the first demonstration scenario, the present method offers the
desired result of maintaining the shoreline within the camera field of view and close to its
center, it is observed that the error in the u-axis (Figure 16a) is not minimized correctly. At
the same time Figure 17a indicates some unnecessary motion about the yaw axis.

Figure 10. Block diagram presenting the architecture tested in the 1st demonstration scenario. In this

case the estimate of the error velocity term ∂̂e
∂t was simply calculated by (11) without employing an

estimation algorithm of the coastline motion estimation.
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Figure 11. Error features along the (a) u-axis and the (b) v-axis in the image plane during the 1st
(failed) control experimental scenario conducted in the 1st beach setting.
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Figure 12. (a) Angle error (in degrees) with respect to the vertical v-axis of the image plane, (b) Nor-
malizes sigma error (area of the bounding box of the detected coastline during the 1st (failed) control
experimental scenario conducted in the 1st beach setting).
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Figure 13. Error features along the (a) u-axis and the (b) v-axis in the image plane during the 1st
(failed) control experimental scenario conducted in the 2nd beach setting.
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Figure 14. (a) Angle error (in degrees) with respect to the vertical v-axis of the image plane,
(b) Normalizes sigma error (area of the bounding box of the detected coastline during the 1st (failed)
control experimental scenario conducted in the 2nd beach setting).

Figure 15. Block diagram presenting the architecture tested in the 2nd demonstration scenario. In

this case the estimate of the error velocity term ∂̂e
∂t was calculated through the EKF-based coastline

motion estimation model presented in Section 4.3 utilizing as input the CNN-based (tuned/modified
FlowNet 2) coastline optical flow estimation presented in Section 4.2.
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Figure 16. Error features along the (a) u-axis and the (b) v-axis in the image plane during the 2nd
(model-based EKF approach) control experimental scenario conducted in the 1st beach setting.
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Figure 17. (a) Angle error (in degrees) with respect to the vertical v-axis of the image plane, (b) Nor-
malizes sigma error (area of the bounding box of the detected coastline during the 2nd (model-based
EKF approach) control experimental scenario conducted in the 1st beach setting).

Repeating the same scenario on a different beach, we confirm the effectiveness of the
control scheme. Figures 18 and 19 depict a similarly successful performance to the previous
beach environment. This control method manages to maintain the shoreline in the image
plane, but also Figure 18a depicts the pixel error in the u-axis is approximately 100 pixels in
an image of 672× 376 pixels resolution.
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Figure 18. Error features along the (a) u-axis and the (b) v-axis in the image plane during the 2nd
(model-based EKF approach) control experimental scenario conducted in the 2nd beach setting.
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(b)
Figure 19. (a) Angle error (in degrees) with respect to the vertical v-axis of the image plane,
(b) Normalizes sigma error (area of the bounding box of the detected coastline during the 2nd
(model-based EKF approach) control experimental scenario conducted in the 2nd beach setting).
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Next, we present the experimental results with the validation of the overall pro-
posed framework of this paper (Figure 5). The Neural Network aided real-time estimator

(Section 4.4) was incorporated in the PVS strategy and the term ∂̂e
∂t was estimated on-line.

In this case, the RNN-aided EKF estimator accepts as input the position and velocity of
the coastline as the result of CNN-based coastline detection and CNN-based optical flow
estimation after the subtraction of the vehicle’s velocity,, respectively.

Figures 20 and 21 demonstrate the successful performance of the proposed framework
in maintaining the shoreline in the center of the image during the flight of the vehicle along
it. The error of the pixels in both axes proves to receive low values (less than 50 pixels) while
the same performance is achieved for the angle and the area errors of the detected coastline.
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Figure 20. Error features along the (a) u-axis and the (b) v-axis in the image plane during the 3rd
(model-based EKF approach) control experimental scenario conducted in the 1st beach setting.

The same good performance is repeated in a second beach setting during the exper-
imental procedure. The errors of Figures 22 and 23 confirm what was found in the first
beach setting. At the same time, it significantly improved error values compared to the
previous demonstration scenarios.
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(b)
Figure 21. (a) Angle error (in degrees) with respect to the vertical v-axis of the image plane,
(b) Normalizes sigma error (area of the bounding box of the detected coastline during the 3rd
control experimental scenario conducted in the 1st beach setting).



Drones 2022, 6, 146 25 of 28

0 50 100 150 200

Time (s)

-150

-100

-50

0

50

100

150

E
rr

o
r 

u
 (

in
 p

ix
e

ls
)

u
1
 error

u
2
 error

u
3
 error

u
4
 error

(a)

0 50 100 150 200

Time (s)

-150

-100

-50

0

50

100

150

E
rr

o
r 

v
 (

in
 p

ix
e

ls
)

v
1
 error

v
2
 error

v
3
 error

v
4
 error

(b)
Figure 22. Error features along the (a) u-axis and the (b) v-axis in the image plane during the 3rd
control experimental scenario conducted in the 2nd beach setting.
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Figure 23. (a) Angle error (in degrees) with respect to the vertical v-axis of the image plane,
(b) Normalizes sigma error (area of the bounding box of the detected coastline during the 3rd
control experimental scenario conducted in the 2nd beach setting).

Summarizing the presentation of the experimental process, we can first conclude that
the proposed hybrid MB/DD vision-based framework aiming at coastline detection and
tracking fulfills its purpose. In addition, the triple comparative study, summarized in
Table 1 proves the superiority of the proposed pipeline over other classical methods usually
employed in vision-based target tracking applications. Indicatively, the first demonstration
scenario (target motion estimation without a dedicated analytical algorithm) fails to achieve
the goal of maintaining the target in the field of view. In contrast, the corresponding second
(using model-based EKF coastline motion estimation) achieves the goal of maintaining the
coastline in the camera field of view. However, the error never manages to approach values
lower than 60 pixels.

Table 1. Comparative error results (in pixels and % format) of the 3 methods presented in the study.

1st Exp. Scenario 2nd Exp. Scenario 3rd Exp. Scenario

u-axis error
fluctuation (in pixels) 80–170 60–80 7–22

u-axis error
fluctuation (%) 24–50 18–24 2–6
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Table 1. Cont.

1st Exp. Scenario 2nd Exp. Scenario 3rd Exp. Scenario

v-axis error
fluctuation (in pixels) 8–35 8–20 2–8

v-axis error
fluctuation (%) 10–20 6–14 1–4

6. Conclusions

In this paper, we presented a vision-based hybrid model-based/data-driven frame-
work for the autonomous surveillance of a dynamic coastline using an Unmanned Aerial
Vehicle. Using a trained CNN, the online detection of the coastline was realized. The out-
come of the CNN detection was synthesized with a CNN-based optical flow estimation of
the coastline in the image plane, an appropriately formulated EKF for online estimating the
coastline motion in the image plane. A neural network-aided real-time estimator combines
all the modules mentioned above and generates an improved estimation of the coastline
motion. The overall output was incorporated as feedback to a PVS tracking controller,
managing to simultaneously retain the coastline in the center of the image plane while
guiding the vehicle along the coastline. Comparative experimental scenarios performed
in various beach locations demonstrated the efficacy of the proposed strategy and the
necessity for an online motion estimator in vision-based applications intended for coastline
monitoring and surveillance in low altitudes.

In our future work, we aim to design and implement a more sophisticated trajec-
tory planning algorithm, which will incorporate efficient obstacle avoidance and evasive
maneuvering actions while preserving the coastline inside the camera’s field of view.
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