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Abstract: In this paper, the multiple autonomous underwater vehicles (AUVs) task allocation (TA)
problem in ocean current environment based on a novel reinforcement learning approach is studied.
First, the ocean current environment including direction and intensity is established and a reward
function is designed, in which the AUVs are required to consider the ocean current, the task emergency
and the energy constraints to find the optimal TA strategy. Then, an automatic policy amendment
algorithm (APAA) is proposed to solve the drawback of slow convergence in reinforcement learning
(RL). In APAA, the task sequences with higher team cumulative reward (TCR) are recorded to
construct task sequence matrix (TSM). After that, the TCR, the subtask reward (SR) and the entropy
are used to evaluate TSM to generate amendment probability, which adjusts the action distribution
to increase the chances of choosing those more valuable actions. Finally, the simulation results are
provided to verify the effectiveness of the proposed approach. The convergence performance of
APAA is also better than DDQN, PER and PPO-Clip.

Keywords: multi-AUV; task allocation; reinforcement learning; policy automatic amendment; entropy

1. Introduction

Recently, with the development of Autonomous Underwater Vehicle (AUV) technol-
ogy [1,2], AUV has been widely applied in hunting [3,4], rescue [5], detection [6,7] and
other tasks [8–10]. Compared with single AUV system, multiple autonomous underwater
vehicles (AUVs) can be competent for more complex tasks [11]. Therefore, the prob-
lem of cooperation between AUVs has attracted wide attention. Among many coopera-
tion problems, task allocation (TA) [12] is critical for AUVs to perform tasks successfully.
The description of the TA for a multi-AUV system in the ocean current is shown in Figure 1.
If some soluble targets that can be denoted as {T1, T2, . . . , T5} drifted in the ocean current as
a result of a transport ship accident, the surrounding AUVs denoted as {U1, U2, U3} need
to collaborate to complete the task, that is rescuing the five targets immediately. The AUVs
establish a temporary communication network, which can share the location of the targets
as well as the location and speed of all AUVs, and the drifted targets to be salvaged when
the total power of the nearby AUVs exceeds its weight. Besides, the AUVs are also required
to consider the impact of the ocean current, energy consumption, the task emergency and
avoid collisions with other AUVs. As a result, due to the tough environment, an optimal
salvage strategy is needed to ensure that AUVs accomplish the task safely and quickly.

At present, the methods for solving the TA problem with multi-constraints mainly
include market-based method [13], swarm intelligence method [14] and reinforcement
learning [15]. Although the market mechanism method can find the optimal solution, it has
high requirements for real-time and communication ability of AUVs system. The swarm
intelligence method can find acceptable solutions, but it has poor generalization ability and
poor performance when dealing with unknown factors.

RL is an emerging field, which has been widely used in automatic control [16], intelli-
gent decision-making [17], optimization [18], scheduling [19], etc. [20]. Using RL, AUVs
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can interact with the environment to obtain feedback signals from the environment by
trial-and-error. Good behaviors will be enhanced, while bad behaviors will be weakened
by signals, RL gradually learn the mapping between state and action to obtain the optimal
policy with the maximum expected reward [21]. Q learning [22] is one of the classical
RL algorithms, which maps state actions into optimal value functions by using Q table.
However, Q learning is affected by the curse of dimensionality, making it difficult to deal
with problems that have high-dimensional continuous state space. In order to overcome
the above-mentioned difficulties, deep Q network (DQN) is proposed, which uses neural
networks to approximate the optimal value function [23,24]. Double Deep Q-Network
(DDQN) [25] is one of the most commonly used methods in DQN, which adopts the dual
network structure. The current network is used for policy execution and the target network
is used for policy evaluation, which solves the problem of overestimation in DQN.

Figure 1. The description of the TA for multi-AUV system.

Efficient use of samples is commonly used to improve the performance of traditional
RL. The experience replay is used to learn existing samples by random sampling, which
reduces the correlation between samples while improving sample efficiency [26]. However,
each sample has a different influence on learning, and the effect of uniform sampling
is very limited. Schaul et al. [27] improved the traditional experience replay method
by using TD-error to evaluate the importance of samples in the experience pool (EP),
which improved the convergence of the importance sampling reinforcement learning.
Horgan et al. [28] presented shared prior experience replay so that RL can learn more data
in distributed architecture training. Zhao et al. [29] presented that learning high-return
samples can effectively improve the convergence rate. In the algorithm, the authors took the
sample sequence that has high-expectation rewards and TD-error as the basis of importance
sampling to achieve good results. Zhang et al. [30] proposed an adaptive priority correction
algorithm to estimate the real sampling probability by evaluating the predicted TD error
and the real TD error of the experience pool. Almost all the methods proposed above use
either reward information or error generated by sample training to evaluate the importance.
Others have suggested that sample information of different aspects can also improve
performance. M. Ramicic and A. Bonarini [31] improved the learning efficiency by using
entropy to quantify the state space and carrying out importance sampling. Yang et al. [32]
constructed directed association graph (DAG) by using sample trajectory, and introduced
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episodic memory and DAG into traditional deep reinforcement learning (DRL) loss, which
made DRL learn from different aspects and improved sample utilization rate.

The balance between exploration and exploitation remain challenging. Undirected
space exploration makes the algorithm converge slowly, and excessive use of existing
experience usually can only find a non-optimal policy. Pathak et al. [33] proposed the
curiosity mechanism to make space exploration more efficient. Zhu et al. [34] used dropout
regularization to predict the distribution of Q values and select actions in the form of
maximizing the distribution of Q values. This method can effectively evaluate the learning
of the environment and the trade-off exploration and exploitation in a non-stationary
environment. Kumra et al. [35] introduced a loss-adjusted exploration strategy to determine
candidate actions based on Boltzmann distribution of loss estimation, ensuring the balance
of exploration and exploitation. Other studies are based on the assumption of prior
knowledge, which can be used to explore space more efficiently and improve performance.
Shi et al. [36] decomposed complex tasks into several sub-tasks and solved them separately,
and used transfer learning to accelerate the learning of new tasks by combining the prior
knowledge of sub-tasks. Pakizeh et al. [37] constructed the Q tables by sharing knowledge
among agents to improve the convergence.

Compared with the previous research results, the contributions of this paper are
summarized as follows:

(1) In the traditional methods, sample reuse is to extract experience by learning samples
from replay buffer, and it cannot directly improve the quality of samples by guiding
the behavior of policy. Furthermore, experience extracted from samples can improve
the convergence, but the effect is related to the experience extraction. The algorithm
we proposed can extract available information from samples and use the information
directly in decisions. Our algorithm not overly dependent on training effect and can
directly improve the sample quality.

(2) The traditional methods based on sample reuse do not take the influence of exploita-
tion on policy exploration into account. Automatic Policy Amendment algorithm
(APAA) considers the balance between exploration and exploitation, and it uses
entropy to evaluate the information extracted from samples, aiming to maintain
certain exploration ability in action decision-making and avoid trapping into a non-
optimal policy.

(3) The traditional method based on importance evaluation generally evaluates the
importance of samples with the expected reward, and does not consider the evaluation
between samples with the same expected reward under environmental changes.
To overcome the shortcoming, the subtask reward evaluation method is combined to
distinguish the influence of the same reward value on policy under different situations.

The remainder of this paper is organized as follows. In Section 2, the environment
of ocean current and the motions of AUVs are described. Section 3 introduces the related
RL algorithm. Sections 4 and 5 give the mathematical description of the reward function
and the algorithm design, respectively. The simulation results and efficiency analysis are
introduced in Sections 6 and 7, respectively. Finally, a conclusion is presented in Section 8.

2. Problem Statement
2.1. Ocean Current Environment

Ocean current is the flow phenomenon of seawater in the ocean. The proper use
of ocean current can help AUVs to save energy and more quickly accomplish the task,
otherwise it may affect the completion of the task and even damage AUVs. The ocean
current model is composed of several randomly distributed eddy equations, and it is
defined in [38] as
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eddy{p, a} : f (x, y) = (x− px)
2 + (y− Py)

2, (1)

cx = [−|ax|
∂ f
∂x
− |ay|

∂ f
∂y

] ∗ 1
2 f

, (2)

cy = [−sgn(ay)|ax|
∂ f
∂x
− |ay|

∂ f
∂y

] ∗ 1
2 f

, (3)

where p = (px, py) is the central coordinate of the eddy, (cx, cy) is the size of ocean current
at (x, y), a = (ax, ay) is the intensity coefficient of the eddy, and ay determines the rotation
direction of the eddy. When ay is positive, the eddy rotates clockwise. Otherwise, the eddy
rotates counter clockwise. sgn(.) is a sign function.

The ocean flow field is formed by the superposition of m eddies as

F =
m

∑
i=1

eddy{rand(pi), rand(ai)}, (4)

where rand(.) is a random function.

2.2. AUVs Model

The multi-AUV system consists of Nu AUVs, and be denoted by U = {U1, U2, . . . , UNu}.
For each Ui ∈ U, its model is defined as a quad tuple, in which upi, vi, powi, egi represent
Ui’s position, maximum speed, capability for salvage and energy, respectively. We define
the energy loss of Ui in time t is proportional to the third power of its current propulsion
velocity as

LEi(t) = k ∗ ||vi(t)||32, ∀i ∈ {1, 2, . . . , Nu}, (5)

where k is the drag coefficient.
Let Ui has eight discrete directions in its action space, which can be denoted by D =

{d1, d2, . . . , d8} as shown in Figure 2. At time t, Ui’s position changes with its movement
and the ocean current, and is calculated as

upi(t + 1) = upi(t) + vi(t) +~c, (6)

where~c = (cx, cy). As shown in Figure 3.

Figure 2. Eight discrete directions of the AUVs in action space.
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Figure 3. Influence of ocean current on AUV’s direction.

2.3. Task Model

A task consists of Nm targets, and the target i is defined as Ti, i ∈ {1, 2, . . . , Nm},
and the target set is T = {T1, T2, . . . , TNm}. For each Ti ∈ T, it can be represented by mpi,
weighti, emergi, cpli, which denote the location, weight, emergency and complete sign of
the target, respectively. We assume that the weight and emergency of these soluble targets
decrease over time. The weight of Ti at each time step t is expressed as

weighti(t + 1) = max(0, weighti(t)− α ∗ weighti(0)), ∀i ∈ {1, 2, . . . , Nm}, (7)

where max(., .) is the function that taking the largest of two values and α is the weight
attenuation coefficient.

Then, the emergency of Ti at time t+ 1 will be changed corresponding to weighti(t+ 1),
defined by

emergi(t + 1) =
weighti(t + 1)

weighti(0)
, ∀i ∈ {1, 2, . . . , Nm}. (8)

The task model requires AUVs not only to consider their own energy in the ocean
current, but also to salvage the targets before dissolved in water as soon as possible.
The distance between Ui and Tj in time t is calculated as

disti,j(t) = ||upi(t)−mpj(t)||2, ∀i ∈ {1, 2, . . . , Nu}, ∀j ∈ {1, 2, . . . , Nm}. (9)

Let Rc be the salvage radius of the targets. For each Tj ∈ T, which is not fully dissolved
in water, it will be salvaged when the sum of capabilities of the AUVs in Rc is greater than
its weight, as shown in Figure 4. After that, cplj is given by

cplj =

{
1 if ∑disti,j(t)<Rc powi ≥ weightj(t)

0 otherwise
, ∀i ∈ {1, 2, . . . , Nu}, ∀j ∈ {1, 2, . . . , Nm}. (10)

Figure 4. AUVs cooperate to complete the task.

Not only the AUVs, but also the targets are affected by the ocean current, which will
make them drift along with it, as shown in Figure 5. The movement model of the target is
shown as

mpi(t + 1) = mpi(t) +~c, ∀i ∈ {1, 2, . . . , Nm}. (11)
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Figure 5. Movement model of the target.

3. Background
Reinforcement Learning (RL)

RL can be described by Markov decision process (MDP), defined by the five tuples
(S, A, P, R, γ), in which S denotes the set of states, A is the set of actions, P denotes the state
transition probability, R is a bounded reward function, and γ is the discount factor [21].
The agent interacts with the environment at each discrete time step t ∈ {1, 2, . . .}, selects
action a based on the current state st, receives a reward rt and transfers to the next state
st+1 according to probability pt, aiming to receive the maximum reward in one episode.
The sum of the reward obtained by the policy is expressed as

Gt =
T

∑
t′=t

γt
′−t ∗ rt′ . (12)

In this paper, APAA we proposed based on the DDQN framework, which is a typical
model of DRL, then it and some related algorithms are compared with APAA. DDQN,
as one of the most commonly used variants of DQN, solves the overestimation of Q value.
The target network is used to evaluate the optimal action of the current network, and the
loss function is defined as

L(θ) = (rt + γ ∗Qθ−(st+1, arg max
a

Qθ(st+1, a))−Qθ(st, a))2, (13)

where θ is a current network for policy selection, and θ− is a target network for policy
evaluation. The two network usually synchronization after several iterations with the
current network.

4. Model Design
4.1. State Model

Assume that each AUV has the information including the direction of the ocean
current, all state information of itself, other AUVs, and all the targets. The state perceived
by Ui at time t is expressed as si

t = {usi
t, gsi

t, tsi
t, edi

t}, in which usi
t = 〈upi, vi, powi, egi〉

represents the state of Ui at time t, gsi
t = {〈up1, v1〉, 〈up2, v2〉, . . .} denotes the state of

other AUVs at time t, tsi
t = {〈mp1, weight1, emerg1, cpl1〉, 〈mp2, weight2, emerg2, cpl2〉, . . .}

represents the state of the targets at time t and edi
t = 〈cx, cy〉 is the current direction of the

Ui at upi(t).

4.2. Action Model

For each AUV, its action space is divided into eight directions including north, north-
east, east, southeast, south, southwest, west and northwest. In each direction, the AUV can
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move at maximum speed or at 70% of maximum speed, and even remain stationary, that
is, it does not perform any of its own movement, but only relies on the ocean current to
change its position.

4.3. Reward Model

The reward an AUV received in a time step is composed of four parts, i.e., energy
consumption, moving evaluation, collision detection and task completion.

• Energy consumption is determined by the AUV’s speed. The faster the AUV speed in
each time step, the larger the energy consumption is, and the lower the reward value
will be, the reward for the energy consumption is defined as

ri
e = −2 ∗ LEi(t)

MAXE ∗MAXDE
, ∀i ∈ {1, 2, . . . , Nu}, (14)

where MAXE is the initial energy of Ui, MAXDE is the energy attenuation ratio at
the maximum speed. The energy consumption decreases to 0 when the AUV moves
only by ocean current, it will get the maximum energy consumption reward 0 in
this situation.

• Moving evaluation is determined by the AUV whether it is closer to the nearest
target than it was at the previous time step, the reward for the moving evaluation is
defined as

ri
m =

{
0 if minj=1,2,...,Nm(disti,j(t)) > minj=1,2,...,Nm ,(disti,j(t + 1)),
−0.5 otherwise.

(15)

• Collision detection is to judge whether an AUV collides with others. It will get a
negative reward when colliding with others. The reward for the collision is defined as

ri
o =

{
0 if ||upi(t)− upj(t)||2 ≥ τ

−2 otherwise
, ∀i ∈ {1, 2, . . . , Nu}

∧
i 6= j, (16)

where τ is a small positive number, and it represents the minimum safe distance
between AUVs to avoid collision, as shown in Figure 6.

Figure 6. AUVs collision detection.

• Task completion reward is determined by whether the AUVs salvage the targets.
If AUVs salvage a target at time t, all the AUVs will get the reward, which is also
related to the emergency of the target. The reward for the task completion is defined as

rc =

{
emergj if cplj = 1
0 otherwise

, ∀j ∈ {1, 2, . . . , Nm}. (17)



Drones 2022, 6, 141 8 of 20

Then, the reward obtained by Ui in a time step can be calculated as

ri = ri
e + ri

m + ri
o + rc. (18)

5. Automatic Policy Amendment Algorithm (APAA)

APAA we proposed is to get the task sequence of each AUV when they finish the
entire TA. AUVs will add the task sequence into their Task Sequence Matrix (TSM), if they
get a high TCR in a TA. TCR is taken as the AUVs’ reference to each task sequence when
making policy decision in the future. Entropy is used to measure the uncertainty for TSM
to ensure the diversity of AUVs’ learning samples. SR enable AUVs to balance TCR with
their own reward. The amendment probability associated with TSM is generated to affect
the AUVs’ action probability distribution, to improve the sample quality, and to accelerate
DDQN training.

5.1. Task Sequence Matrix (TSM)

The task sequence represents the order in which Ui salvages the targets in each task
allocation. In general, the higher the team cumulative reward (TCR) of a task sequence in
an environment, the more valuable it is. Let the amount of the records in TSM be N. Each
AUV preserves a N × Nm matrix to store its own task sequence. Meanwhile, Vi

R is used to
represent the TCR corresponding to the row i in TSM. When a new task sequence emerges,
each AUV updates it to TSM by removing the sequence with the lowest TCR if it meets

Nu

∑
i=1

Ri > min
j=1,2,...,N

V j
R, (19)

where Ri is the cumulative reward obtained by Ui during TA.
Table 1 shows the top 10 optimal task sequences generated by the three AUVs after

fifty iterations. For each Ui ∈ U in the table, the corresponding column j indicates the jth
target Ui performs, and the jth target that Ui executes is denoted as UTi

j . For example, T1

and T3 appear the most frequently in UT1
1 , indicating that U1 can contributes a higher TCR

if it performs T1 or T3 in UT1
1 .

Table 1. 10 optimal task sequences in the TSMs.

U1 U2 U3 VR

1 T1 - - - - - - - - - T2 T3 T4 T5 - −108
2 T5 - - - - T3 - - - - T1 T2 T4 - - −92
3 - - - - - T5 - - - - T2 - T3 T1 - −115
4 T1 T4 - - - - - - - - T5 T2 T3 - - −113
5 T3 T1 T2 T4 T5 - - - - - - - - - - −131
6 T3 - - - - T2 T4 T1 - - T5 - - - - −107
7 T3 - - - - T5 T2 - - - T4 T1 - - - −111
8 T3 T4 - - - - - - - - T2 T5 T1 - - −117
9 T3 T5 T1 T2 - - - - - - T4 - - - - −123
10 T1 - - - - - - - - - T2 T3 T4 T5 - −125

5.2. Automatic Policy Amendment Matrix (APAM)

In a TA, the target selection preference of the AUVs will determine the task completion
efficiency, as described in Table 1. We wish to use TSM to influence the preference the AUVs
have to perform the task. As a result, a Nm × Nm matrix called APAM is constructed by
evaluate TSM through three indicators including TCR, entropy and SR. It is worth noting
that APAMi,j represents the probability that AUVs selects Ti when performing UT∗j , where
UT∗j represents the jth target performed by an AUV.

(1) Team Cumulative Reward (TCR)
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The TCR is designed to assign the importance to each sequence in TSM with different
weights. The higher TCR of the sequence, the greater the influence on the AUVs. The weight
of each sequence in TSM is defined as

wi
tcr =

Vi
R −MIN_R

MAX_R−MIN_R
, ∀i ∈ {1, 2, . . . , N}, (20)

where MIN_R and MAX_R are the lowest and highest TCR the AUVs can achieve,
respectively.

Then, for each Ti ∈ T, the weight corresponding to the AUVs selecting target Ti in
performing UT∗j , j ∈ {1, 2, . . . , Nm} is calculated according to wtcr as

Mi,j
tcr =

{
Mi,j

tcr + wk
tcr if TSMk,j = Ti

Mi,j
tcr otherwise

, ∀i, j ∈ {1, 2, . . . , Nm}, ∀k ∈ {1, 2, . . . , N}, (21)

where Mtcr is a Nm × Nm matrix.
Finally, Equation (22) is used to transform Mtcr into probability matrix Ptcr.

Pi,j
tcr =

Mi,j
tcr

∑Nm
i=1 Mi,j

tcr

, ∀j ∈ {1, 2, . . . , Nm}. (22)

(2) Entropy

Based on the update mode of TSM mentioned in Section 5.1, we know that TSM will
record a new sequence with a TCR greater than the worst sequence in TSM. From Table 1,
U3 may select T1, T3, and T4, when performing UT3

3 . However, with the TSM updated by
new sequences, the diversity of the targets in TSM may decrease dramatically, and U3 may
only select T3 after several iterations. This is not expected in early training, because it will
converge to a non-optimal policy. The entropy is used to measure the effect of sequences in
TSM on the diversity of AUVs behaviors, and based on entropy, multiple similar records
with high reward will get lower weights. The entropy weight of a new sequence is calcu-
lated by multiplying the change in TSM’s average TCR by the change in TSM’s entropy
after it is added to TSM.

For the column k in TSM, the number of occurrences of Ti is updated as

Ci,j =

{
Ci,j + 1 if TSMk,j = Ti

Ci,j otherwise
, ∀i, j ∈ {1, 2, . . . , Nm}, ∀k ∈ {1, 2, . . . , N}, (23)

where C is a Nm × Nm matrix and is transformed into probability matrix C
′

in the same
way as Equation (22). After that, ie is calculated by

ie =
Nm

∑
j=1

Nm

∑
i=1
−C

′
i,j ∗ log(C

′
i,j). (24)

When a new sequence is added, the entropy of TSM is affected. For each sequence in
TSM, the weight under the entropy metric is

wi
e = e[(ernew−erold)∗(ienew−ieold)], ∀i ∈ {i, 2, . . . , N}, (25)

where erold and ernew are the average TCR of TSM before and after the new sequence is
added, respectively. ieold and ienew are the entropy before and after a new sequence is
added, respectively.
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Similar to Equation (21), the weights of each target performed by AUVs in different
order according to we can be calculated as

Mi,j
e =

{
Mi,j

e + wk
e if TSMk,j = Ti

Mi,j
e otherwise

, ∀i, j ∈ {1, 2, . . . , Nm}, ∀k ∈ {1, 2, . . . , N}. (26)

Note that we transform Me into probability matrix Pe in the same way as Equation (22).

(3) Subtask Reward (SR)

SR is defined as the cumulative reward obtained by an AUV during the salvage of
ith target, aiming to make the AUV balance the TCR and its own reward based on the
actual environment. Let Vi,j

SR be a N × Nm matrix, representing the cumulative reward for
finishing TSMi,j. Based on TSM, the weight of each sequence is calculated as

wi,j
sr =

Vi,j
SR −MIN_R

MAX_R−MIN_R
, ∀j ∈ {1, 2, . . . , Nm}. (27)

Then, we have

Mi,j
sr =

{
Mi,j

sr + wk,j
sr if TSMk,j = Ti

Mi,j
sr otherwise

, ∀i, j ∈ {1, 2, . . . , Nm}, ∀k ∈ {1, 2, . . . , N}. (28)

Finally, the probability matrix Psr is calculated for the Msr by Equation (22).

(4) Probability Weighted

Ptcr, Pe and Psr are the probability matrices that each target selected by AUVs according
to three different indicators under different orders, respectively. In addition, if the variance
of a subtask reward in TSM is large, the selected target is considered to has a great influence
on the TCR. In this case, Psr will have a high proportion coefficient, calculated as

w1 = min(η,
arctan(var(V∗,jSR)

π
), (29)

where V∗,jSR represents the column j of VSR, min(., .) is the smaller of two values, var(.) is
the variance of the data set, and 0 < η < 1 is used to restrict the influence of Psr. The trade-
off between reward and entropy in TSM records has the same coefficient. The APAM is
given by

APAM =
[w1 ∗ Psr + (1− w1) ∗ Ptcr] + Pe

2
. (30)

(5) Probability Prediction

APAM is updated through the new sequences, and the probability changes in the
historical experience of the matrix can be used as the momentum to predict the future
change of APAM, and can furtherly accelerate DDQN training. The momentum matrix is
constructed as

4apam =

{
w3 ∗ 4apam + (1− w3) ∗ (APAMnew − APAMold) if TSM updated,
w2 ∗ 4apam otherwise,

(31)

where 4apam is the change in the momentum of APAM. 0 < w2 < 1, and 0 < w3 < 1.
4apam is updated by the proportional coefficient when the new sequence satisfies the
update conditions of TSM, otherwise, the attenuation of4apam is carried out according to
a certain coefficient. The prediction of the new APAM is given as

APAMpdt = APAM +4apam. (32)



Drones 2022, 6, 141 11 of 20

5.3. Action Conduct by APAM

As shown in Table 2, the APAM is generated by the TSM. Obviously, different AUVs
have different preferences for the targets. This preference is applied to reduce the state
action space and solve the undirected problem of exploration in traditional RL. Q value
is converted into probability by softmax, and then according to the information provided
by the APAM, the probability is amended. A proper amend method will lead to a good
effect of training. The action distribution is the trade-off in the current environment with
multiple constraints, while the probability generated by APAM only represents which
target has a higher priority for execution. The probability of an action will be motivated
or restrained according to the distribution of action instead of the distribution of APAM.
If AUVs’ estimation of an action is similar to the expected behavior in APAM, the action will
be motivated according to the similarity between the action and the expected direction of
APAM, otherwise, it will not be motivated. In fact, motivating one action means inhibiting
others, so it is no need to perform additional inhibiting operations for other actions.

Table 2. The APAM of the three AUVs.

U1 U2 U3

T1 0.403 0.425 - - - - - - - - 0.122 0.123 0.282 0.333 -
T2 - - 1 - - - 0.717 - - - 0.508 0.369 - - -
T3 0.468 - - - - 0.419 - - - - - 0.255 0.289 - -
T4 - 0.575 - 1 - - - - - - 0.243 0.127 0.429 - -
T5 0.129 - - - 1 0.581 0.283 - - - 0.127 0.126 - 0.667 -

When Um performs UTm
j , the column j in the APAM will influence its decision. Let pq

represent the probability that Um moves in each direction. For each pk
q in pq, the positional

relationship between each unfinished target and Um is calculated, then calculating the
cosine similarity between these positional relationships and dk, and finally amending pk

q
according to the APAM of Um

pk
q ← pk

q ∗ (1 +
Nm

∑
i=1

APAMm
i,j ∗max(0, cosSim(dk, mp(t)i − up(t)m))), ∀j ∈ {1, 2, . . . , Nm}, (33)

where cosSim(∗, ∗) represents the cosine similarity of two vectors.

5.4. Algorithm Summarize

The Algorithm 1 gives the algorithm flow for APAA.
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Algorithm 1 APAA.

Input:
Nu, Nm, D, EPISODE, L, M.

Output:
θ∗.

1: Initialize: θ, θ−, EP, TSM, APAM,4apam.
2: for n = 1 to EPISODE do
3: t = 1;
4: Generate APAM by Equations (20)–(30);
5: while si

t is not terminal state do
6: for i = 1 to Nu do
7: Generate action probability distribution pq according to state si

t;
8: if n > M then
9: if n%2 == 0 then

10: APAMi = APAMi +4apami;
11: end if
12: for k = 1 to D do
13: pk

q is corrected according to Equation (33);
14: end for
15: end if
16: Choose action ai

t by ε-greedy according to pq, and get reward ri
t;

17: Put 〈si
t, ai

t, ri
t, si

t+1〉 into EP;
18: end for
19: t = t + 1;
20: end while
21: For a new sequence, update TSM according to Equation (19);
22: if n%L == 0 then
23: A batch samples randomly selected from EP;
24: Training network θ by Equation (13);
25: end if
26: Executed θ− = θ after several iterations;
27: end for

6. Simulation Results

In this section, some simulation results for APAA are presented and compare them
with those obtained by DDQN, Priority Experience Replay (PER) and Proximal Policy
Optimization Clip (PPO-Clip). The simulation is implemented using MATLAB 2018b,
and the personal computer is configured with Intel(R) Core(TM) i7-10700 CPU @2.90GHz,
8GigaBytes (GB) RAM.

6.1. Experiment Parameters

The experiment we designed involves a group of three AUVs and five targets dis-
tributed in the 10 m × 10 m ocean current region, and the ocean current is modeled by
Equation (1). The weight of some targets is greater than the power of AUVs, so they need
to be salvaged by the cooperation of multiple AUVs. In the experimental comparison, each
algorithm has the same network parameters and structure , and the same initial conditions.
Table 3 shows the network and training parameters.

Table 3. Network structure and training parameters.

Hidden Layers Transfer Function Optimization Function Epochs Learning Rate Batch Regularization

2 tanh adam 500 0.001 300 L2

ε-greedy exploration strategy is adopted in action selection. At each step, AUVs
randomly select an action with a probability ε, and with a probability 1-ε select the action



Drones 2022, 6, 141 13 of 20

with the highest expected reward. In addition, the decay factor β is used to cause ε to
decrease with iterations to increase the probability of choosing the optimal action. ε is
updated after the each training of policy as

ε(t + 1) = β ∗ ε(t). (34)

Parameters of the RL are shown in Table 4.

Table 4. Parameters of the RL training.

EPISODE ε(0) β

5000 0.8 0.995

Table 5 shows the parameters used in APAA. The values of these parameters affect the
performance of APAA. First of all, the effect of APAA actually depends on the experience
in TSM. N with small value will lead to insufficient experience diversity in TSM and trap
into non-optimal policy easily. Then, although η let the AUVs have the ability to balance
between the team and itself, its value should not be large in collaborative task, as this
may cause the task to fail. Finally, w2 and w3 control4APAM changes, but both should
have a large value because TSM experience collection is essentially Monte Carlo sampling,
and noise from random sampling can cause4APAM instability.

Table 5. Parameters of APAA algorithm.

Parameter Symbol Value

Size of the TSM N 15
Psr impact factor η 0.1
4APAM attenuation factor w2 0.9
4APAM update factor w3 0.7

Tables 6 and 7 show the attributes of the AUVs and the targets, respectively. In the
experiment, the initial positions of the AUVs and the targets are randomly initialized within
the ocean current region, the weights of the targets are randomly initialized between 2kg
and 5kg, the powers of the AUVs are randomly initialized between 1kg and 4kg, and AUVs’
velocity are randomly initialized between 1m/s and 3m/s. For convenience, we show a set
of parameters.

Table 6. Attributes of the AUVs.

AUVs Position Power (kg) Speed (m/s) Energy (J)

U1 (5,1) 5 1 600
U2 (10,3) 2 3 600
U3 (3,6) 2 3 600

Table 7. Attributes of the targets.

Targets Position Weight (kg) Emergency

T1 (5,7) 4 9.7894
T2 (4,9) 2 7.3135
T3 (6,2) 2 8.66
T4 (8,10) 3 7.3227
T5 (2,1) 2 8.405

Parameters involved in the TA model are shown in Table 8.
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Table 8. Parameters of the TA.

Parameter Symbol Value

Number of AUVs Nu 3
Number of Targets Nm 5
Salvage radius Rc 0.5 m
Collision radius τ 0.1 m
Drag coefficient k 3.425
Targets weight attenuation coefficient α 0.01

6.2. Experiment Result

We compare APAA with DDQN, PER and PPO-Clip in the same scenario and run them
several times to get average performance. The performance is shown in Figure 7, and APAA
achieves the best convergence performance compared with the other algorithms under the
same episode. In fact, the task in this paper is a typical of multi-objective optimization
problem, which generally results in a large state-action space. It is clear that DDQN requires
a lot of exploration to converge in the complex task and has weak stability in convergence.
PER based on DDQN takes advantage of the TD-error of the samples to carry out priority
sampling, which improves the sample efficiency. The advantage of PER became visible
after the first 2000 iterations and achieves better performance than DDQN. PPO-Clip is an
off-policy algorithm based on Actor-Critic, which improves the intelligence of AUVs in
an adversative way and achieves the weakest performance. In addition, the convergence
time of the algorithms is given in Table 9, and APAA has the highest efficiency. By contrast,
PPO-Clip is hard to have a high efficiency due to training for two networks. PER uses the
sum tree to improve the sampling efficiency, but still has a high time cost in updating the
priority of the samples and sampling.

Figure 7. Team cumulative reward (TCR) of the team.
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Table 9. Convergence time of the algorithms.

Time (h)

DDQN 2.75
PER 3.77
PPO-Clip 0.74
APAA 0.5

From Section 4.3, TCR consists of four goals. The performance of task completion
reward is shown in Figure 8. In the experiment, the maximum reward for salvaging the
five targets is 125. APAA gets the highest task completion reward compared with the
other algorithms.

Figure 8. Task reward of the team.

Figure 9 shows the performance of the algorithms in energy loss and collision detection,
respectively. In Table 6, the total energy reserve carried by AUVs is 1800 J, and APAA only
consumes 7% of the energy to salvage all the targets, that is, it can plan a better path in the
ocean current. In addition, the performance of APAA in collision detection also highlights
the lower probability of collisions occurring during AUVs executing the task.



Drones 2022, 6, 141 16 of 20

(a) (b)

Figure 9. The performance of (a) energy consumption and (b) collision detection.

Table 10 shows the performance of the algorithms after convergence. A performance
is provided, time consuming, indicating the time cost the AUVs take to complete the task.

Table 10. Convergence performance of the algorithms (After 5000 episodes).

Task Reward Collision Frequency Energy Consumption (J) Time Consuming (s)

DDQN 105 3 560 84
PER 110 2 650 75
PPO-Clip 82 4 1350 111
APAA 117 0 337 12

Figure 10 shows the trajectories of the AUVs and targets with APAA after training.
The hexagonal stars are the starting positions of the AUVs, and the asterisks are the end
positions of the AUVs. The squares are the starting positions of the targets, the circles are
the positions when the targets are salvaged, and the arrows are the direction of the ocean
current at the coordinates. As can be seen from the path planned by the AUVs at each step,
they always take full advantage of the ocean current moving in the same direction.
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Figure 10. The trajectories of the AUVs and the targets in APAA.

7. Analysis

In this section, the validity and computational complexity of APAA
theoretically are presented.

7.1. Validity Analysis

In order to speed up RL, the policy subspace with greater potential benefits in the
state-action space needs to be consider. Let π(k) be the policy in the kth iteration, and
p(k)(s, a) be the probability of choosing an action from the state-action space. According to
APAA, we have

p(k)(st, at)← p(k)(st, at) + apaa(st, at), ∀st ∈ S, ∀at ∈ A, (35)

where apaa(st, at) is the probability amendment for the state-action pair.
If (st, at) is a better state-action pair, apaa(st, at) > 0, otherwise, apaa(st, at) ≤ 0.

∑a∈A apaa(st, a) = 0. As a result, ∃Sl ⊆ S and Al ⊆ A, for ∀s ∈ Sl and a ∈ Al , we have
pk(st, at) + apaa(st, at) = 0. The subspace will not be explored when pk(Sl , Al) = 0, so
APAA is more efficient than DDQN with the same episodes.

7.2. Computational Complexity Analysis

The computational cost of APAA mainly consists of two parts: calculating APAM
by TSM and amending AUVs’ decision by APAM. First, let the number of actions of the
AUVs be d, TSM be an n×m matrix, and n > m. In Section 5.2, each element in TSM is
evaluated by TCR, SR, and Entropy to generate APAM. Thus, the computational complexity
of this part can easily be estimated as O(3mn) < O(3n2). After that, APAM amends the
probability distribution for the actions of the AUVs, and the computational complexity of
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this part can be expressed as O(md). Finally, the computational cost of APAA is the sum of
the computational complexity of the two parts, i.e., O(3n2 + md).

Although APAA has a high computational complexity in form, amending the action
distribution with the drifting targets that have been salvaged are not considered. As a
result, the computational complexity of the second part would decrease with the progress
of the overall task, so that it can almost be ignored. In addition, the samples of RL are
only related to the actions of the AUVs at each time step, and it is difficult for AUVs to
extract the relationship between behaviors and task results from the massive samples.
However, APAM extracts information related to the task, which can effectively accelerate
the learning speed, so as to believe that such a computational cost is worth it. In contrast,
the computational complexity of PER is related to the size of the replay buffer, and the
computational complexity of PER increases dramatically for complex tasks. The parameter
sensitivity of PPO-Clip and the need to train two networks result in higher computational
complexity. Therefore, APAA also outperforms PER and PPO-Clip at the same training time.

8. Conclusions

In this paper, a new RL approach is proposed to solve the task allocation problem of
multi-AUV in ocean currents. First, the ocean current and a reward function are constructed.
The ocean current, the energy, the task emergency and the collision with other AUVs need
to be taken into account when AUVs perform the task. Many classical RL algorithms
improve the efficiency of traditional samples, but a problem is that traditional samples
are not directly related to the task, which makes it difficult for AUVs to understand how
their behavior affects the final result. To overcome this drawback, the Automatic Policy
Amendment Algorithm (APAA) is introduced. TSM is generated by the task sequences
for each AUV, which represents the task preference for AUVs to obtain the highest TCR.
Such information related to the task can effectively guide the policy learning. After that,
APAM is calculated by TSM, and uses TCR, entropy and SR to adjust the decision of AUVs.
Finally, the simulation results show that APAA accelerates the convergence and improves
the overall performance compared with the DDQN, PER and PPO-Clip. In future work, we
will deal with more complex optimal planning tasks in 3D scenarios.
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